
Chapter 6. Least Squares Problems

A basic problem in science is to fit a model to observa-
tions subject to errors. It is clear that the more obser-
vations that are available, the more accurately will it be
possible to calculate the parameters in the model. This
gives rise to the problem of “solving” an overdetermined
linear or nonlinear system of equations. It can be shown
that the solution which minimizes a weighted sum of the
squares of the residual is optimal in a certain sense.

Åke Björck, Numerical Methods for Least Squares Prob-
lems, SIAM, 1996.

Least squares problems appear very naturally when one would like to estimate
values of parameters of a mathematical model from measured data, which are
subject to errors (see quote above). They appear however also in other con-
texts, and form an important subclass of more general optimization problems,
see Chapter 12. After several typical examples of least squares problems, we
start in Section 6.2 with the linear least squares problem and the natural
solution given by the normal equations. There were two fundamental contri-
butions to the numerical solution of linear least squares problems in the last
century: the first one was the development of the QR factorization by Golub
in 1965, and the second one was the implicit QR algorithm for computing
the singular value decomposition (SVD) by Golub and Reinsch (1970). We
introduce the SVD, which is fundamental for the understanding of linear
least squares problems, in Section 6.3. We postpone the description of the
algorithm for its computation to Chapter 7, but use the SVD to study the
condition of the linear least squares problem in Section 6.4. This will show
why the normal equations are not necessarily a good approach for solving
linear least squares problems, and motivates the use of orthogonal transfor-
mations and the QR decomposition in Section 6.5. Like in optimization, least
squares problems can also have constraints. We treat the linear least squares
problem with linear constraints in full detail in Section 6.6, and a special
class with nonlinear constraints in Section 6.7. We then turn to nonlinear
least squares problems in Section 6.8, which have to be solved by iteration.
We show classical iterative methods for such problems, and like in the case of
nonlinear equations, linear least squares problems arise naturally at each iter-
ation. We conclude this chapter with an interesting example of least squares
fitting with piecewise functions in Section 6.9. The currently best and most
thorough reference for least squares methods is the book by Åke Björck [9].

W. Gander et al., Scientific Computing - An Introduction using Maple and MATLAB,

Texts in Computational Science and Engineering 11,
DOI 10.1007/978-3-319-04325-8 6,

© Springer International Publishing Switzerland 2014

262 LEAST SQUARES PROBLEMS

6.1 Introductory Examples

We start this chapter with several typical examples leading to least squares
problems.

Example 6.1. Measuring a road segment (Stiefel in his lectures at ETH1).

A x1 B x2 C x3 D

Assume that we have performed 5 measurements,

AD = 89m, AC= 67m, BD = 53m, AB = 35m und CD = 20m,

and we want to determine the length of the segments x1 = AB, x2 = BC und
x3 = CD.

According to the observations we get a linear system with more equations
than unknowns:

x1 + x2 + x3 = 89
x1 + x2 = 67
x2 + x3 = 53

x1 = 35
x3 = 20

⇐⇒ Ax = b, A =

⎛
⎜⎜⎜⎜⎝

1 1 1
1 1 0
0 1 1
1 0 0
0 0 1

⎞
⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎜⎝

89
67
53
35
20

⎞
⎟⎟⎟⎟⎠
.

Notice that if we use the last three equations then we get the solution x1 = 35,
x2 = 33 and x3 = 20. However, if we check the first two equations by inserting
this solution we get

x1 + x2 + x3 − 89 = −1,
x1 + x2 − 67 = 1.

So the equations contradict each other because of the measurement errors,
and the over-determined system has no solution.

A remedy is to find an approximate solution that satisfies the equations
as well as possible. For that purpose one introduces the residual vector

r = b − Ax.

One then looks for a vector x that minimizes in some sense the residual
vector.

Example 6.2. The amount f of a component in a chemical reaction
decreases with time t exponentially according to:

f(t) = a0 + a1e
−bt.

1Nehmen wir an, der Meister schickt seine zwei Lehrlinge aus, Strassenstücke zu ver-
messen. . .

Introductory Examples 263

If the material is weighed at different times, we obtain a table of measured
values:

t t1 · · · tm
y y1 · · · ym

The problem now is to estimate the model parameters a0, a1 and b from these
observations. Each measurement point (ti, yi) yields an equation:

f(ti) = a0 + a1e
−bti ≈ yi, i = 1, . . . m. (6.1)

If there were no measurement errors, then we could replace the approximate
symbol in (6.1) by an equality and use three equations from the set to de-
termine the parameters. However, in practice, measurement errors are in-
evitable. Furthermore, the model equations are often not quite correct and
only model the physical behavior approximately. The equations will there-
fore in general contradict each other and we need some mechanism to balance
the measurement errors, e.g. by requiring that (6.1) be satisfied as well as
possible.

Example 6.3. The next example comes from coordinate metrology. Here
a coordinate measuring machine measures two sets of points on two orthog-
onal lines (see Figure 6.1). If we represent the line g1 by the equations

x

x

x x

x

o

o

o o

o

o

g1

g2

Figure 6.1. Measured points on two orthogonal lines.

g1 : c1 + n1x+ n2y = 0, n2
1 + n2

2 = 1, (6.2)

then n = (n1, n2)
� is the normal vector on g1. The normalizing equation

n2
1 + n2

2 = 1 ensures the uniqueness of the parameters c, n1 and n2.
If we insert the coordinates of a measured point Pi = (xi, yi) into Equation

(6.2), we obtain the residual ri = c1+n1xi+n2yi and di = |ri| is the distance
of Pi from g1. The equation of a line g2 orthogonal to g1 is

g2 : c2 − n2x+ n1y = 0, n2
1 + n2

2 = 1. (6.3)

264 LEAST SQUARES PROBLEMS

If we now insert the coordinates of q measured points Qi into (6.3) and of
p points Pi into Equation (6.2), we obtain the following system of equations
for determining the parameters c1, c2, n1 and n2:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 xP1
yP1

1 0 xP2
yP2

...
...

...
...

1 0 xPp
yPp

0 1 yQ1
−xQ1

0 1 yQ2
−xQ2

...
...

...
...

0 1 yQq
−xQq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

c1
c2
n1

n2

⎞
⎟⎟⎠ ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

subject to n2
1 + n2

2 = 1.

(6.4)
Note the difference between the least squares equations and the constraint:
whereas equations of the type g1 or g2 only need to be satisfied approximately,
the constraint n2

1 + n2
2 = 1 must be satisfied exactly by the solution.

Example 6.4. In control theory, one often considers a system like the
one in Figure 6.2. The vectors u and y are the measured input and output
signals at various points in time. Let yt+i = y(t + iΔt). A simple model
assumes a linear relationship between the output and the input signal of the
form

yt+n+an−1yt+n−1+· · ·+a0yt ≈ bn−1ut+n−1+bn−2ut+n−2+· · ·+b0ut. (6.5)

u y
S

Figure 6.2. System with input u and output y

The problem is to determine the parameters ai and bi from measurements
of u and y. For each time step we obtain a new equation of the form (6.5).
If we write them all together, we get a system of linear equations:

⎛
⎜⎜⎝

yn−1 yn−2 · · · y0 −un−1 −un−2 · · · −u0

yn yn−1 · · · y1 −un −un−1 · · · −u1

yn+1 yn · · · y2 −un+1 −un · · · −u2

...
...

...
...

...
...

...
...

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an−1

an−2

...
a0

bn−1

bn−2

...
bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≈

⎛
⎜⎜⎝

−yn
−yn+1

−yn+2

...

⎞
⎟⎟⎠

(6.6)

Introductory Examples 265

A matrix is said to be Toeplitz if it has constant elements on the diagonals.
Here in (6.6), the matrix is composed of two Toeplitz matrices. The number
of equations is not fixed, since one can generate new equations simply by
adding a new measurement.

Example 6.5. In robotics and many other applications, one often en-
counters the Procrustes problem or one of its variants (see [45], Chapter
23). Consider a given body (e.g., a pyramid like in Figure 6.3) and a copy
of the same body. Assume that we know the coordinates of m points xi on

−2

−1

0

1

2

0
1

2
3

4
5

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 6.3. Procrustes or registration problem

the first body, and that the corresponding points ξi have been measured on the
other body in another position in space. We would like to rotate and translate
the second body so that it can be superimposed onto the first one as well as
possible. In other words, we seek an orthogonal matrix Q (the product of three
rotations) and a translation vector t such that ξi ≈ Qxi + t for i = 1, . . . ,m.

The above examples are illustrations of different classes of approximation
problems. For instance, in Examples 6.1 and 6.4, the equations are linear.
However, in Example 6.2 (chemical reactions), the system of equations (6.1)
is nonlinear. In the metrology example 6.3, the equations are linear, but they
are subject to the nonlinear constraint n2

1 + n2
2 = 1. Finally, we have also

an nonlinear problem in Example 6.5, and it is not clear how to parametrize
the unknown matrix Q. Nonetheless, in all the above examples, we would
like to satisfy some equations as well as possible; this is indicated by the
approximation symbol “≈” and we have to define what we mean by that.

There are also least squares problems that are not connected with mea-
surements like in the following example:

Example 6.6. We consider two straight lines g and h in space. Assume

266 LEAST SQUARES PROBLEMS

they are given by a point and a direction vector:

g : X = P + λt
h : Y = Q+ μs

If they intersect each other, then there must exist a λ and a μ such that

P + λt = Q+ μs. (6.7)

Rearranging (6.7) yields

⎛
⎝

t1 −s1
t2 −s2
t3 −s3

⎞
⎠
(

λ
μ

)
=

⎛
⎝

Q1 − P1

Q2 − P2

Q3 − P3

⎞
⎠ (6.8)

a system of three linear equations with two unknowns. If the equations are
consistent, then we can use two of them to determine the intersection point.
If, however, we have a pair of skew lines (i.e., if (6.8) has no solution) then
we may be interested in finding the the point X on g and Y on h which are
closest, i.e. for which the distance vector r = X − Y has minimal length
‖r‖22 −→ min. Thus, we are interested in solving (6.8) as a least squares
problem.

6.2 Linear Least Squares Problem and the Normal
Equations

Linear least squares problems occur when solving overdetermined linear sys-
tems, i.e. we are given more equations than unknowns. In general, such
an overdetermined system has no solution, but we may find a meaningful
approximate solution by minimizing some norm of the residual vector.

Given a matrix A ∈ R
m×n withm > n and a vector b ∈ R

m we are looking
for a vector x ∈ R

n for which the norm of the residual r is minimized, i.e.

‖r‖ = ‖b − Ax‖ −→ min . (6.9)

The calculations are simplest when we choose the 2-norm. Thus we will
minimize the square of the length of the residual vector

‖r‖22 = r21 + r22 + · · · + r2m −→ min . (6.10)

To see that this minimum exists and is attained by some x ∈ R
n, note that

E = {b − Ax | x ∈ R
n} is a non-empty, closed and convex subset of Rm.

Since Rm equipped with the Euclidean inner product is a Hilbert space, [108,
Thm 4.10] asserts that E contains a unique element of smallest norm, so there
exists an x ∈ R

n (not necessarily unique) such that ‖b−Ax‖2 is minimized.
The minimization problem (6.10) gave rise to the name Least Squares

Method. The theory was developed independently by Carl Friedrich

Linear Least Squares Problem and the Normal Equations 267

Gauss in 1795 and Adrien-Marie Legendre who published it first in
1805. On January 1, 1801, using the least squares method, Gauss made
the best prediction of the orbital positions of the planetoid Ceres based on
measurements of G. Piazzi, and the method became famous because of this.

We characterize the least squares solution by the following theorem.

Theorem 6.1. (Least Squares Solution) Let

S = {x ∈ R
n with ‖b − Ax‖2 −→ min}

be the set of solutions and let rx = b − Ax denote the residual for a specific
x. Then

x ∈ S ⇐⇒ A�rx = 0 ⇐⇒ rx ⊥ R(A), (6.11)

where R(A) denotes the subspace spanned by the columns of A.
Proof. We prove the first equivalence, from which the second one follows

easily.
“⇐”: Let A�rx = 0 and z ∈ R

n be an arbitrary vector. It follows that
rz = b − Az = b − Ax+ A(x − z), thus rz = rx + A(x − z). Now

‖rz‖22 = ‖rx‖22 + 2(x − z)�A�rx + ‖A(x − z)‖22.
But A�rx = 0 and therefore ‖rz‖2 ≥ ‖rx‖2. Since this holds for every z
then x ∈ S.

“⇒”: We show this by contradiction: assume A�rx = z
= 0. We consider
u = x+ εz with ε > 0:

ru = b − Au = b − Ax − εAz = rx − εAz.

Now ‖ru‖22 = ‖rx‖22 − 2εz�A�rx + ε2‖Az‖22. Because A�rx = z we obtain

‖ru‖22 = ‖rx‖22 − 2ε‖z‖22 + ε2‖Az‖22.
We conclude that, for sufficient small ε, we can obtain ‖ru‖22 < ‖rx‖22. This
is a contradiction, since x cannot be in the set of solutions in this case. Thus
the assumption was wrong, i.e., we must have A�rx = 0, which proves the
first equivalence in (6.11). �

The least squares solution has an important statistical property which
is expressed in the following Gauss-Markoff Theorem. Let the vector b of
observations be related to an unknown parameter vector x by the linear
relation

Ax = b+ ε, (6.12)

where A ∈ R
m×n is a known matrix and ε is a vector of random errors. In

this standard linear model it is assumed that the random variables εj are
uncorrelated and all have zero mean and the same variance.

Theorem 6.2. (Gauss-Markoff) Consider the standard linear model
(6.12). Then the best linear unbiased estimator of any linear function c�x is
the least square solution of ‖Ax − b‖22 −→ min.

268 LEAST SQUARES PROBLEMS

Proof. Consult a statistics textbook, for example [94, p. 181]. �
Equation (6.11) can be used to determine the least square solution. From
A�rx = 0 it follows that A�(b−Ax) = 0, and we obtain the Normal Equations
of Gauss:

A�Ax = A�b. (6.13)

Example 6.7. We return to Example 6.1 and solve it using the Normal
Equations.

A�Ax = A�b ⇐⇒
⎛
⎝

3 2 1
2 3 2
1 2 3

⎞
⎠
⎛
⎝

x1

x2

x3

⎞
⎠ =

⎛
⎝

191
209
162

⎞
⎠ .

The solution of this 3 × 3 system is

x =

⎛
⎝

35.125
32.500
20.625

⎞
⎠ .

The residual for this solution becomes

r = b − Ax =

⎛
⎜⎜⎜⎜⎝

0.7500
−0.6250
−0.1250
−0.1250
−0.6250

⎞
⎟⎟⎟⎟⎠

with ‖r‖2 = 1.1726.

Notice that for the solution x = (35, 33, 20)� obtained by solving the last three
equations we obtain a larger residual ‖r‖2 =

√
2 = 1.4142.

There is also a way to understand the normal equations geometrically
from (6.11). We want to find a linear combination of columns of the matrix
A to approximate the vector b. The space spanned by the columns of A is the
range of A, R(A), which is a hyperplane in R

m, and the vector b in general
does not lie in this hyperplane, as shown in Figure 6.4. Thus, minimizing
‖b−Ax‖2 is equivalent to minimizing the length of the residual vector r, and
thus the residual vector has to be orthogonal to R(A), as shown in Figure
6.4.

The normal equations (6.13) concentrate data since B = A�A is a small
n × n matrix, whereas A is m × n. The matrix B is symmetric, and if
rank(A) = n, then it is also positive definite. Thus, the natural way to solve
the normal equations is by means of the Cholesky decomposition (cf. Section
3.4.1):

1. Form B = A�A (we need to compute only the upper triangle since B
is symmetric) and compute c = A�b.

2. Decompose B = R�R (Cholesky) where R is an upper triangular ma-
trix.

Singular Value Decomposition (SVD) 269

Ax

b
r = b − Ax

R(A)

Figure 6.4. r is orthogonal to R(A)

3. Compute the solution by forward- (R�y = c) and back-substitution
(Rx = y).

We will see later on that there are numerically preferable methods for
computing the least squares solution. They are all based on the use of or-
thogonal matrices (i.e. matrices B for which B�B = I).

Notice that when solving linear systems Ax = b with n equations and n
unknowns by Gaussian elimination, reducing the system to triangular form,
we make use of the fact that equivalent systems have the same solutions :

Ax = b ⇐⇒ BAx = Bb if B is nonsingular.

For a system of equations Ax ≈ b to be solved in the least squares sense,
it no longer holds that multiplying by a nonsingular matrix B leads to an
equivalent system. This is because the transformed residual Br may not have
the same norm as r itself. However, if we restrict ourselves to the class of
orthogonal matrices,

Ax ≈ b ⇐⇒ BAx ≈ Bb if B is orthogonal.

then the least squares problems remain equivalent, since r = b − Ax and
Br = Bb − BAx have the same length,

‖Br‖22 = (Br)�(Br) = r�B�Br = r�r = ‖r‖22.
Orthogonal matrices and the matrix decompositions containing orthogonal
factors therefore play an important role in algorithms for the solution of
linear least squares problems. Often it is possible to simplify the equations
by pre-multiplying the system by a suitable orthogonal matrix.

6.3 Singular Value Decomposition (SVD)

The singular value decomposition (SVD) of a matrix A is a very useful tool
in the context of least squares problems. It is also very helpful for analyzing
properties of a matrix. With the SVD one x-rays a matrix!

270 LEAST SQUARES PROBLEMS

Theorem 6.3. (Singular Value Decomposition, SVD) Let A ∈
R

m×n with m ≥ n. Then there exist orthogonal matrices U ∈ R
m×m and

V ∈ R
n×n and a diagonal matrix Σ = diag(σ1, . . . , σn) ∈ R

m×n with σ1 ≥
σ2 ≥ . . . ≥ σn ≥ 0, such that

A = UΣV�

holds. The column vectors of U = [u1, . . . ,um] are called the left singular
vectors and similarly V = [v1, . . . ,vn] are the right singular vectors. The
values σi are called the singular values of A. If σr > 0 is the smallest non-
zero singular value, then the matrix A has rank r.

Proof. The 2-norm of A is defined by ‖A‖2 = max‖x‖2=1 ‖Ax‖2. Thus
there exists a vector x with ‖x‖2 = 1 such that

z = Ax, ‖z‖2 = ‖A‖2 =: σ.

Let y := z/‖z‖2. This yields Ax = σy with ‖x‖2 = ‖y‖2 = 1.
Next we extend x into an orthonormal basis of R

n. If V ∈ R
n×n is

the matrix containing the basis vectors as columns, then V is an orthogonal
matrix that can be written as V = [x, V1], where V�

1 x = 0. Similarly, we can
construct an orthogonal matrix U ∈ R

m×m satisfying U = [y, U1], U
�
1 y = 0.

Now

A1 = U�AV =

[
y�

U�
1

]
A [x, V1] =

[
y�Ax y�AV1

U�
1 Ax U�

1 AV1

]
=

[
σ w�

0 B

]
,

because y�Ax = y�σy = σy�y = σ and U�
1 Ax = σU�

1 y = 0 since U1 ⊥ y.
We claim that w� := y�AV1 = 0. In order to prove this, we compute

A1

(
σ

w

)
=

(
σ2 + ‖w‖22

Bw

)

and conclude from that equation that

∥∥∥∥A1

(
σ

w

)∥∥∥∥
2

2

=
(
σ2 + ‖w‖22

)2
+ ‖Bw‖22 ≥ (

σ2 + ‖w‖22
)2

.

Now since V and U are orthogonal, ‖A1‖2 = ‖U�AV ‖2 = ‖A‖2 = σ holds
and

σ2 = ‖A1‖22 = max
‖x‖2 �=0

‖A1x‖22
‖x‖22

≥
∥∥A1

(
σ
w

)∥∥2
2∥∥(σ

w

)∥∥2
2

≥
(
σ2 + ‖w‖22

)2
σ2 + ‖w‖22

.

The last equation reads
σ2 ≥ σ2 + ‖w‖22,

and we conclude that w = 0. Thus we have obtained

A1 = U�AV =

[
σ 0
0 B

]
.

Singular Value Decomposition (SVD) 271

We can now apply the same construction to the sub-matrix B and thus finally
end up with a diagonal matrix. �

Although the proof is constructive, the singular value decomposition is not
usually computed in this way. An efficient numerical algorithm was designed
by Golub and Reinsch [148]. They first transform the matrix by orthogonal
Householder transformations to bidiagonal form. Then the bidiagonal matrix
is further diagonalized in a iterative process by a variant of the QR Algorithm.
For details see Section 7.7 in Chapter 7 on eigenvalues.

If we write the equation A = UΣV� in partitioned form, in which Σr

contains only the nonzero singular values, we get

A = [U1, U2]

(
Σr 0
0 0

)
[V1, V2]

� (6.14)

= U1ΣrV
�
1 (6.15)

=
r∑

i=1

σi uiv
�
i . (6.16)

Equation (6.14) is the full decomposition with square matrices U and V .
When making use of the zeros we obtain the “economy” or “reduced” version
of the SVD given in (6.15). In Matlab there are two variants to compute
the SVD:

[U S V]=svd(A) % gives the full decomposition

[U S V]=svd(A,0) % gives an m by n matrix U

The call svd(A,0) computes a version between full and economic with a non-
square matrix U ∈ R

m×n. This form is sometimes referred to as the “thin
SVD”.

Example 6.8. The matrix A has rank one and its economy SVD is given
by

A =

⎛
⎜⎜⎝

1 1 1
1 1 1
1 1 1
1 1 1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
2
1
2
1
2
1
2

⎞
⎟⎟⎟⎠ (2

√
3)
(

1√
3

1√
3

1√
3

)
.

With Matlab we get the thin version

>> [U,S,V]=svd(ones(4,3),0)

U =

-0.5000 0.8660 -0.0000

-0.5000 -0.2887 -0.5774

-0.5000 -0.2887 0.7887

-0.5000 -0.2887 -0.2113

S =

3.4641 0 0

0 0.0000 0

272 LEAST SQUARES PROBLEMS

0 0 0

V =

-0.5774 0.8165 0

-0.5774 -0.4082 -0.7071

-0.5774 -0.4082 0.7071

Theorem 6.4. If A = UΣV�, then the column vectors of V are the eigen-
vectors of the matrix A�A associated with the eigenvalues σ2

i , i = 1, . . . , n.
The column vectors of U are the eigenvectors of the matrix AA�.

Proof.

A�A = (UΣV�)�UΣV� = V DV�, D = Σ�Σ = diag(σ2
1, . . . , σ

2
n). (6.17)

Thus A�AV = V D and σ2
i is an eigenvalue of A�A. Similarly

AA� = UΣV�(UΣV�)� = UΣΣ�U�, (6.18)

where ΣΣ� = diag(σ2
1, . . . , σ

2
n, 0, . . . , 0) ∈ R

m×m. �

Theorem 6.5. Let A = UΣV�. Then

‖A‖2 = σ1 and ‖A‖F =

√√√√
n∑

i=1

σ2
i .

Proof. Since U and V are orthogonal, we have ‖A‖2 = ‖UΣV�‖2 =
‖Σ‖2. Now

‖Σ‖22 = max
‖x‖2=1

‖Σx‖22 = max
‖x‖2=1

(σ2
1x

2
1 + · · ·+ σ2

nx
2
n) ≤ σ2

1(x
2
1 + · · ·+ x2

n) = σ2
1,

and since the maximum is attained for x = e1 it follows that ‖A‖2 = σ1.
For the Frobenius norm we have

‖A‖F =

√∑
i,j

a2ij =
√
tr(A�A) =

√√√√
n∑

i=1

σ2
i ,

since the trace of a matrix equals the sum of its eigenvalues. �
In (6.16), we have decomposed the matrix A as a sum of rank-one matrices

of the form uiv
�
i . Now we have

‖uiv
�
i ‖22 = max

‖x‖2=1
‖uiv

�
i x‖22 = max

‖x‖2=1
|v�

i x|2‖ui‖22 = max
‖x‖2=1

|v�
i x|2,

and since

max
‖x‖2=1

|v�
i x|2 = max

‖x‖2=1
(‖vi‖2‖x‖2 cosα)2 = cos2 α,

Singular Value Decomposition (SVD) 273

where α is the angle between the two vectors, we obtain

max
‖x‖2=1

‖v�
i x‖22 = ‖v�

i vi‖22 = 1.

We see from (6.16) that the matrix A is decomposed into a weighted sum
of matrices which have all the same norm, and the singular values are the
weights. The main contributions in the sum are the terms with the largest
singular values. Therefore we may approximate A by a lower rank matrix by
dropping the smallest singular values, i.e., replacing their values by zero. In
fact we have the

Theorem 6.6. Let A ∈ R
m×n have rank r and let A = UΣV�. Let M

denote the set of m × n matrices with rank p < r. The solution of

min
X∈M

‖A − X‖2

is given by Ap =
∑p

i=1 σiuiv
�
i and we have

min
X∈M

‖A − X‖2 = ‖A − Ap‖2 = σp+1.

Proof. We have U�ApV = diag(σ1, . . . , σp, 0, . . . , 0) thus Ap ∈ M and

‖A − Ap‖2 = σp+1.

Let B ∈ M and let the linear independent vectors x1, . . . ,xn−p span the null
space of B, so that Bxj = 0. The two sets of vectors {x1, . . . ,xn−p} and
{v1, . . . ,vp+1} contain altogether n+1 vectors. Hence, they must be linearly
dependent, so we can write

α1x1 + α2x2 + · · · + αn−pxn−p + β1v1 + β2v2 + · · · + βp+1vp+1 = 0.

Moreover, not all αi = 0, otherwise the vectors vi would be linearly depen-
dent! Denote by

h = −α1x1 − α2x2 − · · · − αn−pxn−p = β1v1 + β2v2 + · · · + βp+1vp+1
= 0,

and form the unit vector z = h/‖h‖2 = γ1v1 + γ2v2 + · · · + γp+1vp+1.
Then Bz = 0, z�z = γ2

1 + · · · + γ2
p+1 = 1 and

Az = UΣV�z =

p+1∑
i=1

σiγiui.

It follows that

‖A − B‖22 ≥ ‖(A − B)z‖22 = ‖Az‖22 =

p+1∑
i=1

σ2
i γ

2
i

≥ σ2
p+1

p+1∑
i=1

γ2
i = σ2

p+1‖z‖22 = σ2
p+1.

274 LEAST SQUARES PROBLEMS

Thus, the distance from A to any other matrix in M is greater or equal to
the distance to Ap. This proves the theorem. �

6.3.1 Pseudoinverse

Definition 6.1. (Pseudoinverse) Let A = UΣV� be the singular value
decomposition with

Σ =

(
Σr

0

)
∈ R

m×n, Σr := diag(σ1, . . . , σr, 0, . . . , 0) ∈ R
n×n

with σ1 ≥ · · · ≥ σr > 0. Then the matrix A+ = V Σ+U� with

Σ+ = (Σ+
r 0) ∈ R

n×m, Σ+
r := diag(

1

σ1
, . . . ,

1

σr
, 0, . . . , 0) ∈ R

n×n (6.19)

is called the pseudoinverse of A.

We have discussed the SVD only for the case in which A ∈ R
m×n with

m ≥ n. This was mainly for simplicity, since the SVD exists for any matrix:
if A = UΣV�, then A� = V Σ�U� is the singular value decomposition of
A� ∈ R

n×m. Usually the SVD is computed such that the singular values are
ordered decreasingly. The representation A+ = V Σ+U� of the pseudoinverse
is thus already a SVD, except that the singular values 1

σ1
, · · · , 1

σr
are ordered

increasingly. By simultaneously permuting rows and columns one can reorder
the decomposition and bring it into standard form with decreasing elements
in Σ+.

Theorem 6.7. (Penrose Equations) Y = A+ is the only solution of
the matrix equations

(i) AY A = A (ii) Y AY = Y
(iii) (AY)� = AY (iv) (Y A)� = Y A

Proof. It is simple to verify that A+ is a solution: inserting the SVD
e.g. into (i), we get

AA+A = UΣV�V Σ+U�UΣV� = UΣΣ+ΣV� = UΣV� = A.

More challenging is to prove uniqueness. To do this, assume that Y is any

Singular Value Decomposition (SVD) 275

solution to (i)–(iv). Then

Y = Y AY because of (ii)

= (Y A)�Y = A�Y�Y because of (iv)

= (AA+A)�Y�Y = A�(A+)�A�Y�Y because of (i)

= A�(A+)�Y AY because of (iv)

= A�(A+)�Y = (A+A)�Y because of (ii)

= A+AY because of (iv)

= A+AA+AY because of (ii)

= A+(AA+)�(AY)� = A+(A+)�A�Y�A� because of (iii)

= A+(A+)�A� because of (i)

= A+(AA+)� = A+AA+ because of (iii)

Y = A+ because of (ii)

�

6.3.2 Fundamental Subspaces

There are four fundamental subspaces associated with a matrix A ∈ R
m×n:

Definition 6.2. (Fundamental Subspaces of a Matrix)

1. R(A) = {y|y = Ax, x ∈ R
n} ⊂ R

m is the range or column space.

2. R(A)⊥ the orthogonal complement of R(A).
If z ∈ R(A)⊥ then z�y = 0, ∀y ∈ R(A).

3. R(A�) = {z|z = A�y, y ∈ R
m} ⊂ R

n the row space.

4. N (A) = {x|Ax = 0} the null space.

Theorem 6.8. The following relations hold:

1. R(A)⊥ = N (A�). Thus R
m = R(A) ⊕ N (A�).

2. R(A�)⊥ = N (A). Thus R
n = R(A�) ⊕ N (A).

In other words, Rm can be written as a direct sum of the range of A and the
null space of A�, and an analogous result holds for R

n.
Proof. Let z ∈ R(A)⊥. Then for any x ∈ R

n, we have Ax ∈ R(A), so
by definition we have

0 = (Ax)�z = x�(A�z).

Since this is true for all x, it follows that A�z = 0, which means z ∈ N (A�)
and therefore R(A)⊥ ⊂ N (A�).

276 LEAST SQUARES PROBLEMS

On the other hand, let y ∈ R(A) and z ∈ N (A�). Then we have

y�z = (Ax)�z = x�(A�z) = x�0 = 0

which means that z ∈ R(A)⊥. Thus also N (A�) ⊂ R(A)⊥.
The second statement is verified in the same way. �
One way to understand the problem of finding least squares approxima-

tions is via projections onto the above subspaces. Recall that P : Rn → R
n is

a projector onto a subspace V ⊂ R
n if P 2 = P and R(P) = V . Additionally,

if P is symmetric, then it is an orthogonal projector. The following lemma
shows a few properties of orthogonal projectors.

Lemma 6.1. Let V
= 0 be a non-trivial subspace of R
n. If P1 is an

orthogonal projector onto V , then ‖P1‖2 = 1 and P1v = v for all v ∈ V .
Moreover, if P2 is another orthogonal projector onto V , then P1 = P2.

Proof. We first show that P1v = v for all v ∈ V . Let 0
= v ∈ V . Since
V = R(P1), there exists x ∈ R

n such that v = P1x. Thus,

P1v = P 2
1x = P1x = v.

Taking norms on both sides gives

‖P1v‖2 = ‖v‖2,

which implies ‖P1‖2 ≥ 1. To show that ‖P1‖2 = 1, let y ∈ R
n be arbitrary.

Then
‖P1y‖22 = y�P�

1 P1y = y�P 2
1 y = y�P1y.

The Cauchy–Schwarz inequality now gives

‖P1y‖22 ≤ ‖y‖2‖P1y‖2,
which shows, upon dividing both sides by ‖P1y‖2, that ‖P1y‖2 ≤ ‖y‖2.
Hence, we conclude that ‖P1‖2 = 1.

Now let P2 be another orthogonal projector onto V . To show equality of
the two projectors, we show that (P1 − P2)y = 0 for all y ∈ R

n. Indeed, we
have

‖(P1 − P2)y‖22 = yT (P1 − P2)
�(P1 − P2)y

= y�(P1 − P2)
2y

= y�(P1 − P1P2 − P2P1 + P2)y

= y�(I − P1)P2y + y�(I − P2)P1y. (6.20)

But for any v ∈ V , we have

(I − P1)v = v − P1v = v − v = 0,

Singular Value Decomposition (SVD) 277

and similarly for I − P2. Since P2y ∈ V , we have (I − P1)P2y = 0, so the
first term in (6.20) vanishes. Exchanging the roles of P2 and P1 shows that
the second term in (6.20) also vanishes, so P1 = P2. �

Thanks to the above lemma, we see that the orthogonal projector onto a
given V is in fact unique; we denote this projector by PV . With the help of the
pseudoinverse, we can describe orthogonal projectors onto the fundamental
subspaces of A.

Theorem 6.9. (Projectors Onto Fundamental Subspaces)

1. PR(A) = AA+ 2. PR(A�) = A+A
3. PN (A�) = I − AA+ 4. PN (A) = I − A+A

Proof. We prove only the first relation; the other proofs are similar. Be-
cause of Relation (iii) in Theorem 6.7 we have (AA+)� = AA+. Thus PR(A)

is symmetric. Furthermore (AA+)(AA+) = (AA+A)A+ = AA+ because of
(i). Thus PR(A) is symmetric and idempotent and is therefore an orthogonal
projector. Now let y = Ax ∈ R(A); then PR(A)y = AA+y = AA+Ax =
Ax = y. So elements in R(A) are projected onto themselves. Finally take
z ⊥ R(A) ⇐⇒ A�z = 0 then PR(A)z = AA+z = (AA+)�z = (A+)�A�z =
0. �

Note that the projectors can be computed using the SVD. Let U1 ∈ R
m×r,

U2 ∈ R
m×(n−r), V1 ∈ R

n×r, V2 ∈ R
n×(n−r) and Σr ∈ R

r×r in the following
SVD

A =
(
U1 U2

)(Σr 0
0 0

)(
V�
1

V�
2

)
.

Then inserting this decomposition into the expressions for the projectors of
Theorem 6.9 we obtain:

1. PR(A) = U1U
�
1 2. PR(A�) = V1V

�
1

3. PN (A�) = U2U
�
2 4. PN (A) = V2V

�
2

6.3.3 Solution of the Linear Least Squares Problem

We are now ready to describe the general solution for the linear least squares
problem. We are given a system of equations with more equations than
unknowns,

Ax ≈ b.

In general b will not be in R(A) and therefore the system will not have a
solution. A consistent system can be obtained if we project b onto R(A) :

Ax = AA+b ⇐⇒ A(x − A+b) = 0.

We conclude that x − A+b ∈ N (A). That means

x − A+b = (I − A+A)w

278 LEAST SQUARES PROBLEMS

where we have generated an element in N (A) by projecting an arbitrary
vector w onto it. Thus we have shown

Theorem 6.10. (General Least Squares Solution) The general
solution of the linear least squares problem Ax ≈ b is

x = A+b+ (I − A+A)w, w arbitrary. (6.21)

Using the expressions for projectors from the SVD we obtain for the general

solution

x = V1Σ
−1
r U�

1 b+ V2c (6.22)

where we have introduced the arbitrary vector c := V�
2 w. Notice that if we

calculate ‖x‖22 using e.g. (6.21), we obtain

‖x‖22 = ‖A+b‖22 + 2w� (I − A+A)�A+

︸ ︷︷ ︸
=0

b+ ‖(I − A+A)w‖22

= ‖A+b‖22 + ‖(I − A+A)w‖22 ≥ ‖A+b‖22.

This calculation shows that any solution to the least squares problem must
have norm greater than or equal to that of A+b; in other words, the pseu-
doinverse produces the minimum-norm solution to the least squares problem
Ax ≈ b. Thus, we have obtained an algorithm for computing both the gen-
eral and the minimum norm solution of the linear least squares problem with
(possibly) rank deficient coefficient matrix:

Algorithm 6.1.
General solution of the linear least squares problem

Ax ≈ b

1. Compute the SVD: [U,S,V]=svd(A).

2. Make a rank decision, i.e. choose r such that σr > 0 and σr+1 = · · · =
σn = 0. This decision is necessary because rounding errors will prevent
the zero singular values from being exactly zero.

3. Set V1=V(:,1:r), V2= V(:,r+1:n), Sr=S(1:r,1:r), U1=U(:,1:r).

4. The solution with minimal norm is xm=V1*(Sr\U1’*b).

5. The general solution is x=xm+V2*c with an arbitrary c ∈ R
n−r.

If A has full rank (rank(A) = n) then the solution of the linear least
squares problem is unique:

x = A+b = V Σ+U�b.

Singular Value Decomposition (SVD) 279

The matrix A+ is called pseudoinverse because in the full rank case the
solution Ax ≈ b ⇒ x = A+b is the analogue of the solution x = A−1b of a
linear system Ax = b with nonsingular matrix A ∈ R

n×n .
The general least squares solution presented in Theorem 6.10 is also valid

for a consistent system of equations Ax = b where m ≤ n, i.e. an under-
determined linear system with fewer equations than unknowns. In this case
the x = V1Σ

−1
r U�

1 b solves the problem

min ‖x‖2 subject to Ax = b.

6.3.4 SVD and Rank

Consider the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.9781 4.4460 −0.1610 −3.8246 3.8137
2.7237 −2.3391 2.3753 −0.0566 −4.1472
1.6934 −0.1413 −1.5614 −1.5990 1.7343
3.1700 −7.1943 −4.5438 6.5838 −1.1887
0.3931 −3.1482 3.1500 3.6163 −5.9936

−7.7452 2.9673 −0.1809 4.6952 1.7175
−1.9305 8.9277 2.2533 −10.1744 5.2708

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The singular values are computed by svd(A) as

σ1 = 20.672908496836218
σ2 = 10.575440102610981
σ3 = 8.373932796689537
σ4 = 0.000052201761324
σ5 = 0.000036419750608

and we can observe a gap between σ3 and σ4. The two singular values σ4

and σ5 are about 105 times smaller than σ3. Clearly the matrix A has rank
5. However, if the matrix elements comes from measured data and if the
measurement uncertainty is 5 · 10−5, one could reasonably suspect that A is
in fact a perturbed representation of a rank-3 matrix, where the perturbation
is due to measurement errors of the order of 5 · 10−5. Indeed, reconstructing
the matrix by setting σ4 = σ5 = 0 we get

[U,S,V]=svd(A);

S(4,4)=0; S(5,5)=0;

B=U*S*V’

We see no difference between A and B when using the Matlab-format short
because, according to Theorem 6.6, we have ‖A − B‖2 = σ4 = 5.2202 10−5.
Thus, in this case, one might as well declare that the matrix has numerical
rank 3.

In general, if there is a distinct gap between the singular values one can
define a threshold and remove small nonzero singular values which only occur

280 LEAST SQUARES PROBLEMS

because of the rounding effects of finite precision arithmetic or maybe because
of measurement errors in the data. The default tolerance in Matlab for the
rank command is tol=max(size(A))*eps(norm(A)). Smaller singular values
are considered to be zero.

There are full rank matrices whose singular values decrease to zero with
no distinct gap. It is well known that the Hilbert matrix is positive definite
(see Problem 7.1 in Chapter 7). The Matlab statement eig(hilb(14))
gives us as smallest eigenvalue (which is here equal to σ14) the negative value
−3.4834 10−17! With svd(hilb(14)) we get σ14 = 3.9007 10−18 which is also
not correct. Using the Maple commands

with(LinearAlgebra);

Digits:=40;

n:=14;

A:=Matrix(n,n);

for i from 1 to n do

for j from 1 to n do

A[i,j]:=1/(i+j-1);

end do;

end do;

evalm(evalf(Eigenvalues(A)));

we obtain for n = 14 the singular values

1.8306
4.1224 · 10−01

5.3186 · 10−02

4.9892 · 10−03

3.6315 · 10−04

2.0938 · 10−05

9.6174 · 10−07

3.5074 · 10−08

1.0041 · 10−09

2.2100 · 10−11

3.6110 · 10−13

4.1269 · 10−15

2.9449 · 10−17

9.8771 · 10−20

For A=hilb(14)Matlab computes rank(A)=12 which is mathematically not
correct but a reasonable numerical rank for such an ill-conditioned matrix.
The SVD is the best tool to assign numerically a rank to a matrix.

6.4 Condition of the Linear Least Squares Problem

The principle of Wilkinson states that the result of a numerical computation
is the result of an exact computation for a slightly perturbed problem (see
Section 2.7). This result allows us to estimate the influence of finite precision
arithmetic. A problem is said to be well conditioned if the results do not

Condition of the Linear Least Squares Problem 281

differ too much when solving a perturbed problem. For an ill-conditioned
problem the solution of a perturbed problem may be very different.

Consider a system of linear equations Ax = b withA ∈ R
n×n non-singular

and a perturbed system (A+ εE)x(ε) = b, where ε is small, e.g. the machine
precision. How do the solutions x(ε) and x = x(0) differ? We have already
shown one way of estimating this difference in Chapter 3 (cf. Theorem 3.5),
but here we illustrate another technique, which we will apply in the next
section to the linear least squares problem. Let us consider the expansion

x(ε) = x(0) + ẋ(0)ε+O(ε2).

The derivative ẋ(0) is obtained by differentiating:

(A+ εE)x(ε) = b

Ex(ε) + (A+ εE)ẋ(ε) = 0

⇒ ẋ(0) = −A−1Ex(0).

Thus, we get
x(ε) = x(0) − A−1Ex(0) ε+O(ε2).

Neglecting O(ε2) and taking norms, we get

‖x(ε) − x(0)‖2 ≤ ‖A−1‖2 ‖ε E‖2 ‖x(0)‖2.

From the last equation, we conclude that the relative error satisfies

‖x(ε) − x‖2
‖x‖2 ≤ ‖A−1‖2 ‖A‖2︸ ︷︷ ︸

κ
condition number

‖ε E‖2
‖A‖2 . (6.23)

If we use the 2-norm as matrix norm,

‖A‖2 := max
x�=0

‖Ax‖2
‖x‖2 = σmax(A),

then the condition number is given by

κ =
σmax(A)

σmin(A)
= cond(A) in Matlab.

Thus, if ‖E‖2 ≈ ‖A‖2, then according to the principle of Wilkinson we have
to expect that the numerical solution may deviate by about κ units in the
last digit from the exact solution.

We will now present an analogous result due to [56] for comparing the
solutions of

‖b − Ax‖2 −→ min and ‖b − (A+ εE)x(ε)‖2 −→ min .

282 LEAST SQUARES PROBLEMS

6.4.1 Differentiation of Pseudoinverses

Let A be a matrix whose elements are functions of k variables

A(α) ∈ R
m×n, α =

⎛
⎜⎝

α1

...
αk

⎞
⎟⎠ .

Definition 6.3. (Fréchet Derivative) The Fréchet derivative of the
matrix A(α) is the 3-dimensional tensor

DA(α) =

(
∂aij(α)

∂αs

)
, s = 1, . . . , k

DA(α) collects the gradients of all the matrix elements with respect to α.

We first derive some calculation rules for the operator D:

1. If A is constant then DA = 0.

2. Let A ∈ R
m×k be constant. Then D[Aα] = A.

3. Product rule:

D[A(α)B(α)] = DA(α)B(α) + A(α)DB(α).

Here, the product DA(α)B(α) means every layer of the tensor DA(α)
is multiplied by the matrix B(α). This rule is evident if we consider
one element of the product which is differentiated with respect to αs:

(D [A(α)B(α)])i,j,s =
∂

∂αs

(
n∑

t=1

aitbtj

)
=

n∑
t=1

(
∂ait
∂αs

btj + ait
∂btj
∂αs

)
.

4. Taylor expansion:

A(α+ h) = A(α) + DA(α)(h) +O(‖h‖22).

Here, DA(α)(h) is a matrix with the same size as A(α), where each
matrix element is obtained by computing the scalar product between
the gradient ∇αaij (of length k) and h, also of length k.

5. Derivative of the inverse:

D [A−1(α)
]
= −A−1(α)DA(α)A−1(α).

This results from differentiating AA−1 = I:

DA(α)A−1(α) + A(α)D [A−1(α)
]
= 0.

Condition of the Linear Least Squares Problem 283

Theorem 6.11. (Frechet Projector) Let Ω ⊂ R
k be an open set and

let A(α) ∈ R
m×n have constant rank for all α ∈ Ω. Let PR(A) = AA+ be the

projector on the range of A. Then

DPR(A) = PN (A�)DAA+ +
(
PN (A�)DAA+

)�
, ∀α ∈ Ω. (6.24)

Proof.

PR(A)A = A because of Penrose Equation (i)

⇒ DPR(A)A+ PR(A)DA = DA

DPR(A)A = (I − PR(A))DA = PN (A�)DA

Multiplying the last equation from the right with A+ and observing that
PR(A) = AA+ we get

DPR(A)PR(A) = PN (A�)DAA+. (6.25)

A projector is idempotent, therefore

DPR(A) = D
(
P 2

R(A)

)
= DPR(A)PR(A) + PR(A)DPR(A). (6.26)

Furthermore, PR(A) is symmetric, which implies each layer of the tensor
DPR(A) is also symmetric. Therefore

(DPR(A)PR(A)

)�
= PR(A)DPR(A). (6.27)

Substituting into (6.26) gives

DPR(A) = DPR(A)PR(A) +
(DPR(A)PR(A)

)�
,

which, together with (6.25), yields (6.24). �

Theorem 6.12. Consider the projector PR(A�) = A+A. With the same
assumptions as in Theorem 6.11 we have

DPR(A�) = A+DAPN (A) +
(
A+DAPN (A)

)�
. (6.28)

Proof. The proof follows from the proof of Theorem 6.11 by exchanging
A ↔ A+ and A� ↔ A. �

Theorem 6.13. Let Ω ⊂ R
k be an open set and let the matrix A(α) be

Fréchet differentiable for all α ∈ Ω, with constant rank r ≤ min(m,n). Then
for every α ∈ Ω we have

DA+(α) = −A+DAA+ +A+(A+)�(DA)� PN (A�) + PN (A)(DA)� (A+)�A+.
(6.29)

284 LEAST SQUARES PROBLEMS

Proof. First, we have by Theorem 6.9

A+PN (A�) = A+(I − AA+) = A+ − A+AA+ = 0,

where the last equality follows from Penrose Equation (ii). Differentiating
the above gives

DA+PN (A�) +A+DPN (A�) = 0

or

DA+PN (A�) = −A+DPN (A�).

But PN (A�) = I − PR(A), which implies

DPN (A�) = −DPR(A),

so by Theorem 6.11, we have

DA+PN (A�) = A+DPR(A)

= A+PN (A�)︸ ︷︷ ︸
=0

DAA+ +A+(A+)�(DA+)�PN (A�)

= A+(A+)�(DA+)�PN (A�). (6.30)

Similarly, using the relation PN (A)A
+ = 0 and Theorem 6.12, we derive

PN (A)DA+ = DPR(A�)A
+

= A+DAPN (A)A
+

︸ ︷︷ ︸
=0

+PN (A)(DA)�(A+)�A+

= PN (A)(DA)�(A+)�A+ (6.31)

Finally, differentiating the relation A+ = A+AA+ gives

DA+ = (DA+)AA+ + A+(DA)A+ +A+A(DA+)

= DA+(AA+ − I) + A+(DA)A+ + (A+A − I)DA+ + 2DA+

= 2DA+ +A+(DA)A+ − DA+PN (A�) − PN (A)DA+.

Thus, after rearranging we get

DA+ = −A+DAA+ + DA+PN (A�) + PN (A)DA+. (6.32)

Substituting (6.30) and (6.31) into (6.32) yields the desired result. �

Condition of the Linear Least Squares Problem 285

6.4.2 Sensitivity of the Linear Least Squares Problem

In this section, we want to compare the solution of the least squares problem
‖b − Ax‖2 to that of the perturbed problem ‖b − (A + εE)x(ε)‖2. Define
A(ε) = A+ εE. The solution of the perturbed problem is

x(ε) = A(ε)+b =

[
A(0)+ +

dA+

d ε
ε+O(ε2)

]
b = x+ ε

dA+

d ε
b+O(ε2). (6.33)

Applying Theorem 6.13, we get

dA+

d ε
= −A+ dA

d ε
A+ +A+A+� dA�

d ε
PN (A�) + PN (A)

dA�

d ε
A+�

A+.

Multiplying from the right with b and using dA/d ε = E, A+b = x and

PN (A�)b = (I − AA+)b = b − Ax = r,

we get
dA+

d ε
b = −A+Ex+A+A+�

E�r + PN (A)E
�A+�

x.

Introducing this into (6.33), we obtain

x(ε) − x = ε
(
−A+Ex+ PN (A)E

�A+�
x+ A+A+�

E�r
)
+O(ε2).

Neglecting the term O(ε2) and taking norms, we get

‖x(ε) − x‖2 ≤ |ε|
(
‖A+‖2 ‖E‖2 ‖x‖2 + ‖PN (A)‖2 ‖E�‖2 ‖A+�‖2 ‖x‖2

+ ‖A+‖2 ‖A+�‖2 ‖E�‖2 ‖r‖2
)
.

Introducing the condition number

κ := ‖A‖2 ‖A+‖2 =
σ1(A)

σr(A)
,

and observing that ‖PN (A)‖2 = 1 we get the the estimate:

Theorem 6.14. (Golub-Pereyra 1973)

‖x(ε) − x‖2
‖x‖2 ≤

(
2κ+ κ2 ‖r‖2

‖A‖2 ‖x‖2

) ‖ε E‖2
‖A‖2 +O(ε2). (6.34)

Equation (6.34) tells us again what accuracy we can expect from the
numerical solution. Here, we have to distinguish between good and bad
models: when the model is good, the residual ‖r‖2 must be small, since it
is possible to find parameters that fit the data well. In this case, the error
in the solution may deviate by about κ units in the last digit from the exact
solution, just like for linear equations (6.23). However, when the model is
bad, i.e. when ‖r‖2 is large, the condition becomes much worse, so we must
expect a larger error in the computed solution.

286 LEAST SQUARES PROBLEMS

6.4.3 Normal Equations and Condition

If we want to solve Ax ≈ b numerically using the normal equations, we have
to expect worse numerical results than predicted by (6.34), even for good
models. Indeed, if A = UΣV� has rank n then

κ(A�A) = κ(V Σ�U�UΣV�) = κ(V Σ�ΣV�) =
σ2
1

σ2
n

= κ(A)2. (6.35)

Thus, forming A�A leads to a matrix with a squared condition number
compared to the original matrix A. Intuitively, one also sees that forming
A�A may result in a loss of information, as shown by the following famous
example by P. Läuchli:

A =

⎛
⎝

1 1
δ 0
0 δ

⎞
⎠ , A�A =

(
1 + δ2 1

1 1 + δ2

)
.

If δ <
√
ε (with ε = machine precision) then numerically 1 + δ2 = 1 and the

matrix of the normal equations becomes singular, even though A numerically
has rank 2.

Example 6.9. We illustrate the theory with the following example. We
generate a matrix A by taking the 6×5 segment of the inverse Hilbert-matrix
divided by 35791. Next we construct a compatible right hand side y1 for the
solution

x =

(
1,

1

2
,
1

3
,
1

4
,
1

5

)�
.

Then we compare the numerical solution of Ax ≈ y1 obtained by orthogo-
nal transformations using Matlab’s \ operator with the solution of the the
normal equations.

In the second calculation we make the right hand side incompatible by
adding a vector orthogonal to R(A). The amplification factor

2κ+ κ2 ‖r‖2
‖A‖2 ‖x‖2 ,

which is in the first case essentially equal to the condition number, grows in
the second case because of the large residual and influences the accuracy of
the numerical solution.

format compact, format long e

A=invhilb(6)/35791; A=A(:,1:5); % generate matrix

y1=A*[1 1/2 1/3 1/4 1/5]’; % consistent right hand side

x11=A\y1;

K=cond(A);

factor1=K*(2+K*norm(y1-A*x11)/norm(A)/norm(x11));

x21=(A’*A)\(A’*y1); % solve with normal equations

Algorithms Using Orthogonal Matrices 287

dy=[-4620 -3960 -3465 -3080 -2772 -2520]’;

Check=A’*dy % dy is orthogonal to R(A)

y2=y1+dy/35791; % inconsistent right hand side

x12=A\y2;

factor2=K*(2+K*norm(y2-A*x12)/norm(A)/norm(x12));

x22=(A’*A)\(A’*y2); % solve with normal equations

O_solutions=[x11 x12]

factors=[factor1, factor2]

NE_solutions=[x21 x22]

SquaredCondition=K^2

We get the results

Check =

-8.526512829121202e-14

-9.094947017729282e-13

1.455191522836685e-11

1.455191522836685e-11

0

O_solutions =

9.999999999129205e-01 1.000000008577035e+00

4.999999999726268e-01 5.000000028639559e-01

3.333333333220151e-01 3.333333345605716e-01

2.499999999951682e-01 2.500000005367703e-01

1.999999999983125e-01 2.000000001908185e-01

factors =

9.393571042867742e+06 1.748388455005875e+10

NE_solutions =

1.000039250650201e+00 1.000045308718515e+00

5.000131762672949e-01 5.000152068771240e-01

3.333389969395881e-01 3.333398690463054e-01

2.500024822148246e-01 2.500028642353512e-01

2.000008837044892e-01 2.000010196590261e-01

SquaredCondition =

2.205979423052303e+13

We see that the first O_solution has about 6 incorrect decimals which cor-
respond well to the amplifying factor 9.3 106. The second O_solution with
incompatible right hand side has about 8 decimals incorrect, the factor in this
case is 1.7 1010 and would even predict a worse result.

The solutions with the normal equations, however, have about 12 incorrect
decimal digits, regardless of whether the right hand side is compatible or not.
This illustrates the influence of the squared condition number.

6.5 Algorithms Using Orthogonal Matrices

6.5.1 QR Decomposition

Consider a matrix A ∈ R
m×n with m ≥ n and rank(A) = n. Then there

exists the Cholesky decomposition of A�A = R�R where R is an upper

288 LEAST SQUARES PROBLEMS

triangular matrix. Since R is non- singular we can write R−�A�AR−1 = I
or

(AR−1)�(AR−1) = I.

This means that the matrix Q1 := AR−1 has orthogonal columns. Thus we
have found the QR decomposition

A = Q1R. (6.36)

Here, Q1 ∈ R
m×n and R ∈ R

n×n. We can always augment Q1 to an m × m
orthogonal matrix Q := [Q1, Q2] and instead consider the decomposition

A = [Q1, Q2]

(
R

0

)
. (6.37)

The decomposition (6.37) is what Matlab computes with the command
[Q,R] = qr(A). The decomposition (6.37) exists for any matrix A with full
column rank.

We have shown in Section 6.2 that for an orthogonal matrix B the prob-
lems

Ax ≈ b and BAx ≈ Bb

are equivalent. Now if A = Q
(
R
0

)
, then B = Q� is orthogonal and Ax ≈ b

and Q�Ax ≈ Q�b are equivalent. But

Q�A =

(
R

0

)

and the equivalent system becomes
(
R

0

)
x ≈

(
y1

y2

)
, with

(
y1

y2

)
= Q�b.

The square of the norm of the residual,

‖r‖22 = ‖y1 − Rx‖22 + ‖y2‖22,
is obviously minimal for x̂ where

Rx̂ = y1, x̂ = R−1y1 and min ‖r‖2 = ‖y2‖2.
This approach is numerically preferable to the normal equations, since it
does not change the condition number. This can be seen by noting that
the singular values are not affected by orthogonal transformations: If A =
UΣV� = Q

(
R
0

)
then the singular value decomposition of

(
R
0

)
is

(
R

0

)
= (Q�U)ΣV�,

and thus R and A have the same singular values, which leads to

κ(A) = κ(R).

In the following section we will show how to compute the QR decomposition.

Algorithms Using Orthogonal Matrices 289

6.5.2 Method of Householder

Definition 6.4. (Elementary Householder Matrix) An elementary
Householder matrix is a matrix of the form P = I −uu� with ‖u‖2 =

√
2 is

Elementary Householder matrices have the following properties:

1. P is symmetric.

2. P is orthogonal, since
P�P = (I − uu�)(I − uu�) = I − uu� − uu� + uu�u︸︷︷︸

2

u� = I.

3. Pu = −u and if x ⊥ u then Px = x. If y = αx + βu then Py =
αx − βu. Thus P is a reflection across the hyperplane u�x = 0.

P will be used to solve the following basic problem: Given a vector x, find
an orthogonal matrix P such that

Px =

⎛
⎜⎜⎜⎝

σ
0
...
0

⎞
⎟⎟⎟⎠ = σe1.

Since P is orthogonal we have ‖Px‖22 = ‖x‖22 = σ2 thus σ = ±‖x‖2. Fur-
thermore Px = (I − uu�)x = x − u(u�x) = σe1, thus u(u�x) = x − σe1
and we obtain by normalizing

u =
x − σe1

‖x − σe1‖2
√
2.

We can still choose the sign of σ, and we choose it such that no cancellation
occurs in computing x − σe1,

σ =

{ ‖x‖2, x1 < 0,
−‖x‖2, x1 ≥ 0.

For the denominator we get ‖x − σe1‖22 = (x − σe1)
�(x − σe1) = x�x −

2σe�1x+ σ2. Note that −2σe�1 = 2|x1|‖x‖2, so the calculations simplify and
we get

u =
x − σe1√‖x‖2(|x1| + ‖x‖2)

.

In order to apply this basic construction for the computation of the QR
decomposition, we construct a sequence of n elementary matrices Pi:

Pi =

(
I 0
0 I − uiu

�
i

)
.

290 LEAST SQUARES PROBLEMS

We choose ui ∈ R
m−i+1 such that zeros are introduced in the i-th column of

A below the diagonal when multiplying PiA. We obtain after n steps

PnPn−1 · · ·P1A =

(
R

0

)

and, because each Pi is symmetric, Q becomes

Q = (PnPn−1 · · ·P1)
� = P1P2 · · ·Pn.

If we store the new diagonal elements (which are the diagonal of R) in a
separate vector d we can store the Householder vectors ui in the same location
where we introduce zeros in A. This leads to the following implicit QR
factorization algorithm:

Algorithm 6.2. Householder QR Decomposition

function [A,d]=HouseholderQR(A);

% HOUSEHOLDERQR computes the QR-decomposition of a matrix

% [A,d]=HouseholderQR(A) computes an implicit QR-decomposition A=QR

% using Householder transformations. The output matrix A contains

% the Householder vectors u and the upper triangle of R. The

% diagonal of R is stored in the vector d.

[m,n]=size(A);

for j=1:n,

s=norm(A(j:m,j));

if s==0, error(’rank(A)<n’), end

if A(j,j)>=0, d(j)=-s; else d(j)=s; end

fak=sqrt(s*(s+abs(A(j,j))));

A(j,j)=A(j,j)-d(j);

A(j:m,j)=A(j:m,j)/fak;

if j<n, % transformation of the rest of the matrix G:=G-u*(u’*G)

A(j:m,j+1:n)=A(j:m,j+1:n)-A(j:m,j)*(A(j:m,j)’*A(j:m,j+1:n));

end

end

Algorithm HouseholderQR computes an upper triangular matrix Rh which
is very similar to Rc obtained by the Cholesky decomposition A�A = R�

cRc.
The only difference is that Rh may have negative elements in the diagonal,
whereas in Rc the diagonal entries are positive. Let D be a diagonal matrix
with

dii =

{
1 rhii > 0

−1 rhii < 0

then Rc = DRh. The matrix Q is only implicitly available through the
Householder vectors ui. This is not an issue because it is often unnecessary
to compute and store the matrix Q explicitly; in many cases, Q is only

Algorithms Using Orthogonal Matrices 291

needed as an operator that acts on vectors by multiplication. Using the
implicit representation we can, for instance, compute the transformed right
hand side of the least square equations y = Q�b by applying the reflections
y = PnPn−1 · · ·P1b. This procedure is numerically preferable to forming the
explicit matrix Q and then multiplying with b.

Algorithm 6.3. Transformation z = Q�y

function z=HouseholderQTy(A,y);

% HOUSEHOLDERQTY applies Householder reflections transposed

% z=HouseholderQTy(A,y); computes z=Q’y using the Householder

% reflections Q stored as vectors in the matrix A by

% A=HousholderQR(A)

[m,n]=size(A); z=y;

for j=1:n,

z(j:m)=z(j:m)-A(j:m,j)*(A(j:m,j)’*z(j:m));

end;

If we wish to compute z = Qy then because Q = P1P2 · · ·Pn it is sufficient
to reverse the order in the for-loop:

Algorithm 6.4. Transformation z = Qy

function z=HouseholderQy(A,y);

% HOUSEHOLDERQY applies Householder reflections

% z=HouseholderQy(A,y); computes z=Qy using the Householder

% reflections Q stored as vectors in the matrix A by

% A=HousholderQR(A)

[m,n]=size(A); z=y;

for j=n:-1:1,

z(j:m)=z(j:m)-A(j:m,j)*(A(j:m,j)’*z(j:m));

end;

Example 6.10. We compute the QR decomposition of a section of the
Hilbert matrix. We also compute the explicit matrix Q by applying the House-
holder transformations to the column vectors of the identity matrix:

m=8;n=6;

H=hilb(m); A=H(:,1:n);

[AA,d]=HouseholderQR(A)

Q=[];

for i=eye(m), % compute Q explicit

z=HouseholderQy(AA,i); Q=[Q z];

end

R=triu(AA);

292 LEAST SQUARES PROBLEMS

for i=1:n, R(i,i)=d(i); end % add diagonal to R

[norm(Q’*Q-eye(m)) norm(A-Q*R)]

[q,r]=qr(A); % compare with Matlab qr

[norm(q’*q-eye(m)) norm(A-q*r)]

The resulting matrix after the statement [AA,d]=HouseholderQR(A) contains
the Householder vectors and the upper part of R. The diagonal of R is stored
in the vector d:

AA =

1.3450 -0.7192 -0.5214 -0.4130 -0.3435 -0.2947

0.3008 1.1852 -0.1665 -0.1612 -0.1512 -0.1407

0.2005 0.3840 -1.0188 0.0192 0.0233 0.0254

0.1504 0.3584 0.2452 -1.3185 0.0015 0.0023

0.1203 0.3242 0.3945 -0.4332 -1.0779 0.0001

0.1003 0.2925 0.4703 -0.2515 0.0111 -1.3197

0.0859 0.2651 0.5059 -0.0801 0.3819 -0.5078

0.0752 0.2417 0.5190 0.0641 0.8319 0.0235

d =

-1.2359 -0.1499 0.0118 0.0007 0.0000 0.0000

ans =

1.0e-15 *

0.6834 0.9272

ans =

1.0e-15 *

0.5721 0.2461

We see that the results (orthogonality of Q and reproduction of A by QR)
compare well with the Matlab function qr.

6.5.3 Method of Givens

Definition 6.5. (Elementary Givens Rotation) An elementary Givens
rotation is the matrix

G := Gi,k(α) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
cosα sinα

1
. . .

1
− sinα cosα

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← i

← k

Algorithms Using Orthogonal Matrices 293

Gi,k(α) differs from the identity matrix only in the two columns and rows
i and k with the elements cosα and sinα. It is an orthogonal matrix: the
columns have norm one and different columns are orthogonal to each other.
It is called a rotation matrix since if we multiply G by a vector x, the result
y = Gx is the vector x rotated in the ik-plane by the angle α.

For least squares problems, it is convenient to work with a slight modifi-
cation of these elementary matrices. This is because Givens rotation matrices
are non-symmetric: thus, if Q = G3G2G1 then Q� = G�

1G
�
2G

�
3
= G1G2G3.

Definition 6.6. (Elementary Givens Reflection) An elementary
Givens reflection is the matrix

S := Si,k(α) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

cosα sinα
1

. . .

1
sinα − cosα

1
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Si,k(α) is a modified Givens rotation matrix: row k has been multiplied by
−1 and Si,k(α) is now symmetric. It has the following properties:

1. S is orthogonal.

2. SA changes only two rows in A:

anew
i : = c ai : + s ak :

anew
k : = s ai : − c ak :

, where c = cosα and s = sinα.

3. Connection to Householder matrices: let

u = (0, . . . , 0, sin
α

2
, 0, . . . , 0,− cos

α

2
, 0, . . . , 0)�

√
2,

then I − uu� = Si,k(α).

Givens transformations allow us to solve the following basic problem: given
a vector x, we wish to find an S that annihilates the k-th element, i.e., in
xnew := Sx, we want to rotate xnew

k to zero.
Solution: Because xnew

k = sxi − cxk = 0

⇒ cot :=
xi

xk
, s :=

1√
1 + cot2

, c := s ∗ cot.

294 LEAST SQUARES PROBLEMS

Note that we do not need to compute the angle α explicitly to determine the
matrix Si,k(α).

To compute the QR decomposition of a matrix A, we now can apply
Givens reflections to introduce zeros below the diagonal. The following
pseudo-code computes the decomposition columnwise:

for i=1:n
for k=i+1:m

A=S(i,k,alpha)*A; % annihilate A(k,i)
end;

end

Again we would like to store information about the rotation Si,k(α) at the
same place where we introduce the zero. The easiest would be to store the
angle α, but we cannot since we do not compute it! Storing c and s separately
would require space for two numbers instead of one. We could store only c
and rederive s using c2 + s2 = 1, but this is numerically unstable if |c| ≈ 1.

An elegant solution was proposed by G. W. Stewart [130]: we store the
smaller of the two numbers c and s, and retrieve the other one in a numerically
stable way from c2 + s2 = 1. In order to tell whether c or s has been stored,
Stewart proposes to store s or 1/c. More specifically, we have two possible
formulas for computing xnew

k = sxi − cxk = 0:

1. cot = c/s = xi/xk, giving s = 1/
√
1 + cot2 and c = s ∗ cot

2. tan = s/c = xk/xi, giving c = 1/
√
1 + tan2 and s = c ∗ tan.

To avoid overflow, we will choose the one that gives an answer that is smaller
than 1 for |cot| or |tan|. We thus obtain the following pseudocode for com-
puting and storing a reflection:

if x(k)==0 % nothing to do, S is the identity
c=1; s=0; Store 0

elseif abs(x(k))>=abs(x(i))
h=x(i)/x(k); s=1/sqrt(1+hˆ2); c=s*h;
if c∼=0, Store 1/c else Store 1 end;

else
h=x(k)/x(i); c=1/sqrt(1+hˆ2); s=c*h; Store s;

end

To reconstruct c and s from a stored number z we use the following pseu-
docode:

if z==1, c=0; s=1;
elseif abs(z)<1 then s=z; c=sqrt(1-sˆ2);
else c=1/z; s=sqrt(1-cˆ2)
end

Algorithms Using Orthogonal Matrices 295

We have now all the elements to write a Matlab function to compute the
QR decomposition using Givens reflections:

Algorithm 6.5. Givens QR Decomposition

function A=GivensQR(A);

% GIVENSQR Computes the QR-decomposition using Givens reflections

% A=GivensQR(A); computes the QR-decomposition of the matrix A using

% Givens reflections; after the decomposition, A contains the

% implicit QR-decomposition of A. Instead of the zeros the

% reflections are stored following a proposal of G. W. Stewart

% (cf. srotg in BLAS). The decomposition is computed column wise.

[m n]=size(A);

for i=1:n,

for k=i+1:m,

if A(k,i)==0, % Compute co and si

co=1; si=0; z=0;

else if abs(A(k,i))>=abs(A(i,i)),

h=A(i,i)/A(k,i); % cot

si=1/sqrt(1+h*h); co=si*h;

if co~=0, z=1/co; else z=1; end

else

h=A(k,i)/A(i,i); % tan

co=1/sqrt(1+h*h); si=co*h; z=si;

end;

end;

A(i,i)=A(i,i)*co+A(k,i)*si;

A(k,i)=z; % store co or si in A(k,i)

if (si~=0)&(i<n), % Apply reflection

S=[co,si;si,-co];

A(i:k-i:k,i+1:n)=S*A(i:k-i:k,i+1:n);

end;

end

end

Note that in Algorithm 6.5, we make use of the Matlab feature that allows
us to select and overwrite several rows of a matrix at the same time. In a
traditional programming language like Fortran, we would store the old rows
in auxiliary vectors and then combine them to the new rows:

h1=A(i,i+1:n); h2=A(k,i+1:n);

A(i,i+1:n)=h1*co+h2*si;

A(k,i+1:n)=h1*si-h2*co;

In Matlab, however, we can use the selection expression A(i:k-i:k,i+1:n)
to write the same computation in terms of the 2 × 2-matrix S as

S=[co,si;si,-co];

A(i:k-i:k,i+1:n)=S*A(i:k-i:k,i+1:n);

296 LEAST SQUARES PROBLEMS

The function GivensQR(A) computes the QR decomposition of A. After the
function call, we have R=triu(A(1:n,1:n)) and Q is only given implicitly
as an operator. If we wish to compute y = Q�x then the following function
can be used:

Algorithm 6.6. Transformation y := Q�x

function y=GivensQTy(A,y);

% GIVENSQTY applies Givens rotations transposed

% y=GivensQTyqrgiv(A,y) computes y=Q’*y; using the Givens

% rotations Q stored in the matrix A computed by A=GivensQR(A).

% For y=Q*y the for loops must be processed in reverse order.

[m,n]=size(A);

for i=1:n, % for i=n:-1:1, for y=Q*y

for k=i+1:m, % for k=m:-1:i+1, for y=Q*y

if A(k,i)==1, % reconstruct co and si from A(k,i)

co=0; si=1;

else

if abs(A(k,i))<1,

si=A(k,i); co=sqrt(1-si*si);

else

co=1/A(k,i); si=sqrt(1-co*co);

end;

end;

if si~=0, % Apply Givens reflector

y(i:k-i:k)=[co,si;si,-co]*y(i:k-i:k);

end

end

end

Example 6.11. We compute the same example as before with House-
holder:

format compact

m=8;n=6;

H=hilb(m); A=H(:,1:n);

AA=GivensQR(A)

R=triu(AA(1:n,1:n));

Qt=[];

for y=eye(m)

z=GivensQTy(AA,y); Qt=[Qt, z];

end

Q=Qt’;

[norm(Q’*Q-eye(m)) norm(A-Q(:,1:n)*R)]

[q,r]=qr(A);

[norm(q’*q-eye(m)) norm(A-q*r)]

Algorithms Using Orthogonal Matrices 297

The orthogonality of Q and the representation of A = QR are perfect and
compare well with the Matlab built-in function qr:

AA =

1.2359 0.7192 0.5214 0.4130 0.3435 0.2947

0.4472 -0.1499 -0.1665 -0.1612 -0.1512 -0.1407

0.2857 0.6805 0.0118 0.0192 0.0233 0.0254

0.2095 0.5135 1.5948 -0.0007 -0.0015 -0.0023

0.1653 0.4116 0.6363 1.7994 0.0000 0.0001

0.1365 0.3431 0.5371 1.4204 1.9844 -0.0000

0.1162 0.2941 0.4643 0.6192 1.5366 2.1541

0.1011 0.2572 0.4086 0.5485 0.6768 1.6456

ans =

1.0e-15 *

0.3719 0.2115

ans =

1.0e-15 *

0.5721 0.2461

The method of Givens needs about twice as many operations as the
method of Householder. However, it can be efficient for sparse matrices,
where only a few zeros have to be introduced to transform the matrix into up-
per triangular form. Furthermore, the QR decomposition may be computed
row-wise, which may be advantageous for linear least squares problems where
the number of equations is not fixed and additional equations are generated
by new measurements.

Example 6.12. A matrix is said to be in upper Hessenberg form if it
has zero entries below the first subdiagonal,

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Least squares problems of the type Hy = r with an upper Hessenberg matrix
H arise naturally in the GMRES algorithm for solving linear systems itera-
tively, see Section 11.7.6. To obtain the QR decomposition of such a matrix
using Givens reflections, let us first eliminate the (2,1) entry; this is done
by choosing a reflection S1,2 := S1,2(α1) that operates on the first two rows
only, with the angle α1 chosen so that the (2,1) entry is eliminated. The

298 LEAST SQUARES PROBLEMS

transformed matrix then becomes

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

.

But now the remaining matrix H2:n,2:n is also in upper Hessenberg form, so
we can continue this process and choose S23, . . . , Sn,n+1 to transform H into
an upper triangular matrix, i.e.,

Sn,n+1 · · ·S12︸ ︷︷ ︸
Q�

H =

[
R
0

]
.

Note that the k-th step requires at most 2(n− k + 1) additions and the same
number of multiplications, so the total cost is O(n2), as opposed to O(mn2)
for a general dense matrix.

Givens rotations are also useful for updating QR decompositions, which
we will see in Section 6.5.8. Another different use of upper Hessenberg ma-
trices arise in the context of eigenvalue problems, see Section 7.5.2.

6.5.4 Fast Givens

In some architectures (particularly older ones), multiplication is a much more
costly operation than addition, so reducing the number of multiplications can
lead to faster running times. In the method of Givens, each rotation affects
two rows of the matrix and transforms

[x1, x2, . . . , xn]
[y1, y2, . . . , yn]

into
cxk + syk
sxk − cyk,

k = 1, . . . , n

which requires two multiplications per entry. The basic idea of Fast Givens
is to consider the rows in factored form and delay some of the multiplications
until the end of the algorithm, thus saving about half the multiplications in
the process.

Let us apply a Givens reflection to two “scaled rows” in which the coeffi-
cients f1, f2 have been factored out:

(
c s
s −c

)
f1 [x1, x2, . . . , xn]
f2 [y1, y2, . . . , yn]

After the multiplication these rows are changed to

cf1xk + sf2yk
sf1xk − cf2yk

k = 1, . . . , n

Algorithms Using Orthogonal Matrices 299

The goal now is to update the factored coefficient in such a way that one mul-
tiplication inside the row vectors is eliminated. We consider two possibilities,
the first of which is

sf2 (β1xk + yk)
sf1 (xk + α1yk)

with β1 =
cf1
sf2

, α1 = − cf2
sf1

.

Notice that yk in the first row no longer has a coefficient multiplying it, and
neither does xk in the second row.

Now recall that the Givens reflection is chosen to annihilate one element
in the matrix, say the first element y1 of the second line. For this, c and s
have to be chosen so that sf1x1 − cf2y1 = 0, which implies

c =
f1x1√

f2
1x

2
1 + f2

2 y
2
1

, s =
f2y1√

f2
1x

2
1 + f2

2 y
2
1

.

Thus,

α1 = − c

s

f2
f1

= −f1x1

f2y1

f2
f1

= −x1

y1
, β1 =

c

s

f1
f2

=
f1x1

f2y1

f1
f2

= −α1
f2
1

f2
2

and the new scaling factors become

fnew
1 = sf2, fnew

2 = sf1.

For the effective computation of β1, we only need the squares of the factors,
so we will only store the quantities

di =
1

f2
i

, i = 1, 2.

Then using the expressions for s, α1 and β1

dnew1 =
1

s2f2
2

=
f2
1x

2
1 + f2

2 y
2
1

y21f
2
2 f

2
2

= d2

(
1 +

(
x1

y1

)2(
f1
f2

)2
)

= d2 (1 − α1β1) .

Defining γ1 = −α1β1 = (f1x1)
2/(f2y1)

2 we obtain

dnew1 = d2(1 + γ1) and similarly dnew2 =
1

s2f2
1

= d1(1 + γ1). (6.38)

The second choice of factors is

cf1 (xk + β2yk)
cf2 (α2xk − yk)

with α2 =
sf1
cf2

= − 1

α1
, β2 =

sf2
cf1

=
1

β1
.

The equation ynew1 = 0 leads to the same expressions for c and s as before.
The update of di becomes

dnew1 =
1

c2f2
1

= d1
f2
1x

2
1 + f2

2 y
2
1

f2
1x

2
1

= d1(1 + γ2) with γ2 =
1

γ1
. (6.39)

300 LEAST SQUARES PROBLEMS

A similar computation yields

dnew2 =
1

c2f2
2

= d2(1 + γ2).

Which of the two choices of factors should be used? We are working with
scaled rows. Let D = diag(d1, . . . , dm) then

Q�A = D−1/2

(
R̃
0

)
, with D−1/2 =

⎛
⎜⎜⎜⎜⎝

f1 0 · · · 0

0 f2
. . .

...
...

. . .
. . . 0

0 · · · 0 fm

⎞
⎟⎟⎟⎟⎠

.

Since γi ≥ 0, the di grow after each reflection, meaning there is a danger of
overflow. Because of γ1γ2 = 1 it makes sense to choose the smaller γi ≤ 1
to minimize the growth. However, even then it might still be necessary to
monitor the growth and to multiply the equations with the factors in the
diagonal matrix D−1/2 from time to time. For simplicity, we choose not do
this in the program below: we simply reduce the system Ax ≈ b to

(
R̃
0

)
x ≈

(
ỹ1

ỹ2

)

The scaling factors are given by the vector d, the diagonal of the matrix D,
and the solution is obtained by solving R̃x = ỹ1. The update of the diagonals
of D according to (6.38) and (6.39) can be combined simply by swapping the
diagonal elements in the first case.

Algorithm 6.7. Fast Givens

function [d,R,y]=FastGivens(A,b)

% FASTGIVENS reduce linear system to upper triangular form.

% [d,R,y]=FastGivens(A,b) reduces Ax=B using fast Givens reflections

% to Rx=y. d contains the scaling factors. If [q,r]=qr(A) then

% abs(diag(d)^(-0.5)*R)=abs(r)

[m n]=size(A); d=ones(m,1);

for i=1:n,

for k=i+1:m,

if A(k,i)~=0,

alpha=-A(i,i)/A(k,i); beta=-alpha*d(k)/d(i);

gamma=-alpha*beta;

if gamma<=1,

A(i,i)=A(i,i)*beta+A(k,i);

if i<n,

h=A(i,i+1:n)*beta+A(k,i+1:n);

A(k,i+1:n)=A(i,i+1:n)+A(k,i+1:n)*alpha;

Algorithms Using Orthogonal Matrices 301

A(i,i+1:n)=h;

end;

h=b(i)*beta+b(k); b(k)=b(i)+b(k)*alpha; b(i)=h;

h=d(i); d(i)=d(k); d(k)=h; % swap scaling factors

else

alpha=-1/alpha; beta=1/beta; gamma=1/gamma;

A(i,i)=A(i,i)+beta*A(k,i);

if i<n,

h=A(i,i+1:n)+A(k,i+1:n)*beta;

A(k,i+1:n)=A(i,i+1:n)*alpha -A(k,i+1:n);

A(i,i+1:n)=h;

end;

h=b(i)+b(k)*beta; b(k)=b(i)*alpha-b(k); b(i)=h;

end;

d(i)=d(i)*(1+gamma); d(k)=d(k)*(1+gamma); % update for both cases

end;

end

end

R=triu(A); y=b;

Note that in Algorithm 6.7, we did not write the row update in terms of
multiplication by a 2×2 matrix, like we did in Algorithm 6.5. This is because
want to avoid the multiplications with the factor 1. To compute one standard
Givens reflection, we need about 4n multiplications and 2n additions. Fast
Givens reduces this to 2n multiplications and 2n additions. Experiments
show that the speedup is not by a factor of 2, but only about 1.4 to 1.6.
This is due to overhead computations and also because multiplications are no
longer much more expensive than additions on newer computer architectures.

6.5.5 Gram-Schmidt Orthogonalization

Yet another algorithm for calculating the QR decomposition is based on
the idea of constructing an orthogonal basis in R(A). An overview on al-
gorithms is given in [116]. For that purpose, the column vectors of A =
[a1, . . . ,an] have to be orthogonalized. Assume that the orthonormal vec-
tors q1, . . . ,qk−1 have already been computed and that they span the same
space as a1, . . . ,ak−1. Now in order to construct the next basis vector qk,
we take ak and subtract its projections onto the previous basis vectors. If ak

was not linearly dependent from the previous vectors, the remainder will be
nonzero and orthogonal to R(a1, . . . ,ak−1), so it can be normalized to give
the new basis vector. Thus we have to perform three steps:

1. Compute the projections rikqi with rik = q�
i ak.

2. Subtract the projections:

bk := ak −
k−1∑
i=1

rikqi. (6.40)

302 LEAST SQUARES PROBLEMS

3. Normalize: rkk := ‖bk‖2 and qk = bk/rkk

If we solve (6.40) for ak then

ak =

k∑
i=1

rikqi, k = 1, . . . , n ⇐⇒ A = QR.

Thus, we obtain again the QR decomposition of A. The elements of the
upper triangular matrix R are the coefficients of the various projections. The
following algorithm ClassicalGramSchmidt computes the QR decomposition
using this classical Gram-Schmidt orthogonalization:

Algorithm 6.8. Classical Gram-Schmidt

function [Q,R]=ClassicalGramSchmidt(A)

% CLASSICALGRAMSCHMIDT classical Gram-Schmidt orthogonalization

% [Q,R]=ClassicalGramSchmidt(A); computes the classical Gram-Schmidt

% orthogonalization of the vectors in the columns of the matrix A

[m,n]=size(A); R=zeros(n);

Q=A;

for k=1:n,

for i=1:k-1,

R(i,k)=Q(:,i)’*Q(:,k);

end % remove these two lines for

for i=1:k-1, % modified-Gram-Schmidt

Q(:,k)=Q(:,k)-R(i,k)*Q(:,i);

end

R(k,k)=norm(Q(:,k)); Q(:,k)=Q(:,k)/R(k,k);

end

Note that ClassicalGramSchmidt is numerically unstable: if we take the
15× 10 section of the Hilbert matrix and try to compute an orthogonal basis
then we notice that the vectors of Q are not orthogonal at all:

>> m=15; n=10; H=hilb(m); A=H(:,1:n);

>> [Q R]=ClassicalGramSchmidt(A);

>> norm(Q’*Q-eye(n))

ans = 2.9971

>> norm(Q*R-A)

ans = 2.9535e-17

However, the relation A = QR is correct to machine precision. The reason
for the numerical instability is as follows: when computing bk using (6.40),
cancellation can occur if the vectors are almost parallel. In that case, the
result is a very small inaccurate bk which, after normalization, is no longer
orthogonal on the subspace spanned by the previous vectors because of the
inaccuracies.

Algorithms Using Orthogonal Matrices 303

An interesting modification partly remedies that problem: if we compute
the projections rik = q�

i ak and subtract the projection immediately from ak

ak := ak − rikqi

then this has no influence on the numerical value of subsequent projections
because

ri+1,k = q�
i+1(ak − rikqi) = q�

i+1ak, since q�
i+1qi = 0.

Doing so, we reduce the norm of ak with each projection and get the Modified
Gram-Schmidt Algorithm, which is obtained by just eliminating the two lines

end % remove for

for i = 1:k-1, % modified-Gram-Schmidt

in Algorithm ClassicalGramSchmidt:

Algorithm 6.9. Modified Gram-Schmidt

function [Q,R]=ModifiedGramSchmidt(A)

% MODIFIEDGRAMSCHMIDT modified Gram-Schmidt orthogonalization

% [Q,R]=ModifiedGramSchmidt(A); computes the modified Gram-Schmidt

% orthogonalization of the vectors in the columns of the matrix A

[m,n]=size(A); R=zeros(n);

Q=A;

for k=1:n,

for i=1:k-1,

R(i,k)=Q(:,i)’*Q(:,k);

Q(:,k)=Q(:,k)-R(i,k)*Q(:,i);

end

R(k,k)=norm(Q(:,k)); Q(:,k)=Q(:,k)/R(k,k);

end

Now if we run our example again, we obtain better results than with
classical Gram-Schmidt:

>> m=15; n=10; H=hilb(m); A=H(:,1:n);

>> [Q R]=ModifiedGramSchmidt(A);

>> norm(Q’*Q-eye(n))

ans = 1.7696e-05

>> norm(Q*R-A)

ans = 6.0510e-17

The approximate orthogonality of Q is now visible; however, the results are
still not as good as with the algorithms of Householder or Givens.

Note that in Algorithm ModifiedGramSchmidt, we only process the k-th
column of A in step k; the columns k + 1, . . . , n remain unchanged during

304 LEAST SQUARES PROBLEMS

this step. A mathematically and numerically identical version of modified
Gram-Schmidt, popular in many textbooks, computes the projections for
each new qk and subtracts them immediately from all the column vectors of
the remaining matrix:

Algorithm 6.10.
Modified Gram-Schmidt, version updating whole

remaining matrix

function [Q,R]=ModifiedGramSchmidt2(A);

% MODIFIEDGRAMSCHMIDT2 modified Gram-Schmidt orthogonalization version 2

% [Q,R]=ModifiedGramSchmidt2(A); computes the modified Gram-Schmidt

% orthogonalization of the vectors in the columns of the matrix A by

% immediately updating all the remaining vectors as well during the

% process

[m,n]=size(A); R=zeros(n);

for k=1:n

R(k,k)=norm(A(:,k));

Q(:,k)=A(:,k)/R(k,k);

R(k,k+1:n)=Q(:,k)’*A(:,k+1:n);

A(:,k+1:n)=A(:,k+1:n)-Q(:,k)*R(k,k+1:n);

end

In the k-th step of Algorithm ModifiedGramSchmidt2 we compute the
vector qk from ak. Then the k-th row of R is computed and the rest of A is
updated by

A(:, k + 1 : n) = (I − qkq
�
k)A(:, k + 1 : n).

But (I − qkq
�
k) is the orthogonal projector on the subspace orthogonal to

qk. This observation by Charles Sheffield in 1968 established a connection
between modified Gram-Schmidt and the method of Householder. Consider
the matrix

Ã =

(
O

A

)
,where O is the n × n zero matrix.

If we apply the first Householder transformation on Ã, i.e. we construct a
vector u with ‖u‖2 =

√
2 such that

(I − uu�)
(
O

a1

)
=

⎛
⎜⎜⎜⎝

σ
0
...
0

⎞
⎟⎟⎟⎠

then

u =
x − σe1√‖x‖2(x1 + ‖x‖2)

, with x =

⎛
⎜⎜⎜⎝

0
...
0
a1

⎞
⎟⎟⎟⎠ .

Algorithms Using Orthogonal Matrices 305

Since x1 = 0 (no cancellation in the first component) and σ = ±‖x‖2 =
±‖a1‖2 we get

u =

(
e1
a1

‖a1‖2

)
=

(
e1
q1

)

and q1 is the same vector as in modified Gram-Schmidt! The Householder
transformation is

P1

(
O

A

)
=

(
O

A

)
−
(
e1
q1

)(
e�1 q�

1

)(O
A

)
=

⎛
⎝

−q�
1 A

On−1×n

(I − q1q
�
1)A

⎞
⎠ . (6.41)

Thus we obtain the negative first row of R with −q�
1 A and the first transfor-

mation of the rest of the matrix (I − q1q
�
1)A as in modified Gram-Schmidt.

Theorem 6.15. The method of Householder applied to the matrix
(
O
A

)
is

mathematically equivalent to modified Gram-Schmidt applied to A.

After the call of [AA,d]=HouseholderQR([zeros(n);A]) the matrix has
been transformed to

AA =

(
R̃

Qh

)
, with diag(R̃) = I.

Rh is obtained by taking the negative strict upper part of R̃ and subtracting
the diagonal elements stored in d. The orthogonal matrix Qh is extracted
from the Householder-vectors stored in AA. The matrices Qh and Rh ob-
tained this way by Householder transformations are the same matrices as
computed by modified Gram-Schmidt. We illustrate this again with a sub-
matrix of the Hilbert matrix:

format compact

m=7; n=4; H=hilb(m); A=H(:,1:n);

[Q1,R1]=ModifiedGramSchmidt2(A)

[AA,d]=HouseholderQR([zeros(n); A])

Q2=AA(n+1:n+m,:);

R2=-AA(1:n,1:n);

R2=R2-diag(diag(R2))-diag(d);

[norm(Q1-Q2) norm(R1-R2)]

We get the following results which illustrate well that both processes compute
the same

Q1 =

0.8133 -0.5438 0.1991 -0.0551

0.4067 0.3033 -0.6886 0.4760

0.2711 0.3939 -0.2071 -0.4901

0.2033 0.3817 0.1124 -0.4396

0.1627 0.3514 0.2915 -0.1123

0.1356 0.3202 0.3892 0.2309

0.1162 0.2921 0.4407 0.5206

306 LEAST SQUARES PROBLEMS

R1 =

1.2296 0.7116 0.5140 0.4059

0 0.1449 0.1597 0.1536

0 0 0.0108 0.0174

0 0 0 0.0006

AA =

1.0000 -0.7116 -0.5140 -0.4059

0 1.0000 -0.1597 -0.1536

0 0 1.0000 -0.0174

0 0 0 1.0000

0.8133 -0.5438 0.1991 -0.0551

0.4067 0.3033 -0.6886 0.4760

0.2711 0.3939 -0.2071 -0.4901

0.2033 0.3817 0.1124 -0.4396

0.1627 0.3514 0.2915 -0.1123

0.1356 0.3202 0.3892 0.2309

0.1162 0.2921 0.4407 0.5206

d =

-1.2296 -0.1449 -0.0108 -0.0006

ans =

1.0e-12 *

0.1804 0.0001

6.5.6 Gram-Schmidt with Reorthogonalization

Our example indicated that modified Gram-Schmidt improves the orthogo-
nality of Q in comparison with classical Gram-Schmidt a lot — however, it
still cannot compete with Householder or Givens in that respect. In fact, for
modified Gram-Schmidt the following estimate holds (with some constants
c1 and c2, the condition number κ = κ(A) and the machine precision ε) [9]:

‖I − Q�Q‖2 ≤ c1
1 − c2κε

κε.

Thus, we must expect a loss of orthogonality if the condition of the matrix A is
bad. A remedy is to reorthogonalize the vector qk if it has been constructed
from a small (an inaccurate) bk. If qk is reorthogonalized with respect to
qi, i = 1, . . . , k − 1 then for full-rank matrices one reorthogonalization is
sufficient. That “twice is enough” principle is analyzed in [50].

Note that when we reorthogonalize, we must also update R. Let us con-
sider for that purpose the QR decomposition of the matrix

B = [q1, . . . ,qk−1, b] = QR1.

Then the following holds:

Q = [q1, . . . ,qk−1,qk], R1 =

⎛
⎜⎜⎜⎝

1 d1
. . .

...
1 dk−1

‖u‖2

⎞
⎟⎟⎟⎠

Algorithms Using Orthogonal Matrices 307

with di = q�
i b, i = 1, . . . , k − 1 and u = b −∑k−1

i=1 diqi.
If we choose not to normalize the last column ofQ, then the decomposition

is B = Q̄R̄1

with Q̄ = [q1, . . . ,qk−1,u] and

R̄1 =

⎛
⎜⎜⎜⎝

1 d1
. . .

...
1 dk−1

1

⎞
⎟⎟⎟⎠ = I + de�k where d =

⎛
⎜⎜⎜⎝

d1
...
dk−1

0

⎞
⎟⎟⎟⎠ .

Now assume the QR decomposition of A = [a1, . . . ,ak] is A = BR2 and we
want to reorthogonalize the last column of B, i.e. we decompose B = Q̄R̄1,

A = BR2 = Q̄R̄1R2.

Now
R̄1R2 = (I + de�k)R2 = R2 + de�kr

(2)
kk .

Again, if we do not normalize the last column of B then r
(2)
kk = 1 i.e. R̄1R2 =

R2 + de�k and the update is simply

rik := rik + di, i = 1, . . . , k − 1.

The normalization is only performed after the reorthogonalization step. We
shall now modify our function ModifiedGramSchmidt so that each vector is
reorthogonalized. Doing so we need to compute the projections twice and
add them to the new row of R. For this purpose we introduce the auxiliary
variable V:

Algorithm 6.11.
Modified Gram-Schmidt with Reorthogonalization

function [Q,R]=ModifiedGramSchmidtTwice(A);

% MODIFIEDGRAMSCHMIDTTWICE modified Gram-Schmidt with reorthogonalization

% [Q,R]=ModifiedGramSchmidtTwice(A); applies the modified

% Gram-Schmidt procedure with reorthogonalization to the columns in

% matrix A

[m,n]=size(A); R=zeros(n);

Q=A;

for k=1:n,

for t=1:2 % reorthogonalize

for i=1:k-1,

V=Q(:,i)’*Q(:,k); % projections

Q(:,k)=Q(:,k)-V*Q(:,i);

R(i,k)=R(i,k)+V;

end

end

R(k,k)=norm(Q(:,k)); Q(:,k)=Q(:,k)/R(k,k);

end

308 LEAST SQUARES PROBLEMS

Using again our example we get this time

>> m=15; n=10; H=hilb(m); A=H(:,1:n);

>> [Q R]=ModifiedGramSchmidtTwice(A);

>> norm(Q’*Q-eye(n))

ans = 4.8199e-16

>> norm(Q*R-A)

ans = 6.7575e-17

a perfectly orthogonal matrix Q.

6.5.7 Partial Reorthogonalization

If we orthogonalize every vector twice, the number of computer operations
is doubled. Therefore, it is natural to consider reorthogonalizing only when
necessary. For this partial reorthogonalization, we need to decide when bk is
to be considered small.

In the following algorithm, which is a translation of the Algol program
ortho by Heinz Rutishauser [111], a simple criterion for reorthogonalization
is used. If bk is 10 times smaller than ak then we must expect to lose at least
one decimal digit by cancellation, thus we will reorthogonalize in that case.

If the vectors are linearly dependent (the matrix is rank deficient) then
cancellation will also occur when the vector is reorthogonalized. If with
repeated reorthogonalizing the vector shrinks to rounding error level then it
is assumed that the vector is linearly dependent and it is replaced by a zero
vector.

We obtain thus the following algorithm:

Algorithm 6.12.
Gram-Schmidt with Reorthogonalization

function [Q,R,z]=GramSchmidt(Q);

% GRAMSCHMIDT modified Gram-Schmidt with partial reorthogonalization

% [Q,R,z]=GramSchmidt(Q); computes the QR decomposition of the

% matrix Q using modified Gram-Schmidt with partial

% reorthogonalization; z is a vector that counts the

% reorthogonalization steps per column.

% Translation of the ALGOL procedure in H. Rutishauser: "Algol 60"

z=[]; [m,n]=size(Q); R=zeros(n);

for k=1:n,

t=norm(Q(:,k));

reorth=1;

u=0; % count reorthogonalizations

while reorth,

u=u+1;

for i=1:k-1,

Algorithms Using Orthogonal Matrices 309

s= Q(:,i)’*Q(:,k);

R(i,k)=R(i,k)+s;

Q(:,k)=Q(:,k)-s*Q(:,i);

end

tt=norm(Q(:,k));

if tt>10*eps*t & tt<t/10, % if length short reorthogonalize

reorth=1; t=tt;

else

reorth=0;

if tt<10*eps*t, tt=0; end % linearly dependent

end

end

z=[z u];

R(k,k)=tt;

if tt*eps~=0, tt=1/tt; else tt=0; end

Q(:,k)=Q(:,k)*tt;

end

Note that if the norm of b becomes very small, e.g., when tt<10*eps*t

in the implementation above, then GramSchmidt considers the new column
as linearly dependent and inserts a zero column in Q.

Example 6.13. The 7 column vectors of A are in R
5. So they are linearly

dependent.

A =[0 0 0 0 0 1 0

83 1 0 0 0 1 973

7 42 1 1 93 85 53

9 65 42 70 91 76 26

5 74 33 63 76 99 37]

[Q0,R0,z] = GramSchmidt(A)

[Q,R] = qr(A)

We obtain the results

Q0 =

0 0 0 0 0 1.0000 0

0.9889 -0.1388 0.0098 0.0515 0 0.0000 0

0.0834 0.3841 -0.8231 -0.4098 0 0.0000 0

0.1072 0.5977 0.5669 -0.5566 0 -0.0000 0

0.0596 0.6899 -0.0309 0.7208 0 -0.0000 0

R0 =

83.9285 15.8706 6.5532 11.3430 22.0426 22.1260 971.6480

0 105.8968 48.2545 85.6870 142.5461 146.2353 -73.5970

0 0 21.9672 36.9133 -27.3109 -29.9315 -20.4856

0 0 0 6.0398 -33.9831 -5.7251 40.5828

0 0 0 0 0 0 0

0 0 0 0 0 1.0000 -0.0000

0 0 0 0 0 0 0

z =

310 LEAST SQUARES PROBLEMS

1 1 1 2 1 2 1

Q =

0 -0.0000 -0.0000 0.0000 -1.0000

-0.9889 -0.1388 0.0098 0.0515 -0.0000

-0.0834 0.3841 -0.8231 -0.4098 -0.0000

-0.1072 0.5977 0.5669 -0.5566 -0.0000

-0.0596 0.6899 -0.0309 0.7208 0.0000

R =

-83.9285 -15.8706 -6.5532 -11.3430 -22.0426 -22.1260 -971.6480

0 105.8968 48.2545 85.6870 142.5461 146.2353 -73.5970

0 0 21.9672 36.9133 -27.3109 -29.9315 -20.4856

0 0 0 6.0398 -33.9831 -5.7251 40.5828

0 0 0 0 -0.0000 -1.0000 -0.0000

GramSchmidt discovered that the 5th vector was linearly dependent on the
first four and replaced it by a zero vector. The 7th vector is also linearly
dependent (as we would expect from the dimension of the column space) and
is also replaced by a zero vector. Notice that the 4th and 6th vector had to be
reorthogonalized. The standard Matlab function qr gives the same results
without displaying the zero rows and columns in R and Q.

1 − λ G M Singular Values

1.000e-09 3 3 8.593 2.091e-09 1.363e-09 1.543e-16 8.165e-18
1.000e-10 3 3 8.593 2.091e-10 1.363e-10 3.458e-17 2.122e-17
1.000e-11 3 3 8.593 2.091e-11 1.363e-11 5.955e-17 4.253e-17
1.000e-12 3 3 8.593 2.091e-12 1.363e-12 8.250e-17 2.081e-17
1.001e-13 3 3 8.593 2.095e-13 1.364e-13 7.927e-17 3.179e-17
1.010e-14 3 2 8.593 2.122e-14 1.383e-14 1.876e-16 4.088e-17
1.110e-15 2 1 8.593 2.398e-15 1.468e-15 1.150e-16 5.860e-17
2.220e-16 1 1 8.593 4.422e-16 3.197e-16 2.348e-16 1.697e-17
1.110e-16 1 1 8.593 5.609e-16 3.314e-16 1.055e-16 8.622e-18

Table 6.1. Rank Computation with G (Gram-Schmidt) and M (Matlab SVD)

Example 6.14. As second example, we construct the following matrix
A ∈ R

8×5 which has rank 3 if the parameter lam = λ < 1. However, for
λ = 1 the matrix has rank 1. For 1−λ ≥ 10−14 GramSchmidt finds the linear
dependencies correctly and replaces the dependent columns by zeros. If we
let λ → 1 we can see in Table 6.1 how both functions GramSchmidt and the
Matlab function rank compute the rank.

format short e

lam=0.99999999; e=0.00000001;

for i=1:9

e=e/10; lam=lam+e*9;

a=[1 lam 1 lam 1 1 1 lam]’;

b=[1 1 lam 1 1 1 lam 1]’;

c=[lam 1 1 lam 1 lam 1 1]’;

Algorithms Using Orthogonal Matrices 311

A=[a+0.1*b-0.98*c, -0.321*a+0.07*b, 0.56*c, 0.3*a-3.1*b, b];

[q,r,z]=GramSchmidt(A)

rankgs=sum(any(q));

1-lam

[rankgs rank(A)]

svd(A)’

end

6.5.8 Updating and Downdating the QR Decomposition

Suppose we have computed the QR decomposition to find the model param-
eters that best fit the given data. It often happens that more data become
available, data need to be thrown out, or the data have changed due to dif-
ferent operating conditions; in other words, the matrix has changed. Instead
of recomputing the QR factorization from scratch, it is often more efficient to
update the existing factorization. In this subsection, we show how to update
the QR factors for the following types of changes in the matrix:

1. Rank-one update,

2. Deleting a column,

3. Adding a column,

4. Adding a row,

5. Deleting a row.

Rank-one update

Given a QR decomposition of the matrix A = Q
(
R
0

)
with A ∈ R

m×n, Q ∈
R

m×m with m ≥ n and two vectors u ∈ R
m and v ∈ R

n, is there a simple
way to compute the QR decomposition of the rank-1 modified matrix A′ =
A+ uv� = Q′R′?

Multiplying with Q� we get

Q�A′ = Q�A+Q�uv� =

(
R

0

)
+wv� with w = Q�u.

The idea is to transform the vector w to a multiple of e1. Then the rank-1
correction wv� can be added to the matrix R by just changing the first row.

The algorithm consists of three steps:

1. Choose Givens rotation Gk acting on row k and k + 1 for k = m,m −

312 LEAST SQUARES PROBLEMS

1, . . . , n+ 1 such that the elements wn+2, . . . , wm are rotated to zero:

G�
n+1 . . . G

�
m−2G

�
m−1Q

�
︸ ︷︷ ︸

Q�
1

A′ =
(
R

0

)
+G�

n+1 . . . G
�
m−2G

�
m−1wv�

=

(
R

0

)
+

(
w′

0

)
v�.

This process generates

(
w′

0

)
= G�

n+1 . . . G
�
m−2G

�
m−1w

and Q1 = QGm−1Gm−2 . . . Gn+1.

2. We now apply more Givens rotations to map w′ to αe1. These rotations
also change Q1 to Q2 and the matrix R becomes an upper Hessenberg
matrix H1,

G�
1 . . . G

�
nQ

�
1︸ ︷︷ ︸

Q�
2

A′ =
(
H1

0

)
+

(
α

0

)
v� =

(
H

0

)
.

The transformed rank-1 correction is now added to the first row of the
matrix H1, thus the right hand side becomes a new Hessenberg matrix
H.

3. In the last step we annihilate with further Givens rotations the sub-
diagonal of H and so we obtain the QR decomposition of the modified
matrix,

G�
n . . . G

�
1Q

�
2︸ ︷︷ ︸

Q′�

A′ = G�
n . . . G�

1

(
H

0

)
=

(
R′

0

)
.

In the the following algorithm we will make use of the Matlab function
planerot, which computes a Givens rotation matrix G ∈ R

2×2. The call
[G,y]=planerot(x) computes the matrix

G =
1

‖x‖2

(
x1 x2

−x2 x1

)
and vector y =

(‖x‖2
0

)
.

Since it makes use of the Matlab built in function norm, it is safe to compute
it this way. It would not be a good idea to replace the norm computation by√

x2
1 + x2

2, see Section 2.7.5 and Problem 2.13.

Algorithm 6.13. Rank-1 Update of QR decomposition

function [Qs,Rs]=UpdateQR(Q,R,u,v)

Algorithms Using Orthogonal Matrices 313

% UPDATEQR Rank-1 update of the QR-Decomposition

% [Qs,Rs]=UpdateQR(Q,R,u,v); If As=A+u v’ and [Q,R]=qr(A) then we

% compute Qs and Rs such that As=Qs Rs. Uses Matlab’s PLANEROT.

[m,n]=size(R); Qs=Q; Rs=R; w=Q’*u;

for k=m:-1:n+2 % annihilate w(n+2:m)

G=planerot(w(k-1:k));

w(k-1:k)=G*w(k-1:k);

Qs(:,k-1:k)=Qs(:,k-1:k)*G’;

end

for k=n+1:-1:2 % annihilate w(2:n+1)

G=planerot(w(k-1:k));

w(k-1:k)=G*w(k-1:k);

Rs(k-1:k,k-1:n)=G*Rs(k-1:k,k-1:n);

Qs(:,k-1:k)=Qs(:,k-1:k)*G’;

end

Rs(1,:)=Rs(1,:)+w(1)*v’; % Add rank-1 change to first row

for k=1:n % reduce Hessenberg matrix to Rs

G=planerot(Rs(k:k+1,k));

Rs(k:k+1,k:n)=G*Rs(k:k+1,k:n);

Qs(:,k:k+1)=Qs(:,k:k+1)*G’;

end

Example 6.15. We consider the 15 × 10 section of the Hilbert-matrix
and the vectors u = (1, 2, . . . , 15)� and v = (1, 2, . . . , 10)�. The test program

m=15; n=10;

A=hilb(m); A=A(:,1:n);

[Q,R]=qr(A);

u=[1:m]’; v=[1:n]’;

[Qs,Rs,]=UpdateQR(Q,R,u,v);

As=A+u*v’;

disp(’||As-Qs*Rs||’), norm(As-Qs*Rs)

disp(’||Qs’’*Qs-eye(m)||’), norm(Qs’*Qs-eye(m))

[Qk,Rk]=qr(As);

disp(’||As-Qk*Rk||’), norm(As-Qk*Rk)

disp(’||Qk’’*Qk-eye(m)||’), norm(Qk’*Qk-eye(m))

disp(’norm(Rs-Rk)’); norm(Rs-Rk)

disp(’||abs(Rs)-abs(Rk)||’), norm(abs(Rs)-abs(Rk))

compares the updating technique with the explicit QR decomposition of the
modified matrix, and gives the output

||As-Qs*Rs||

ans =

3.8508e-13

||Qs’*Qs-eye(m)||

ans =

1.3560e-15

314 LEAST SQUARES PROBLEMS

||As-Qk*Rk||

ans =

5.1102e-13

||Qk’*Qk-eye(m)||

ans =

1.4212e-15

norm(Rs-Rk)

ans =

1.3825e+03

||abs(Rs)-abs(Rk)||

ans =

3.6950e-13

The results are the same.

Deleting a column

We first consider the partition of A ∈ R
m×n into two matrices and the cor-

responding partitioning of the QR decomposition,

A = [A1, A2] = Q

⎛
⎝

R11 R12

0 R22

0 0

⎞
⎠ .

By multiplying the block columns, we conclude that

A1 = Q

(
R11

0

)

is the QR decomposition of A1. So when removing the last column or some
of the last columns the update is trivial.

Consider now the columns A = [a1, . . . ,ak, . . . ,an] and the permutation
matrix P which moves column k to the last column

AP = [a1, . . . ,ak−1,ak+1 . . . ,an,ak]

= QRP = Q[r1, . . . , rk−1, rk+1 . . . , rn, rk].

The permuted matrix R becomes

RP =

⎛
⎜⎜⎝
R11 v R13

0 rkk w�

0 0 R33

0 0 0

⎞
⎟⎟⎠P =

⎛
⎜⎜⎝
R11 R13 v
0 w� rkk
0 R33 0
0 0 0

⎞
⎟⎟⎠

a Hessenberg matrix. With Givens rotations Gk acting on rows k and k+1,
then k + 1 and k + 2, etc., we can transform the Hessenberg block again to
upper triangular form,

G�
n−1 · · ·G�

k

(
w� rkk
R33 0

)
= R̄22.

Algorithms Using Orthogonal Matrices 315

Thus we get the decomposition

AP = Q̄R̄, with Q̄ = QḠk · · · Ḡn−1 and Ḡi =

(
I 0
0 Gi

)
,

and the last column can simply be discarded.

Algorithm 6.14. Remove a Column of QR

function [Q,R]=RemoveColumnQR(Q,R,k);

% REMOVECOLUMNQR updating QR when a column is removed

% [Q,R]=RemoveColumnQR(Q,R,k); finds a QR decomposition for the

% matrix [A(:,1),...,A(:,k-1),A(:,k+1),..A(:,n)] where

% [Q,R]=qr(A). Uses Matlab’s function PLANEROT.

[m,n]=size(R);

R=R(:,[1:k-1,k+1:n]);

for j=k:n-1,

G=planerot(R(j:j+1,j));

R(j:j+1,j:n-1)=G*R(j:j+1,j:n-1);

Q(:,j:j+1)=Q(:,j:j+1)*G’;

end

Adding a column

Denote the new column by an+1 and place it before column k forming the
matrix Ā = [a1, . . . ,ak−1,an+1,ak . . . ,an]. Using an appropriate permuta-
tion matrix P we move the new column to the end Ā = [A,an+1]P . Using
the QR decomposition

A = Q

(
R

0

)
,

we get

Q�Ā =

[(
R

0

)
, Q�an+1

]
P.

Defining

Q�an+1 =

⎛
⎝
u
v
w

⎞
⎠ , u ∈ R

k, v ∈ R
n−k, w ∈ R

m−n

and reversing the permutation, we get

Q�Ā =

⎛
⎝
R11 u R12

0 v R22

0 w 0

⎞
⎠ .

Now we apply Givens rotations Gj acting on rows j and j + 1 to annihi-
late elements of w and v up to v1. When annihilating elements of v, the

316 LEAST SQUARES PROBLEMS

corresponding rows of R22 are also changed and we obtain again an upper
triangular matrix.

Algorithm 6.15. QR update by Adding a Column

function [Q,R]=AddColumnQR(Q,R,k,w);

% ADDCOLUMNQR_update QR decomposition when a new column is added

% [Q,R]=AddColumnQR(Q,R,k,w); finds the QR decomposition of

% [A(:,1),A(:,2),... A(:,k-1),w,A(:,k),...A(:,n)] when [Q,R]=qr(A).

% Uses Matlab PLANEROT

[m,n]=size(R);

R=[R(:,1:k-1),Q’*w,R(:,k:n)];

for j=m-1:-1:k

G=planerot(R(j:j+1,k));

R(j:j+1,k)=G*R(j:j+1,k); % annihilate new column

if j<=n, % transform also R

R(j:j+1,j+1:n+1)=G*R(j:j+1,j+1:n+1);

end

Q(:,j:j+1)=Q(:,j:j+1)*G’; % update Q

end

Adding a row

Let A = QR be given with A ∈ R
m×n, Q ∈ R

m×p and R ∈ R
p×n. We

consider adding a w� as new last row of A,

Ā =

(
A

w�

)
.

Then (
Q� 0
0 1

)(
A
w�

)
=

(
R
w�

)
.

To eliminate the elements of vector w� we use again Givens rotations acting
on w� and a row of R. For p = n we get

G�
n · · ·G�

2G
�
1

(
R
w�

)
=

(
R̄
0

)

with G�
i changing row i of R and w�. By applying the Givens rotations to

Q we get

Q̄ =

(
Q 0
0 1

)
G1 · · ·Gn

and thus Ā = Q̄
(
R̄
0

)
.

Algorithms Using Orthogonal Matrices 317

Note that if the new row is not appended as last row but between the
rows of A, then this means simply a permutation of the rows of Q̄, since

Q̄�P�PĀ = (PQ̄)�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 :

...
ak−1 :

w�

ak :

...
am :

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and R̄ remains the same.

Algorithm 6.16. QR update by Adding a Row

function [Q,R]=AddRowQR(Q,R,k,w);

% ADDROWQR QR decomposition of modified matrix

% [Q,R]=AddRowQR(Q,R,k,w); Given [Q,R]=qr(A),computes the QR

% decomposition for [A(1,:);A(2,:), ...,A(k-1,:);w;A(k,:),...A(n,:)]

[p,n]=size(R); m=size(Q,1); % Q is (m x p)

Q=[Q(1:k-1,:), zeros(k-1,1) % add row and column to Q

zeros(1,p), 1 % and permute

Q(k:m,:), zeros(m-k+1,1)];

R=[R; w]; % augment R

k=p+1;

for j=1:min(n,p)

G=planerot(R(j:k-j:k,j));

R(j:k-j:k,j:n)=G*R(j:k-j:k,j:n); % annihilate w

Q(:,j:k-j:k)=Q(:,j:k-j:k)*G’; % update Q

end

Example 6.16. In the following example we consider a matrix A ∈ R
5×3

with rank 2:

>> A=[17 24 -43

23 5 244

4 6 -14

10 12 -2

11 18 -55];

>> [m,n]=size(A);

>> [Q,R]=qr(A)

Q =

-0.5234 0.5058 0.3869 -0.1275 -0.5517

-0.7081 -0.6966 0.0492 -0.0642 0.0826

-0.1231 0.1367 -0.6694 -0.7172 -0.0614

-0.3079 0.1911 -0.6229 0.6816 -0.1271

318 LEAST SQUARES PROBLEMS

-0.3387 0.4514 0.1089 -0.0275 0.8179

R =

-32.4808 -26.6311 -129.3073

0 19.8943 -218.8370

0 0 0.0000

0 0 0

0 0 0

>> p=rank(A)

p =

2

>> q=Q(:,1:p)

q =

-0.5234 0.5058

-0.7081 -0.6966

-0.1231 0.1367

-0.3079 0.1911

-0.3387 0.4514

>> r=R(1:p,:)

r =

-32.4808 -26.6311 -129.3073

0 19.8943 -218.8370

>> [norm(A-Q*R) norm(A-q*r)]

ans =

1.0e-13 *

0.1313 0.0775

We computed the QR decomposition with Q ∈ R
5×5 and, because A has rank

2, we also obtained the economic version with q ∈ R
5×2 and r ∈ R

2×3. Both
products QR and qr represent the matrix A well. Next, we choose a new row
w� and insert it as new third row:

>> k=3;

>> w=[1 2 3];

>> As=[A(1:k-1,:); w; A(k:m,:)]

As =

17 24 -43

23 5 244

1 2 3

4 6 -14

10 12 -2

11 18 -55

>> [Qs, Rs]=AddRowQR(Q,R,k,w)

Qs =

0.5231 0.5039 -0.0460 -0.1275 -0.5517 0.3869

0.7078 -0.6966 0.0195 -0.0642 0.0826 0.0492

0.0308 0.0592 0.9978 0 0 -0.0000

0.1231 0.1363 -0.0119 -0.7172 -0.0614 -0.6694

0.3077 0.1902 -0.0208 0.6816 -0.1271 -0.6229

0.3385 0.4500 -0.0371 -0.0275 0.8179 0.1089

Rs =

Algorithms Using Orthogonal Matrices 319

32.4962 26.6801 129.3384

0 19.9292 -218.5114

0 0 11.9733

0 0 0

0 0 0

0 0 0

>> [qs, rs]=AddRowQR(q,r,k,w)

qs =

0.5231 0.5039 0.0460

0.7078 -0.6966 -0.0195

0.0308 0.0592 -0.9978

0.1231 0.1363 0.0119

0.3077 0.1902 0.0208

0.3385 0.4500 0.0371

rs =

32.4962 26.6801 129.3384

0 19.9292 -218.5114

0 0 -11.9733

>> [norm(As-Qs*Rs) norm(As-qs*rs)]

ans =

1.0e-12 *

0.1180 0.1165

We see that in both cases the update procedure works well. The product of
the new matrices represents well the modified matrix.

Deleting a row

Let A = QR be the QR decomposition. If the k-th row should be removed,
then we perform first a permutation such that it becomes the first row:

A = QR, PA =

(
a�
k

Ā

)
= PQR.

Our aim is to compute the QR decomposition of Ā which is A with row k
removed. Using Givens rotations, we transform the first row of PQ to the
first unit vector

PQG�
m−1 · · ·G�

1 =

(±1 0
x Q̄

)

Note that by this operation the vector x must be zero! This because the
matrix is orthogonal. Thus we get

(
a�
k

Ā

)
= (PQG�

m−1 · · ·G�
1) (G1 · · ·Gm−1R)

=

(±1 0
0 Q̄

)(
v�

R̄

)
. (6.42)

320 LEAST SQUARES PROBLEMS

The multiplications with the Givens rotations G1 · · ·Gm−1R transform the
matrix R into a Hessenberg matrix. Looking at (6.42), we can read off the
solution Ā = Q̄R̄ by discarding the first row.

Algorithm 6.17. QR update by Removing a Row

function [Q,R]=RemoveRowQR(Q,R,k);

% REMOVEROWQR update the QR decomposition when a row is removed

% [Q,R]=RemoveRowQR(Q,R,k); computes the QR decomposition for

% [A(1,:); A(2,:);...;A(k-1,:); A(k+1,:);...;A(n,:)] when

% [Q,R]=qr(A).

[m,n]=size(R);

Q=[Q(k,:); Q(1:k-1,:); Q(k+1:m,:)]; % permute Q

for j=m-1:-1:1 % map row to unit vector

G=planerot(Q(1,j:j+1)’);

if j<=n

R(j:j+1,j:n)=G*R(j:j+1,j:n); % update R

end;

Q(:,j:j+1)=Q(:,j:j+1)*G’; % update Q

end

Q=Q(2:m,2:m);R=R(2:m,:);

Remarks.

1. Deleting a row is a special case of a rank-one modification: u = −e1,
v = a1.

2. Matlab offers two functions to add (respectively remove) rows and
columns of a QR decomposition: qrinsert, qrdelete. They are es-
sentially the same as our functions. There is also a Matlab-built in
function qrupdate which computes a rank-one update.

6.5.9 Covariance Matrix Computations Using QR

Let A = Q

(
R

0

)
be the QR decomposition. Then A�A = R�R and thus the

covariance matrix becomes

C = (A�A)−1 = R−1R−�.

In this section, we will show how to compute elements of the covariance
matrix using a minimal number of operations.

Algorithms Using Orthogonal Matrices 321

Computing individual elements

Since the covariance matrix C is symmetric, it is sufficient to compute ele-
ments in the upper triangle. Let i ≤ j. Then

cij = e�
i R

−1R−�ej = u�
i uj where ui = R−�ei.

Thus ui can be computed by forward substitution,

R�ui = ei.

Because the elements ui = 0 for i = 1, 2, . . . , i − 1 we need to start with
forward substitution only at equation #i.

Algorithm 6.18. Computes ith-Row of R−1

function u=ui(i,R)

% UI computes a row of the inverse of a triangular matrix

% u=ui(i,R) computes the i-th row of the inverse of the upper

% triangular matrix R

n=min(size(R)); u=zeros(1,i-1);

u(i)=1/R(i,i);

for j=i+1:n,

u(j)=-u(i:j-1)*R(i:j-1,j)/R(j,j);

end

The element cij is then computed for i < j by the statements

u1=ui(i,R); u2=ui(j,R); cij=u1(j:n)*u2(j:n)’

For a diagonal element this simplifies to

u=ui(i,R); cii=u(i:n)*u(i:n)’

Calculating the whole covariance matrix

To compute C = R−1R−� we need R−1, that is the vectors u1, . . . ,un. Then
we multiply R−1R−� by using the triangular shape of R−1 and the symmetry
and computing only the upper part of C.

Algorithm 6.19. Covariance via R−1

function C=Covariance(R)

% COVARIANCE computes the covariance matrix

% C=Covariance(R) computes the upper triangle of the covariance

% matrix from the R factor of the QR-decomposition [Q,R]=qr(A)

n=min(size(R)); U=[]; % U is R^(-1)

322 LEAST SQUARES PROBLEMS

for i=1:n,

u=ui(i,R); U=[U; u];

end;

for i=1:n, % compute C=inv(R)*inv(R’)

for j=i:n,

C(i,j)=U(i,j:n)*U(j,j:n)’;

end

end

Björck’s Algorithm

Because R�R = A�A it follows that R�RC = I or

RC = R−�. (6.43)

The diagonal elements on the right hand side of Equation (6.43) are 1/rii.
Surprisingly, this information is sufficient to compute by a recurrence the
elements of the covariance matrix C.

Assume that the rows and columns k + 1, . . . , n of C are known, that is
the elements cij = cji for j = k + 1, . . . , n and i ≤ j.

Consider the k-th diagonal element in (6.43),

r�kck =
1

rkk
⇐⇒ rkkckk +

n∑
j=k+1

rkjcjk =
1

rkk
.

The elements after the summation sign are known, therefore

ckk =
1

rkk

⎛
⎝ 1

rkk
−

n∑
j=k+1

rkjcjk

⎞
⎠ .

For an element on the k-th row with i < k we have

r�
i ck = 0 ⇐⇒ riicik +

n∑
j=i+1

rijcjk = 0.

Also here the elements after the summation symbol are known according to
our assumption, thus

cik = − 1

rii

n∑
j=i+1

rijcjk, i = k − 1, . . . , 1.

Using these recurrence relations, the whole covariance matrix can be com-
puted starting with the last column. We obtain

Algorithm 6.20. Covariance Matrix, Björck Algorithm

Linear Least Squares Problems with Linear Constraints 323

function C=CovarianceBjoerck(R)

% COVARIANCEBJOERCK computes the covariance matrix by Bjoerck’s method

% C=CovarianceBjoerck(R) computes the covariance matrix from the

% R factor of A=QR by solving the system R C=R^-T

n=min(size(R));

C=zeros(n,n);

for k=n:-1:1,

C(k,k)=(1/R(k,k)-R(k,k+1:n)*C(k,k+1:n)’)/R(k,k);

for i=k-1:-1:1,

C(i,k)=-(R(i,i+1:k)*C(i+1:k,k)+R(i,k+1:n)*C(k,k+1:n)’)/R(i,i);

end

end

6.6 Linear Least Squares Problems with Linear
Constraints

Given the matrices Am×n, Cp×n and the vectors b and d, we are interested
in finding a vector x such that

‖Ax − b‖2 −→ min subject to Cx = d. (6.44)

We are interested in the case p ≤ n ≤ m. A solution exists only if the
constraints are consistent i.e. if d ∈ R(C).

A straightforward way is to eliminate the constraints and solve the re-
duced unconstrained problem. This can be done using the general solution
of Cx = d, see Section 6.3.3,

x = C+d+ PN (C)y, y arbitrary and PN (C) = I − C+C.

Now ‖Ax − b‖22 = ‖APN (C)y − (b − AC+d)‖22 −→ min is an unconstrained
linear least squares problem in y. The solution with minimal norm is

ỹ = (APN (C))
+(b − AC+d).

Thus x = C+d+PN (C)(APN (C))
+(b−AC+d). We can simplify this expres-

sion using the following lemma:

Lemma 6.2. PN (C)(APN (C))
+ = (APN (C))

+.
Proof. The matrix (APN (C))

+ is the solution of the Penrose equations
(see Theorem 6.7). We show that Y = PN (C)(APN (C))

+ is also a solution,
therefore by uniqueness they must be the same. In the proof below, we will
write P := PN (C) and use the relations PP = P and P� = P , which hold
because P is an orthogonal projector. We now substitute Y into the Penrose
equations:

(i) (AP)Y (AP) = A PP︸︷︷︸
P

(AP)+AP = AP (AP)+(AP) = AP .

324 LEAST SQUARES PROBLEMS

(ii) Y (AP)Y = P (AP)+A PP︸︷︷︸
P

(AP)+ = P ((AP)+AP (AP)+) = P (AP)+ =

Y .

(iii) (AP Y)� = (A PP︸︷︷︸
P

(AP)+)� = A P︸︷︷︸
PP

(AP)+ = AP Y .

(iv) (Y AP)� = (P (AP)+AP)� = [(AP)+AP]�P = (AP)+A PP︸︷︷︸
P

= (AP)+AP = ((AP)+AP)� = (AP)�[(AP)+]� = P︸︷︷︸
PP

A�[(AP)+]�

= P ((AP)+AP)� = P ((AP)+AP) = Y AP .

�
As a consequence of the lemma, we have PN (C)ỹ = ỹ.

Theorem 6.16. Let d ∈ R(C) and define x = x̃+ ỹ with

x̃ = C+d, ỹ = (APN (C))
+(b − Ax̃),

where PN (C) = I − C+C. Then x is a solution to the problem (6.44); this
solution is unique if and only if

rank

(
A

C

)
= n.

Moreover, if (6.44) has more than one solution, then x is the minimal norm
solution.

Proof. We have already shown by construction that x is a solution. We
note that the solution x cannot be unique if rank

(
A
C

)
< n, since there would

exist a vector w
= 0 such that
(
A
C

)
w =

(
0
0

)
and x + w is also a solution.

Thus the condition is necessary; we will show in Section 6.6.2 that it is also
sufficient.

We now show that x has minimal norm when the solution is not unique.
Let x and x̂ be two solutions to (6.44). Since both must satisfy the constraint
Cx = d, they can be written as

x = C+d+ ỹ = x̃+ P ỹ,

x̂ = C+d+ Py = x̃+ Py,

where we use again the abbreviation P := PN (C) and the fact that P ỹ = ỹ.

Since P = P� and PC+ = (I −C+C)C+ = 0 (see Theorem 6.9), we see that
x̃ ⊥ P ỹ, so we have

‖x‖22 = ‖x̃‖22 + ‖P ỹ‖22 = ‖x̃‖22 + ‖ỹ‖22.
Similarly, for x̂ we have

‖x̂‖22 = ‖x̃‖22 + ‖Py‖22.

Linear Least Squares Problems with Linear Constraints 325

Now since ỹ is the minimal norm solution, every other solution of the reduced
unconstrained linear least squares problem has the form y = ỹ + w with
w ⊥ ỹ. Also ỹ ⊥ Pw holds since ỹ�Pw = (P ỹ)�w = ỹ�w = 0. Thus

‖x̂‖22 = ‖x̃‖22 + ‖Py‖22 = ‖x̃‖22 + ‖ỹ‖22 + ‖Pw‖22 ≥ ‖x̃‖22 + ‖ỹ‖22 = ‖x‖22.

Therefore x = x̃+ ỹ is the minimum norm solution. �

6.6.1 Solution with SVD

Problem (6.44) can be solved in an elegant and even more general way using
the SVD. We will assume that A ∈ R

m×n, C ∈ R
p×n with p < n < m, that

b /∈ R(A), that rank(C) = rc < p and d /∈ R(C). This means that Cx = d
is not consistent, but that we consider the more general problem

‖Ax− b‖2 −→ min subject to ‖Cx − d‖2 −→ min . (6.45)

Since C has a nontrivial null space, the constraint ‖Cx − d‖2 −→ min has
many solutions and we want to minimize ‖Ax − b‖2 over that set. The
algorithm that we develop can then also be used for the special case of equality
constraints when Cx = d is consistent.

In the first step we determine the general (least squares) solution of Cx ≈
d. Let C� = TSR� be the SVD with T ∈ R

n×n and R ∈ R
p×p. Since

rank(C) = rc < p, we partition the matrices accordingly into the sub-matrices
T = [T1, T2] with T1 ∈ R

n×rc , T2 ∈ R
n×(p−rc), Sr = S(1:rc, 1:rc) and R =

[R1, R2] with R1 ∈ R
p×rc and R2 ∈ R

p×(p−rc). With this partition, C =
R1SrT

�
1 and C+ = T1S

−1
r R�

1 . The general solution of ‖Cx − d‖2 −→ min
then becomes

x = xm + T2z, with z ∈ R
n−rc arbitrary and xm = T1S

−1
r R�

1d.

We now introduce this general solution into ‖Ax − b‖2 and obtain

‖AT2z − (b − Axm)‖2 −→ min, AT2 ∈ R
m×(n−rc), (6.46)

an unconstrained least squares problem for z. We compute the SVD of AT2 =
UΣV� and partition again the matrices according to the rank(AT2) = ra, for
which we will assume that ra < n − rc: U = [U1, U2], Σr = Σ(1 : ra, 1 : ra)
and V = [V1, V2]. With this partition, the general solution of (6.46) is

z = zm + V2w, with w ∈ R
n−rc−ra arbitrary, and zm = V1Σ−1

r U�
1 (b − Axm).

Thus the solution of Problem (6.45) is

x = xm + T2z = xm + T2V1Σ
−1
r U�

1 (b − Axm) + T2V2w, xm = T1S
−1
r R�

1d
(6.47)

with w ∈ R
n−rc−ra arbitrary.

326 LEAST SQUARES PROBLEMS

Example 6.17. We consider A ∈ R
9×6, rank(A) = 3, C ∈ R

3×6,

rank(C) = 2 and rank
(
A
C

)
= 5. Furthermore b /∈ R(A) and also d /∈ R(C).

The solution (6.47) will not be unique, as we will see.

>> A=[5 -1 -1 6 4 0

-3 1 4 -7 -2 -3

1 3 -4 5 4 7

0 4 -1 1 4 5

4 2 3 1 6 -1

3 -3 -5 8 0 2

0 -1 -4 4 -1 3

-5 4 -3 -2 -1 7

3 4 -3 6 7 7];

>> [m,n]=size(A);

>> b=[-4 1 -2 3 3 0 -1 3 1]’;

>> ranksa=[rank(A) rank([A,b])]

ranksa= 3 4

>> C=[1 3 -2 3 8 0

-3 0 0 1 9 4

-2 3 -2 4 17 4];

>> [p n]=size(C);

>> d=[1 2 -3]’;

>> ranksc=[rank(C) rank([C,d])]

ranksc= 2 3

Now we compute the minimal norm solution of Cx ≈ d, its norm and the
norm of the residual r = d − Cxm:

>> [T,S,R]=svd(C’);

>> rc=rank(S); Sr=S(1:rc,1:rc);

>> T1=T(:,1:rc); T2=T(:,rc+1:n);

>> R1=R(:,1:rc); R2=R(:,rc+1:p);

>> xm=T1*(Sr\(R1’*d));

>> xm’

ans=-0.0783 -0.0778 0.0519 -0.0604 -0.0504 0.0698

>> [norm(xm) norm(d-C*xm)]

ans= 0.1611 3.4641

To obtain another solution xg of Cx ≈ d, we choose e.g. z = (1, 2, 3, 4)� and
obtain

>> xg=xm+T2*[1 2 3 4]’;

>> xg’

ans= 0.1391 0.6588 -2.7590 2.0783 -1.8586 3.7665

>> [norm(xg) norm(d-C*xg)]

ans= 5.4796 3.4641

We see that xg has the same residual, but ‖xg‖2 > ‖xm‖2, as we would
expect. Note that the results for xg may differ depending on the version of
Matlab used; this is because the matrix T2 is not unique. We continue by
eliminating the constraints and solve the unconstrained problem for z:

>> As=A*T2; c=b-A*xm;

Linear Least Squares Problems with Linear Constraints 327

>> nrc=n-rc

nrc= 4

>> [U Sig V]=svd(As);

>> ra=rank(Sig)

ra= 3

>> Sigr=Sig(1:ra,1:ra);

>> U1=U(:,1:ra); U2= U(:,ra+1:nrc);

>> V1=V(:,1:ra); V2= V(:,ra+1:nrc);

>> zm=V1*(Sigr\(U1’*c));

>> zm’

ans= -0.0364 -0.1657 -0.2783 0.3797

The matrix As = AT2 is rank deficient, so the reduced unconstrained problem
has infinitely many solutions and the vector zm is the minimal norm solution.
Thus the minimal norm solution of Problem (6.45) is xmin = xm + T2zm :

>> xmin=xm+T2*zm;

>> xmin’

ans=0.1073 0.2230 0.2695 -0.1950 -0.0815 0.3126

We finally perform some checks; xa is a solution of Ax ≈ b computed by
Matlab.

>> xa=A\b;

Warning: Rank deficient, rank=3 tol= 3.0439e-14.

>> [norm(C*xm-d) norm(C*xg-d) norm(C*xmin-d) norm(C*xa-d)]

ans= 3.4641 3.4641 3.4641 6.1413

>> [norm(A*xm-b) norm(A*xg-b) norm(A*xmin-b) norm(A*xa-b)]

ans= 6.8668 93.3010 5.3106 5.3106

>> [norm(xm) norm(xg) norm(xmin) norm(xa)]

ans= 0.1611 5.4796 0.5256 0.5035

Of course, xa does not minimize ‖Cx − d‖2 and xm does not minimize
‖Ax − b‖2. However, xmin does minimize both norms as it should.

Another solution of Problem (6.45) is obtained by adding to xmin some
linear combination of the columns of the matrix T2V2: x = xmin + T2V2w.
Since T2V2 ∈ R

6×1 in our example, w is a scalar:

T2*V2

ans =

0.4656

-0.2993

-0.4989

-0.6319

0.1663

0.1330

The general solution of Problem (6.45) for our example is therefore (with

328 LEAST SQUARES PROBLEMS

arbitrary parameter λ)

x =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.1073
0.2230
0.2695

−0.1950
−0.0815
0.3126

⎞
⎟⎟⎟⎟⎟⎟⎠

+ λ

⎛
⎜⎜⎜⎜⎜⎜⎝

0.4656
−0.2993
−0.4989
−0.6319
0.1663
0.1330

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We compute two other solutions and show that they also minimize the two
norms but their own norm is larger than ‖xmin‖2:
>> x=xmin +T2*V2;

>> x’

ans= 0.5729 -0.0763 -0.2293 -0.8269 0.0848 0.4457

>> [norm(d-C*x) norm(b-A*x) norm(x)]

ans= 3.4641 5.3106 1.1297

>> x=xmin +5*T2*V2;

>> x’

ans= 2.4355 -1.2737 -2.2249 -3.3547 0.7500 0.9778

>> [norm(d-C*x) norm(b-A*x) norm(x)]

ans= 3.4641 5.3106 5.0276

Certainly, the SVD is the best method in such cases where rank decisions
have to be made. By providing explicit expressions for the projectors and or-
thogonal bases for the subspaces, this method is well suited for rank deficient
matrices and general solutions.

6.6.2 Classical Solution Using Lagrange Multipliers

Before the widespread use of the SVD as a computational tool, a classical
approach for solving Problem (6.44) uses Lagrange multipliers (see Section
12.2.2 for details). The Lagrangian is

L(x,λ) =
1

2
‖Ax − b‖22 + λ�(Cx − d).

Setting the partial derivatives to zero, we obtain

∂L

∂x
= A�(Ax − b) +C�λ = 0 and

∂L

∂λ
= Cx − d = 0.

Thus, we obtain the Normal Equations

(
A�A C�

C 0

)(
x
λ

)
=

(
A�b
d

)
(6.48)

The matrix of the Normal Equations (6.48) is symmetric, but not positive
definite; for this reason, this system is also known as saddle point equations,

Linear Least Squares Problems with Linear Constraints 329

since they correspond geometrically to saddle points, i.e., points that are nei-
ther local minima nor maxima. Because of the indefiniteness, we cannot use
the Cholesky decomposition to solve (6.48); moreover, the matrix becomes
singular in the case of rank deficient matrices, like the example in Section
6.6.1, or even when only C is rank deficient.

The Normal Equations (6.48) can be used to finish the proof of Theorem
6.16. We need to prove that if rank

(
A
C

)
= n, then the solution of Problem

(6.44) is unique. Assume that we have two solutions x1 and x2. Then both
are solutions of the normal equations with some λ1 and λ2. If we take the
difference of the normal equations, we obtain

(
A�A C�

C 0

)(
x1 − x2

λ1 − λ2

)
=

(
0

0

)
. (6.49)

Multiplying the first equation of (6.49) from the left with (x1 −x2)
�, we get

‖A(x1 − x2)‖22 + (C(x1 − x2)︸ ︷︷ ︸
=0

)�(λ1 − λ2) = 0.

Thus A(x1−x2) = 0 and also C(x1−x2) = 0, which means, since rank
(
A
C

)
=

n, that x1 = x2, which is what we wanted to prove.
If both A and C have full rank, we may make use of the block structure

of the matrix. Consider the ansatz
(

A�A C�

C 0

)
=

(
R� 0
G −U�

)(
R G�

0 U

)
.

Multiplying the right hand side and equating terms we obtain

R�R = A�A thus R = chol(A’*A)

R�G� = C� or GR = C thus G = CR−1

and

GG� − U�U = 0 thus U = chol(G*G’).

The whole algorithm becomes:

1. Compute the Cholesky decomposition R�R = A�A.

2. Solve for G� by forward substituting R�G� = C�.

3. Compute the Cholesky decomposition U�U = GG�.

4. Solve for y1 and y2 by forward substitution,

(
R� 0
G −U�

)(
y1

y2

)
=

(
A�b
d

)
.

330 LEAST SQUARES PROBLEMS

5. Solve for x and λ by backward substitution,

(
R G�

0 U

)(
x
λ

)
=

(
y1

y2

)
.

Compared to solving the Normal Equations (6.48) with Gaussian elimination,
we save (n+p)3/6 multiplications using this decomposition. This saving may
be not significant for large m, because the dominant computational cost in
this case is in forming the matrix A�A, which requires mn2/2 multiplications.
Just as in the unconstrained case, the above algorithm should not be used to
solve Problem (6.44) numerically, since forming A�A and GG� is numerically
not advisable.

6.6.3 Direct Elimination of the Constraints

We will assume that C ∈ R
p×n has full rank and therefore Cx = d is con-

sistent. Applying Gaussian elimination with column pivoting, we obtain the
decomposition

CP = L[R, F]

with P a permutation matrix, L a unit lower triangular matrix, and R an
upper triangular matrix. The constraints become

CPP�x = L[R, F]y = d with y = P�x.

If we partition y = [y1,y2]
�, we obtain

[R, F]

(
y1

y2

)
= L−1d =: w

with the solution y2 arbitrary and y1 = R−1(w−Fy2). Inserting x = Py in
‖Ax−b‖2 and partitioning AP = [A1, A2], we get the unconstrained problem

(A2 − A1R
−1F)y2 ≈ b − A1R

−1w.

A compact formulation of the algorithm is the following:

1. Form the combined system

(
C

A

)
x
=

≈
(
d

b

)
.

2. Eliminate p variables by Gaussian elimination with column pivoting,

(
R F

0 Ã

)(
y1

y2

)
=

≈
(
w

b̃

)
.

Linear Least Squares Problems with Linear Constraints 331

3. Continue elimination of Ãy2 ≈ b̃ with orthogonal transformations
(Householder or Givens) to get

⎛
⎝

R F
0 R2

0 0

⎞
⎠
(
y1

y2

)
=

≈

⎛
⎝

w
v1

v2

⎞
⎠ , with Ã = Q

(
R2

0

)
and

(
v1

v2

)
= Q�b̃.

4. Solve for y by back substitution
(

R F
0 R2

)
y =

(
w

v1

)
and x = Py.

The algorithm is implemented in the following Matlab program

Algorithm 6.21. Linearly Constrained Least Squares

function x=LinearlyConstrainedLSQ(A,C,b,d)

% LINEARLYCONSTRAINEDLSQ solves linearly constrained least squares problem

% x=LinearlyConstrainedLSQ(A,C,b,d); solves ||Ax-b||= min s.t. Cx=d

% by direct Gaussian elimination. The reduced least squares problem

% is solved using the standard Matlab \ operator.

[p,n]=size(C); [m,n]=size(A);

CA=[C,d;A,b]; % augmented matrix

pp=[1:n]; % permutation vector

for i=1:p, % eliminate p unknowns

[h jmax]=max(abs(CA(i,i:n))); % with Gaussian elimination

jmax=i-1+jmax;

if h==0, error(’Matrix C is rank deficient’); end

if jmax~=i % exchange columns

h=CA(:,i); CA(:,i)=CA(:,jmax); CA(:,jmax)=h;

zz=pp(i); pp(i)=pp(jmax); pp(jmax)=zz;

end;

CA(i+1:p+m,i)=CA(i+1:p+m,i)/CA(i,i); % elimination

CA(i+1:p+m,i+1:n+1)=CA(i+1:p+m,i+1:n+1) ...

-CA(i+1:p+m,i)*CA(i,i+1:n+1);

end;

y2=CA(p+1:m+p,p+1:n)\CA(p+1:m+p,n+1); % solve lsq.-problem

y1=triu(CA(1:p,1:p))\(CA(1:p,n+1)-CA(1:p,p+1:n)*y2);

x(pp)=[y1;y2]; % permute solution

x=x(:);

Example 6.18. If we interpolate the following 7 points by an interpolat-
ing polynomial of degree 6,

x=[1; 2.5; 3; 5; 13; 18; 20];

y=[2; 3; 4; 5; 7; 6; 3];

332 LEAST SQUARES PROBLEMS

plot(x,y,’o’); hold;

xx=1:0.1:20;

P=polyfit(x,y,6); % fit degree 6 polynomial

plot(xx, polyval(P,xx),’:’)

pause

we obtain the dashed curve shown in Figure 6.5. The interpolation is really
not what one would like. We can obtain a smoother interpolation for example

0 2 4 6 8 10 12 14 16 18 20
−4

−2

0

2

4

6

8

10

12

14

Figure 6.5. Polynomial Interpolation

by giving up the interpolation condition, or maybe by demanding interpolation
only for a few points and using a least squares fit for the remaining ones.

In Matlab, a polynomial of degree d with coefficients p is represented as

Pd(x) = p1x
d + p2x

d−1 + · · · + pdx+ pd+1.

The interpolation and approximation conditions Pd(xi) = yi resp. Pd(xi) ≈ yi
lead to the constrained least squares problem

V p � y,

with the m × (d+ 1) Vandermonde matrix V = (vij) with vij = xd−j+1
i . We

now choose the degree d = 4 and interpolate p = 3 points, the first, the last
and the fifth:

m=length(x); n=5; % choose degree 4

V=vander(x); V=V(:,m-n+1:m);

p=3; % number of interpolating points

We reorder the equations so that the first 3 are the ones with the interpolation
conditions:

in=[1 5 7 2 3 4 6]; % permute equations

Linear Least Squares Problems with Linear Constraints 333

Vp=V(in,:); yp=y(in);

C=Vp(1:p,:); A=Vp(p+1:m,:);

d=yp(1:p); b=yp(p+1:m);

P1=LinearlyConstrainedLSQ(A,C,b,d);

plot(xx, polyval(P1,xx))

As we can see from Figure 6.5, we obtain this time a much more satisfactory
representation of the data. Comparing the function values V P1 with y, we
spot the three interpolation points and see that the others are approximated
in the least squares sense.

>> [V*P1 y]

ans =

2.0000 2.0000

3.4758 3.0000

3.8313 4.0000

4.8122 5.0000

7.0000 7.0000

5.9036 6.0000

3.0000 3.0000

6.6.4 Null Space Method

There are several possibilities to avoid the Normal Equations (6.48) by direct
elimination of the constraints. Since we assume that C has full rank p, we can
express the general solution of Cx = d using the QR decomposition instead
of the SVD as in Section 6.6.1.

We compute the QR decomposition of C�,

C� = [Q1, Q2]

(
R

0

)
, R ∈ R

p×p, Q1 ∈ R
n×p.

Then the columns of Q2 span the null space of C�: N (C) = R(Q2). With
Q = [Q1, Q2] and the new unknowns y = Q�x, the constraints become

Cx = CQy = [R�, 0]y = R�y1 = d, with y =

(
y1

y2

)
.

The general solution of the constraints is y1 = R−�d and y2 arbitrary. In-
troducing

Ax = AQQ�x = AQ

(
y1

y2

)
= A(Q1y1 +Q2y2)

into ‖Ax − b‖2, we get an unconstrained least squares problem

‖AQ2y2 − (b − AQ1y1)‖2 −→ min . (6.50)

Thus we obtain the algorithm:

1. compute the QR decomposition C� = [Q1, Q2]

(
R

0

)
.

334 LEAST SQUARES PROBLEMS

2. Compute y1 by forward substitution R�y1 = d and x1 = Q1y1.

3. Form Ã = AQ2 and b̃ = b − Ax1.

4. Solve Ãy2 ≈ b̃.

5. x = Q

(
y1

y2

)
= x1 +Q2y2.

Algorithm 6.22. Null Space Method

function x=NullSpaceMethod(A,C,b,d);

% NULLSPACEMETHOD solves a constrained least squares problem

% x=NullSpaceMethod(A,C,b,d) solves the constrained least squares

% problem ||Ax-b||=min s.t. Cx=d using the nullspace method.

[p n]=size(C);

[Q R]=qr(C’);

y1=R(1:p,1:p)’\d;

x1=Q(:,1:p)*y1;

y2=(A*Q(:,p+1:n))\(b-A*x1);

x=x1+Q(:,p+1:n)*y2;

6.7 Special Linear Least Squares Problems with
Quadratic Constraint

The SVD can be used very effectively to solve a very particular least squares
problem with a quadratic constraint, as shown in the following theorem.

Theorem 6.17. Let A = UΣV�. Then the problem

‖Ax‖2 −→ min, subject to ‖x‖2 = 1 (6.51)

has the solution x = vn and the value of the minimum is min‖x‖2=1 ‖Ax‖2 =
σn.

Proof. We make use of the fact that for orthogonal V and V�x = y we
have ‖x‖2 = ‖V V�x‖2 = ‖V y‖2 = ‖y‖2:

min
‖x‖2=1

‖Ax‖22 = min
‖x‖2=1

‖UΣV�x‖22 = min
‖V V�x‖2=1

‖UΣ(V�x)‖22
= min

‖y‖2=1
‖Σy‖22 = min

‖y‖2=1
(σ2

1y
2
1 + · · · + σ2

ny
2
n) ≥ σ2

n

The minimum is attained for y = en thus for x = V y = vn. �
Such minimization problems appear naturally in a variety of geometric

fitting problems, as we show in the following subsections.

Special Linear Least Squares Problems with Quadratic Constraint 335

6.7.1 Fitting Lines

We consider the problem of fitting lines by minimizing the sum of squares
of the distances to given points (see Chapter 6 in [45]). In the plane we can
represent a straight line uniquely by the equations

c+ n1x+ n2y = 0, n2
1 + n2

2 = 1. (6.52)

The unit vector (n1, n2) is the normal vector orthogonal to the line. A point
is on the line if its coordinates (x, y) satisfy the first equation. On the other
hand, if P = (xP , yP) is some point not on the line and we compute

r = c+ n1xP + n2yP ,

then |r| is its distance from the line. Therefore if we want to determine the
line for which the sum of squares of the distances to given points is minimal,
we have to solve the constrained least squares problem

⎛
⎜⎜⎜⎝

1 xP1
yP1

1 xP2
yP2

...
...

...
1 xPm

yPm

⎞
⎟⎟⎟⎠

⎛
⎝

c
n1

n2

⎞
⎠ ≈

⎛
⎜⎜⎜⎝

0
0
...
0

⎞
⎟⎟⎟⎠ subject to n2

1 + n2
2 = 1. (6.53)

Let A be the matrix of the linear system (6.53). Using the QR decomposition
A = QR, we can multiply by Q� on the left and reduce the linear system to
Rx ≈ 0, i.e., the problem becomes

⎛
⎝

r11 r12 r13
0 r22 r23
0 0 r33

⎞
⎠
⎛
⎝

c
n1

n2

⎞
⎠ ≈

⎛
⎝

0
0
0

⎞
⎠ subject to n2

1 + n2
2 = 1. (6.54)

Since the nonlinear constraint only involves two unknowns, we only have to
solve

(
r22 r23
0 r33

)(
n1

n2

)
≈
(

0
0

)
, subject to n2

1 + n2
2 = 1. (6.55)

The solution n is obtained using Theorem 6.17. We then obtain c by inserting
the values into the first equation of (6.54).

The quadratically constrained least squares problem

A

(
c

n

)
≈
(
0

0

)
, subject to ‖n‖2 = 1

is therefore solved by the following Matlab function:

Algorithm 6.23.
Quadratically Constrained Linear Least Squares

336 LEAST SQUARES PROBLEMS

function [c,n]=ConstrainedLSQ(A,dim);

% CONSTRAINEDLSQ solves a constraint least squares problem

% [c,n]=ConstrainedLSQ(A,dim) solves the constrained least squares

% problem A (c n)’ ~ 0 subject to norm(n,2)=1, dim=length(n)

[m,p]=size(A);

if p<dim+1, error(’not enough unknowns’); end;

if m<dim, error(’not enough equations’); end;

m=min(m,p);

R=triu(qr(A));

[U,S,V]=svd(R(p-dim+1:m,p-dim+1:p));

n=V(:,dim);

c=-R(1:p-dim,1:p-dim)\R(1:p-dim,p-dim+1:p)*n;

Fitting two Parallel Lines

Suppose we wish to determine two parallel lines by measuring the coordinates
of points that lie on them. The measurements are given as two sets of points
{Pi}, i = 1, . . . , p, and {Qj}, j = 1, . . . , q, and our goal is to find a pair of
parallel lines that best fit the two sets. Since the lines are parallel, their
normal vector must be the same. Thus the equations for the lines are

c1 + n1x+ n2y = 0,

c2 + n1x+ n2y = 0,

n2
1 + n2

2 = 1.

If we insert the coordinates of the two sets of points into these equations we
get the following constrained least squares problem for the four unknowns
n1, n2, c1 and c2:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 xP1
yP1

1 0 xP2
yP2

...
...

...
...

1 0 xPp
yPp

0 1 xQ1
yQ1

0 1 xQ2
yQ2

...
...

...
...

0 1 xQq
yQq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

c1
c2
n1

n2

⎞
⎟⎟⎠ ≈

⎛
⎜⎜⎜⎝

0
0
...
0

⎞
⎟⎟⎟⎠ subject to n2

1 + n2
2 = 1.

(6.56)
Again, we can use our function ConstrainedLSQ to solve this problem.

Example 6.19. In the following program some measured points are de-
fined and two parallel lines are fitted and plotted.

Px=[1:10]’

Py=[0.2 1.0 2.6 3.6 4.9 5.3 6.5 7.8 8.0 9.0]’

Special Linear Least Squares Problems with Quadratic Constraint 337

Qx=[1.5 2.6 3.0 4.3 5.0 6.4 7.6 8.5 9.9]’

Qy=[5.8 7.2 9.1 10.5 10.6 10.7 13.4 14.2 14.5]’

A=[ones(size(Px)) zeros(size(Px)) Px Py

zeros(size(Qx)) ones(size(Qx)) Qx Qy]

[c,n]=ConstrainedLSQ(A,2)

clf; hold on;

axis([-1 11 -1 17])

PlotLine(Px,Py,’o’,c(1),n,’-’)

PlotLine(Qx,Qy,’+’,c(2),n,’-’)

hold off;

We have used the function PlotLine to plot a line through given points.

Algorithm 6.24. Plot a line through points

function PlotLine(x,y,s,c,n,t)

% PLOTLINE plots a line through a set of points

% PlotLine(x,y,s,c,n,t) plots the set of points (x,y) using the

% symbol s and plots the line c+n1*x+n2*y=0 using the line type

% defined by t

plot(x,y,s)

xrange=[min(x) max(x)]; yrange=[min(y) max(y)];

if n(1)==0, % c+n2*y=0 => y=-c/n(2)

x1=xrange(1); y1=-c/n(2);

x2=xrange(2); y2=y1

elseif n(2)==0, % c+n1*x=0 => x=-c/n(1)

y1=yrange(1); x1=-c/n(1);

y2=yrange(2); x2=x1;

elseif xrange(2)-xrange(1)>yrange(2)-yrange(1),

x1=xrange(1); y1=-(c+n(1)*x1)/n(2);

x2=xrange(2); y2=-(c+n(1)*x2)/n(2);

else

y1=yrange(1); x1=-(c+n(2)*y1)/n(1);

y2=yrange(2); x2=-(c+n(2)*y2)/n(1);

end

plot([x1,x2],[y1,y2],t)

The results obtained by the program mainparallel are the two lines

0.5091 − 0.7146x+ 0.6996y = 0,

−3.5877 − 0.7146x+ 0.6996y = 0,

which are plotted in Figure 6.6.

6.7.2 Fitting Ellipses

We want to fit ellipses to measured points by minimizing the algebraic dis-
tance (see [146]). The solutions x = [x1, x2] of a quadratic equation

x�Ax+ b�x+ c = 0 (6.57)

338 LEAST SQUARES PROBLEMS

0 2 4 6 8 10

0

2

4

6

8

10

12

14

16

Figure 6.6. Two parallel lines through measured points

are points on an ellipse if A is symmetric and positive or negative definite
(i.e. if det(A) = a11a22−a212 > 0). For each measured point, we substitute its
coordinates xi into (6.57) to obtain an equation for the unknown coefficients
u = [a11, a12, a22, b1, b2, c]. Note that a12 = a21 because of symmetry. Since
(6.57) is homogeneous in the coefficients, we need some normalizing condition
in order to make the solution unique. A possibility that can handle all cases
is to normalize the coefficients by ‖u‖2 = 1. We then obtain a quadratically
constrained least squares problem

‖Bu‖2 −→ min subject to ‖u‖2 = 1.

If the rows of the matrix X contain the coordinates of the measured points
then the matrix B is computed by the Matlab statement

B=[X(:,1).^2 X(:,1).*X(:,2) X(:,2).^2 X(:,1) X(:,2) ones(size(X(:,1)))]

The solution u = [a11, a12, a22, b1, b2, c] is obtained using Theorem 6.17.
When the coefficients u are known, we can compute the geometric quan-
tities, the axes and the center point by a principle axis transformation. To
find a coordinate system in which the axes of the ellipse are parallel to the
coordinate axes, we compute the eigenvalue decomposition

A = QDQ�, with Q orthogonal and D = diag(λ1, λ2). (6.58)

Introducing the new variable x̄ = Q�x, (6.57) becomes

x̄�Q�AQx̄+ (Q�b)�x̄+ c = 0,

or, written in components (using b̄ = Q�b),

λ1x̄1
2 + λ2x̄2

2 + b̄1x̄1 + b̄2x̄2 + c = 0.

Special Linear Least Squares Problems with Quadratic Constraint 339

We transform this equation into its “normal form”

(x̄1 − z̄1)
2

a2
+

(x̄2 − z̄2)
2

b2
= 1.

Here, (z̄1, z̄2) is the center in the rotated coordinate system,

(z̄1, z̄2) =

(
− b̄1
2λ1

,− b̄2
2λ2

)
.

The axes are given by

a =

√
b̄21
4λ2

1

+
b̄22

4λ1λ2
− c

λ1
, b =

√
b̄21

4λ1λ2
+

b̄22
4λ2

2

− c

λ2
.

To obtain the center in the unrotated system, we have to apply the change
of coordinates z = Qz̄. We now have all the elements to write a Matlab

function that fits an ellipse to measured points:

Algorithm 6.25. Algebraic Ellipse Fit

function [z,a,b,alpha]=AlgebraicEllipseFit(X);

% ALGEBRAICELLIPSEFIT ellipse fit, minimizing the algebraic distance

% [z,a,b,alpha]=AlgebraicEllipseFit(X) fits an ellipse by minimizing

% the algebraic distance to given points P_i=[X(i,1), X(i,2)] in the

% least squares sense x’A x + bb’x + c=0. z is the center, a,b are

% the main axes and alpha the angle between a and the x-axis.

[U S V]=svd([X(:,1).^2 X(:,1).*X(:,2) X(:,2).^2 ...

X(:,1) X(:,2) ones(size(X(:,1)))]);

u=V(:,6); A=[u(1) u(2)/2; u(2)/2 u(3)];

bb=[u(4); u(5)]; c=u(6);

[Q,D]=eig(A);

alpha=atan2(Q(2,1),Q(1,1));

bs=Q’*bb; zs=-(2*D)\bs; z=Q*zs;

h=-bs’*zs/2-c; a=sqrt(h/D(1,1)); b=sqrt(h/D(2,2));

To plot an ellipse, it is best to use polar coordinates:

Algorithm 6.26. Drawing an Ellipse

function DrawEllipse(C,a,b,alpha)

% DRAWELLIPSE plots an ellipse

% DrawEllipse(C,a,b,alpha) plots ellipse with center C, semiaxis a

% and b and angle alpha between a and the x-axis

s=sin(alpha); c=cos(alpha);

Q =[c -s; s c]; theta=[0:0.02:2*pi];

u=diag(C)*ones(2,length(theta)) + Q*[a*cos(theta); b*sin(theta)];

plot(u(1,:),u(2,:));

plot(C(1),C(2),’+’);

340 LEAST SQUARES PROBLEMS

Example 6.20. We run the following program to fit an ellipse and gen-
erate Figure 6.7:

X =[-2.8939 4.1521

-2.0614 2.1684

-0.1404 1.9764

2.6772 3.0323

5.1746 5.7199

3.2535 8.1196

-0.1724 6.8398]

axis([0 10 0 10]); axis(’equal’); hold

plot(X(:,1),X(:,2),’o’);

[z,a,b,alpha]=AlgebraicEllipseFit(X)

DrawEllipse(z,a,b,alpha)

We obtain the results

z = 1.2348

4.9871

a = 2.3734

b = 4.6429

alpha = 2.0849

−4 −2 0 2 4 6
0

1

2

3

4

5

6

7

8

9

10

Figure 6.7. Fitting an Ellipse to Measured Points

6.7.3 Fitting Hyperplanes, Collinearity Test

The function ConstrainedLSQ can be used to fit an (n−1)-dimensional hyper-
plane in R

n to given points. Let the rows of the matrixX = [x1,x2, . . . ,xm]�
contain the coordinates of the given points, i.e. point Pi has the coordinates
xi = X(i, :), i = 1, . . . ,m. Then the call

[c, N] = ConstrainedLSQ ([ones(m,1) X], n);

Special Linear Least Squares Problems with Quadratic Constraint 341

determines the hyperplane in normal form c+N1y1+N2y2+ . . .+Nnyn = 0.
In this section, we show how we can also compute best-fit hyperplanes of

lower dimensions s, where 1 ≤ s ≤ n − 1. We follow the theory developed
in [127] and also published in [45]. An s-dimensional hyperplane α in R

n can
be represented in parametric form,

α : y = p+ a1t1 + a2t2 + · · · + asts = p+At. (6.59)

In this equation, p is a point on the plane and ai are linearly independent
direction vectors, thus the hyperplane is determined by the parameters p and
A = [a1, . . . ,as].

Without loss of generality, we assume that A has orthonormal columns,
i.e., A�A = Is. If we now want to fit a hyperplane to the given set of points
X, then we have to minimize the distance of the points to the plane. The
distance di of a point Pi = xi to the hyperplane is given by

di = min
t

‖p − xi +At‖2.

To determine the minimum, we solve ∇d2i = 2A�(p−xi+At) = 0 for t, and,
since A�A = Is, we obtain

t = A�(xi − p). (6.60)

Therefore the distance becomes

d2i = ‖p − xi + AA�(xi − p)‖22 = ‖P (xi − p)‖22,

where we denoted by P = I − AA� the projector onto the orthogonal com-
plement of the range of A, i.e. onto the null space of A�.

Our objective is to minimize the sum of squares of the distances of all
points to the hyperplane, i.e., we want to minimize the function

F (p, A) =

m∑
i=1

‖P (xi − p)‖22. (6.61)

A necessary condition is ∇F = 0. We first consider the first part of the
gradient, the partial derivative

∂F

∂p
= −

m∑
i=1

2P�P (xi − p) = −2P (

m∑
i=1

xi − mp) = 0,

where we made use of the property of an orthogonal projector P�P = P 2 =
P . Since P projects the vector

∑m
i=1 xi −mp onto 0, this vector must be in

the range of A, i.e.

p =
1

m

m∑
i=1

xi +Aτ . (6.62)

342 LEAST SQUARES PROBLEMS

Inserting this expression into (6.61) and noting that PA = 0, the objective
function to be minimized simplifies to

G(A) =
m∑
i=1

‖P x̂i‖22 = ‖PX̂�‖2F , (6.63)

where we put

x̂i = xi − 1

m

m∑
i=1

xi,

and where we used the Frobenius norm of a matrix, ‖A‖2F :=
∑

i,j a
2
ij , see

Subsection 2.5.1. Now since P is symmetric, we may also write

G(A) = ‖X̂P‖2F = ‖X̂(I − AA�)‖2F = ‖X̂ − X̂AA�‖2F . (6.64)

If we define Y := X̂AA�, which is a matrix of rank s, then we can consider
the problem of minimizing

‖X̂ − Y ‖2F −→ min, subject to rank(Y) = s. (6.65)

Problem (6.65) is similar to the problem solved in Theorem 6.6. The dif-
ference is that now we want to minimize the Frobenius norm and not the
2-norm.

Theorem 6.18. Let A ∈ R
m×n have rank r and let A = UΣV�. Let M

denote the set of m × n matrices with rank p < r. A solution of

min
X∈M

‖A − X‖2F

is given by Ap =
∑p

i=1 σiuiv
�
i and we have

min
X∈M

‖A − X‖2F = ‖A − Ap‖2F = σ2
p+1 + · · · + σ2

n.

To prove the above theorem, we first need a lemma due to Weyl [147],
which estimates the singular values of the sum of two matrices in terms of
those of its summands.

Lemma 6.3. (Weyl) Let A,B ∈ R
m×n. Let σi(A) denote the ith singu-

lar value of A in descending order, and similarly for B. Then for i + j ≤
min{m,n} + 1, we have

σi+j−1(A+B) ≤ σi(A) + σj(B).

Proof. Let Ap denote the best rank-i approximation of A, i.e., if A has
rank r and the SVD of A is A =

∑r
k=1 σkukv

�
k , then Ap =

∑p
k=1 σkukv

�
k .

Then by Theorem 6.6, we have ‖A − Ai‖2 = σi+1. Let us now consider

Special Linear Least Squares Problems with Quadratic Constraint 343

the matrix R = Ai−1 + Bj−1, which has rank ≤ i + j − 2. By the best
approximation property in Theorem 6.6, we have

σi+j−1(A+B) = ‖A+B − (A+B)i+j−2‖2 ≤ ‖A+B − R‖2
≤ ‖A − Ai−1‖2 + ‖B − Bj−1‖2 = σi(A) + σj(B).

�
Proof. (Theorem 6.18) Let Σp = diag(σ1, . . . , σp, 0, . . . , 0), so that Ap =

UΣpV
�. Then the fact that the Frobenius norm is invariant under orthogonal

transformations implies

‖A − Ap‖2F = ‖Σ − Σp‖2F = σ2
p+1 + · · · + σ2

n.

To prove that the choice X = Ap minimizes ‖A−X‖2F , let X be a matrix of
rank p < r. Since σp+1(X) = 0, Lemma 6.3 implies for i+ p ≤ n

σi+p(A) = σi+p(A − X +X) ≤ σi(A − X) + σp+1(X) = σi(A − X).

Thus, we have

‖A − X‖2F =

n∑
i=1

σ2
i (A − X) ≥

n−p∑
i=1

σ2
i (A − X) ≥

n∑
i=p+1

σ2
i (A).

In other words, no other choice of rank p matrix X can lead to a lower
Frobenius norm error than Ap. �

If X̂ = UΣV�, then according to Theorem 6.18 the minimizing matrix of
Problem (6.65) is given by Y = UΣsV

�, where

Σs = diag(σ1, σ2 . . . , σs, 0, . . . , 0).

Now if Y = UΣsV
�, we have to find a matrix A with orthonormal columns

such that X̂AA� = Y . It is easy to verify that if we choose A = V1 where V1 =
V (:, 1:s), then X̂AA� = UΣsV

�. Thus, the singular value decomposition of
X̂ gives us all the lower-dimensional hyperplanes that are best fits of the
given set of points:

y = p+ V1t, with p =
1

m

m∑
i=1

xi.

Notice that V2 = V (:, s+1:n) also gives us the normal form of the hyperplane:
here, the hyperplane is described as the solution of the linear equations

V�
2 y = V�

2 p.

A measure for the collinearity is the value of the minimum σ2
s+1 + · · · + σ2

n.
In order to compute the hyperplanes, we therefore essentially have to

compute one singular value decomposition. This is done in Algorithm 6.27.

344 LEAST SQUARES PROBLEMS

Algorithm 6.27. Computation of Hyperplanes.

function [V,p]=HyperPlaneFit(X);

% HYPERPLANEFIT fits a hyperplane to a set of given points

% [V,p]=HyperPlaneFit(X); fits a hyperplane of dimension s<n to a

% set of given points X(i,:) in R^n. The hyperplane is given by

% y=p+V(:,1:s)*tau (Parametric Form) or by the equations

% V(:,s+1:n)’*(y-p)=0 (Normal Form)

m=max(size(X));

p=sum(X)’/m;

Xt=X-ones(size(X))*diag(p);

[U,S,V]=svd(Xt,0);

Note that the statement [U,S,V] = svd(Qt,0) computes the “economy size”
singular value decomposition. If Qt is an m-by-n matrix with m > n, then
only the first n columns of U are computed, and S is an n-by-n matrix.

6.7.4 Procrustes or Registration Problem

We consider a least squares problem in coordinate metrology (see [5], [15]):
m points of a workpiece, called the nominal points , are given by their exact
coordinates from construction plans when the workpiece is in its nominal po-
sition in a reference frame. We denote the coordinate vectors of the nominal
points in this position by

x1, . . . ,xm, xi ∈ R
n, 1 ≤ n ≤ 3.

Suppose now that a coordinate measuring machine gathers the same points
of another workpiece. The machine records the coordinates of the measured
points

ξ1, . . . , ξm, ξi ∈ R
n, 1 ≤ n ≤ 3,

which will be in a different frame than the frame of reference. The problem we
want to solve is to find a frame transformation that maps the given nominal
points onto the measured points. This problem is solved in [45].

We need to find a translation vector t and an orthogonal matrix Q with
det(Q) = 1 i.e., Q�Q = I such that

ξi = Qxi + t, for i = 1, . . . ,m. (6.66)

For m > 6 in 3D-space, Equation (6.66) is an over-determined system of
equations and is only consistent if the measurements have no errors. This is
not the case for a real machine; therefore our problem is to determine the
unknowns Q and t of the least squares problem

ξi ≈ Qxi + t. (6.67)

Special Linear Least Squares Problems with Quadratic Constraint 345

In the one-dimensional case, we are given two sets of points on the line. The
matrix Q is just the constant 1 and we have to determine a scalar t such that

ξi ≈ xi + t, i = 1, . . . ,m.

With the notation A = (1, . . . , 1)�, a = (ξ1, , . . . , ξm)� and b = (x1, . . . , xm)�

the problem becomes

At ≈ a − b. (6.68)

Using the normal equations A�At = A�(a−b) we obtain mt =
∑m

i=1(ξi−xi)
and therefore

t = ξ̄ − x̄, with ξ̄ =
1

m

m∑
i=1

ξi and x̄ =
1

m

m∑
i=1

xi. (6.69)

We can generalize this result for n > 1. Consider

ξi ≈ xi + t, i = 1, . . . ,m.

In matrix notation, this least squares problem becomes (I is the n×n identity
matrix): ⎛

⎜⎜⎜⎝

I
I
...
I

⎞
⎟⎟⎟⎠ t ≈

⎛
⎜⎜⎜⎝

ξ1 − x1

ξ2 − x2

...
ξm − xm

⎞
⎟⎟⎟⎠ .

The normal equations are mt =
∑m

i=1(ξi − xi) an thus again

t = ξ̄ − x̄, with ξ̄ =
1

m

m∑
i=1

ξi and x̄ =
1

m

m∑
i=1

xi.

Hence, we have shown that the translation t is the vector connecting the two
centers of gravity of the corresponding sets of points.

Applying this result to the least squares problem for some fixed Q

ξi ≈ Qxi + t ⇐⇒
m∑
i=1

‖Qxi + t − ξi‖22 −→ min, (6.70)

we conclude that t is the vector connecting the two centers of gravity of the
point sets ξi and Qxi, i.e.,

t = ξ̄ − Qx̄. (6.71)

Using (6.71), we eliminate t in (6.70) and consider the problem

G(Q) =
m∑
i=1

‖Q(xi − x̄) − (ξi − ξ̄)‖22 −→ min . (6.72)

346 LEAST SQUARES PROBLEMS

Introducing the new coordinates

ai = xi − x̄ and bi = ξi − ξ̄

the problem is:

G(Q) =
m∑
i=1

‖Qai − bi‖22 −→ min . (6.73)

We can collect the vectors in matrices

A = (a1, . . . ,am), and B = (b1, . . . , bm),

where A,B ∈ R
n×m and rewrite the function G using the Frobenius norm

G(Q) = ‖QA − B‖2F .

Since the Frobenius norm of a matrix is the same for the transposed matrix,
we finally obtain the Procrustes problem[51]: find an orthogonal matrix Q
such that

‖B� − A�Q�‖2F −→ min .

The standard form of the Procrustes problem is formulated as follows: given
two matrices C and D, both in R

m×n with m ≥ n, find an orthogonal matrix
P ∈ R

n×n, such that

‖C − DP‖2F −→ min . (6.74)

Thus, it suffices to let C = B� and D = A�.
To solve the Procrustes problem (6.74), we need some properties of the

Frobenius norm, which is given by

‖A‖2F =

m∑
i=1

n∑
j=1

a2i,j =

n∑
j=1

‖aj‖22, where aj is the jth column of A.

(6.75)
Note that

‖A‖2F = tr(A�A) =
n∑

i=1

λi(A
�A). (6.76)

Equation (6.76) gives us some useful relations: if P is orthogonal, then
‖PA‖F = ‖A‖F . Additionally, since ‖A‖F = ‖A�‖F , we have ‖AP‖F =
‖A‖F .

‖A+B‖2F = tr((A+B)�(A+B))

= tr(A�A+B�A+ A�B +B�B)

= tr(A�A) + 2 tr(A�B) + tr(B�B)

‖A+B‖2F = ‖A‖2F + ‖B‖2F + 2 tr(A�B) (6.77)

Special Linear Least Squares Problems with Quadratic Constraint 347

We now apply (6.77) to the Procrustes problem:

‖C − DP‖2F = ‖C‖2F + ‖D‖2F − 2 tr(P�D�C) −→ min .

Computing the minimum is equivalent to maximizing

tr(P�D�C) = max .

Using the singular value decomposition D�C = UΣV�, we obtain

tr(P�D�C) = tr(P�UΣV�).

Since U , V are orthogonal, we may write the unknown matrix P in the
following form

P = UZ�V�, with Z orthogonal.

Because similar matrices have the same trace, it follows that

tr(P�D�C) = tr(V ZU�UΣV�) = tr(V ZΣV�) = tr(ZΣ)

=

n∑
i=1

ziiσi ≤
n∑

i=1

|zii|σi ≤
n∑

i=1

σi,

where the inequality follows from |zii| ≤ 1 for any orthogonal matrix Z.
Furthermore, the bound is attained for Z = I. Notice that if D�C is rank
deficient, the solution is not unique (cf. [65]). So we have proved the following
theorem:

Theorem 6.19. The Procrustes problem (6.74) is solved by the orthog-
onal polar factor of D�C, i.e. P = UV� where UΣV� is the singular value
decomposition of D�C.

The polar decomposition of a matrix is a generalization of the polar repre-
sentation of complex numbers. The matrix is decomposed into the product of
an orthogonal times a symmetric positive (semi-)definite matrix. The decom-
position can be computed by the singular value decomposition or by other
algorithms [40]. In our case we have

D�C = UΣV� = UV�︸ ︷︷ ︸
orthogonal

V ΣV�︸ ︷︷ ︸
positive

semidefinite

.

We are now ready to describe the algorithm to solve the Procrustes prob-
lem. Given measured points ξi and corresponding nominal points xi for i =
1, . . . ,m. We want to determine t and Q orthogonal such that ξi ≈ Qxi + t.

1. Compute the centers of gravity:

ξ̄ =
1

m

m∑
i=1

ξi and x̄ =
1

m

m∑
i=1

xi.

348 LEAST SQUARES PROBLEMS

2. Compute the relative coordinates :

A = [a1, . . . ,am] , ai = xi − x̄
B = [b1, . . . , bm] , bi = ξi − ξ̄

3. The Procrustes problem becomes ‖C − DP‖2F −→ min with C = B�,
D = A� and P = Q�.

Compute the singular value decomposition AB� = UΣV�.

4. Then Q� = UV� or Q = V U� and t = ξ̄ − Qx̄.

For technical reasons, it may be important to decompose the orthogonal
matrix Q into elementary rotations. The algorithm that we developed so
far computes an orthogonal matrix, but there is no guarantee that Q can be
represented as a product of rotations and that no reflection occurs. For Q
to be representable as a product of rotations, it is necessary and sufficient to
have det(Q) = 1. Thus, if det(Q) = −1, then a reflection is necessary and
this may be of no practical use. In this case, one would like to find the best
orthogonal matrix with det(Q) = 1.

It is shown in [65] that the constrained Procrustes problem

‖C − DP‖2F −→ min, subject to det(P) = 1

has the solution
P = U diag(1, . . . , 1, μ)V�,

where D�C = UΣV� is the singular value decomposition and μ = det(UV�).
The proof is based on the fact that for a real orthogonal n×n matrix Z with
det(Z) < 1, the trace is bounded by

tr(Z) ≤ n − 2 and tr(Z) = n − 2 ⇐⇒ λi(Z) = {1, . . . , 1,−1}.
This can be seen by considering the real Schur form [51] of Z. The maximum

of tr(ZΣ) is therefore
∑n−1

i=1 σi−σn and is achieved for Z = diag(1, . . . , 1,−1).
Thus we obtain the Matlab function ProcrustesFit

Algorithm 6.28.

function [t,Q]=ProcrustesFit(xi,x);

% PROCRUSTESFIT solves the Procrustes Problem

% [t,Q]=ProcristesFit(xi,x) computes an orthogonal matrix Q and a

% shift t such that xi=Qx+t

xiq=sum(xi’)/length(xi); xiq=xiq’;

xq=sum(x’)/length(x); xq=xq’;

A=x-xq*ones(1,length(x));

B=xi-xiq*ones(1,length(xi));

[U,sigma,V]=svd(A*B’);

Q=V*diag([ones(1,size(V,1)-1) det(V*U’)])*U’;

t=xiq-Q*xq;

Special Linear Least Squares Problems with Quadratic Constraint 349

Example 6.21. As an example, we solve a Procrustes problem for n =
2. The following Matlab program defines the nominal points xk and the
measured points ξk. Then it computes and plots the fitted nominal points on
the measurements.

clf, clear

axis([0 10 0 10]), axis(’equal’) % nominal points

hold, grid

x=[-4 -4 -2 -2 -2 -4 -4

1 2 2 3 4 4 3];

plot(x(1,:),x(2,:),’-’) % measured points

plot(x(1,:),x(2,:),’x’)

xi=[-5.2572 -4.5528 -3.6564 -2.8239 -2.0555 -3.1761 -4.2007

6.1206 6.6969 5.4162 6.0886 6.6329 8.2338 7.8175];

plot(xi(1,:),xi(2,:),’o’)

pause

xiq=sum(xi,2)/length(xi); % centers of gravity

xq=sum(x,2)/length(x);

[t,Q]=ProcrustesFit(xi,x);

xx=Q*x+t*ones(1,length(x)) % transform nominal points

plot(xx(1,:), xx(2,:),’-’), plot(xx(1,:), xx(2,:),’*’)

The results are shown in Figure 6.8

−10 −8 −6 −4 −2 0 2
0

1

2

3

4

5

6

7

8

9

10

Figure 6.8. Procrustes or Registration Problem

6.7.5 Total Least Squares

The linear least squares problem Ax ≈ b has so far been solved by projecting
the vector b onto the range of A,

Ax = PR(A)b = AA+b.

350 LEAST SQUARES PROBLEMS

With “Total Least Squares”, the system of equations is made consistent by
changing both A and b: we look for a matrix Â and a vector b̂ ∈ R(Â) which
differ as little as possible from the given data

‖[A, b] − [Â, b̂]‖F −→ min, subject to b̂ ∈ R(Â).

The constraint states that Ĉ = [Â, b̂] must have rank n. Since in general
C = [A, b] will have rank n+ 1, our problem involves solving

min
rank Ĉ=n

‖C − Ĉ‖F . (6.78)

The solution of problem (6.78) is given by Theorem 6.17: let [A, b] = C =
UΣV� be the SVD. Then

[Â, b̂] = Ĉ =

n∑
i=1

σiuiv
�
i = U Σ̂V�, with Σ̂ = diag(σ1, . . . , σn, 0). (6.79)

However, the constraint b̂ ∈ R(Â) is more than just a rank condition: if

we define Ĉ = C + Δ and write the condition b̂ ∈ R(Â) as Ĉz = 0 with
z =

(
x

−1

)
= 0, then the problem is equivalent to

‖Δ‖2F −→ min subject to ∃ x ∈ R
n : (C +Δ)

(
x

−1

)
= 0. (6.80)

This is equivalent to saying that there exists a right singular vector v cor-
responding to a zero singular value such that its last component does not
vanish. Thus, if rank(C) = n + 1 and vn+1,n+1
= 0, then the total least

squares solution exists and is given by Ĉ in (6.79):

Âx̂ = b̂, x̂ = − 1

vn+1,n+1
v(1 : n, n+ 1).

In this case, the perturbation is given by

Δ = Ĉ − C = −σn+1un+1v
�
n+1.

This leads to the following Matlab function:

Algorithm 6.29. Total Least Squares

function [x,v,At,bt]=TLS(A,b);

% TLS total least squares

% [x,v,At,bt]=TLS(A,b) solves Ax~b by allowing changes in A and b.

C=[A,b];

[m,n]=size(C);

[U,Sigma,V]=svd(C,0);

Special Linear Least Squares Problems with Quadratic Constraint 351

v=V(:,n);

if v(n)==0

disp(’TLS Solution does not exist’)

x=[];

else

x=-v(1:n-1)/v(n);

end

Ct=C-Sigma(n)*U(:,n)*V(:,n)’;

At=Ct(:,1:n-1); bt=Ct(:,n);

Theorem 6.20. (Total Least Squares) The total least squares solu-
tion satisfies the equation

(A�A − σ2
n+1I)x̂ = A�b. (6.81)

Proof. Since C = [A, b] = UΣV� we have Cvn+1 = σn+1un+1 and
therefore

C�Cvn+1 = σn+1C
�un+1 = σ2

n+1vn+1.

Dividing the last equation by vn+1,n+1 and replacing C = [A, b] we obtain

(
A�A A�b

b�A b�b

)(
x̂

−1

)
= σ2

n+1

(
x̂

−1

)
,

and the first equation is our claim. �
A variant of total least squares is given if some elements of the matrix

A have no errors and therefore should remain unchanged. Let us consider
Ax ≈ b with A = [A1, A2] ∈ R

m×n where A1 ∈ R
m×p with p < n has

no error. The total least squares problem ‖E‖2F + ‖r‖22 −→ min subject to
(A+E)x = b+ r becomes

‖Δ‖2F −→ min subject to (C +Δ)z = 0,

with C = [A1, A2, b], Δ = [0,Δ2] and Δ2 = [E2, r]. Using the QR decompo-
sition of C, we can transform the constraint by pre-multiplying with Q�,

Q�(C +Δ)z =

(
R11 R12

0 R22

)
z +

(
0 Δ̃12

0 Δ̃22

)
z = 0, (6.82)

and R11 ∈ R
p×p is upper triangular. Now ‖Δ‖2F = ‖Q�Δ‖2F = ‖Δ̃12‖2F +

‖Δ̃22‖2F is minimized if we choose Δ̃12 = 0 and minimize ‖Δ̃22‖F . So the
algorithm for constrained total least squares is:

1. Compute C = [A1, A2, b] = QR and reduce the constraint to (6.82).

2. Compute v̂ the solution of the total least squares problem (R22 +
Δ̃22)v = 0.

352 LEAST SQUARES PROBLEMS

3. Solve R11u = −R12v̂ for u.

4. z =

(
u

v̂

)
∈ R

n+1 and x = −[z1, . . . , zn]
�/zn+1.

Algorithm 6.30. Constrained Total Least Squares

function [z,x]=ConstrainedTLS(C,p);

% CONSTRAINEDTLS computes constrained total least squares solution

% [z,x]=ConstrainedTLS(C,p); computes the constrained total least

% squares solution with C=[A_1 A_2 b], where A1=C(:,1:p) is without

% errors. One therefore solves [A_1 A_2]x ~b by modifying A2 and b

% such that [A_1 A_2 b]z=0 or [A_1 A_2] x=b

[m,n]=size(C);

[Q,R]=qr(C);

R11=R(1:p,1:p); R12=R(1:p,p+1:n);

R22=R(p+1:n,p+1:n);

[m1,n1]=size(R22);

[x,v]=TLS(R22(:,1:n1-1),R22(:,n1));

u=-R11\R12*v;

z=[u;v]; x=-z(1:n-1)/z(n);

Example 6.22. We want to fit a 3-dimensional hyperplane in R
4,

z = c+ n1x1 + n2x2 + n3x3.

We shall simulate measured points, compute the coefficients c, n1, n2, n3 and
compare the results for our least squares methods.

The columns of the matrix X� contain the coordinates of the “measure-
ments” for x1, x2 and x3. For simplicity we chose a grid of integer coordi-
nates,

X� =

⎛
⎝

1 1 1 1 2 2 2 2 3 3 3 3
1 1 2 2 1 1 2 2 1 1 2 2
1 2 1 2 1 2 1 2 1 2 1 2

⎞
⎠ .

We choose c = 3, n1 = −1, n2 = 2, n3 = 5, add a first column of ones to X
and compute the exact values

z =
(
1, X

)
⎛
⎜⎜⎝

c
n1

n2

n3

⎞
⎟⎟⎠ .

Then we add some random noise to the exact values and use the algorithms
for least squares, total least squares and constrained total least squares to
compute the coefficients from the data. With constrained total least squares

Special Linear Least Squares Problems with Quadratic Constraint 353

we compute 4 variants where we assume one to four columns of X to be
without errors.

clear, format compact

Xt=[1 1 1 1 2 2 2 2 3 3 3 3 % generate points

1 1 2 2 1 1 2 2 1 1 2 2

1 2 1 2 1 2 1 2 1 2 1 2];

X=Xt’; [m,n]=size(X);

cc=[3, -1, 2, 5]’; % z=c+n_1*x_1+n_2*x_2+n_3*x_3

X=[ones(m,1) X];

ze=X*cc; % exact values for z

z=ze+(rand(m,1)-0.5); % add noise

[ze,z]

c1=X\z; % Least squares fit

[c,N]=ConstrainedLSQ([X,z],4); % Fit plane using ConstrainedLSQ

c2=-[c N(1) N(2) N(3)]’/N(4);

[c3,v,At,bt]=TLS(X,z); % TLS

C=[X,z]; % Constrained TLS

[zz,c4]=ConstrainedTLS(C,1); % first column with no errors

[zz,c5]=ConstrainedTLS(C,2); % 2 columns with no errors

[zz,c6]=ConstrainedTLS(C,3); % 3 columns with no errors

[zz,c7]=ConstrainedTLS(C,4); % 4 columns with no errors

[c1 c2 c3 c4 c5 c6 c7]

With this program we obtained the values

exact with noise
ze z
9 9.2094

14 14.2547
11 10.7760
16 16.1797
8 8.1551

13 12.6626
10 9.6190
15 14.9984
7 7.4597

12 11.8404
9 9.0853

14 13.7238

and the computed coefficients are displayed in Table 6.2. Observe that the
least squares solution (column 1) and the total least squares solution with
all four columns without errors (last column) yield the same solution. Also
minimizing the geometric distance using ConstrainedLSQ (column 2) and
CTLS 1 (column 4) compute the same, which shows that these two methods
are mathematically equivalent.

354 LEAST SQUARES PROBLEMS

LSQ CLSQ TLS CTLS 1 CTLS 2 CTLS 3 CTLS 4

c 3.5358 3.4695 3.6021 3.4695 3.4612 3.4742 3.5358
n1 -1.0388 -1.0416 -1.0543 -1.0416 -1.0388 -1.0388 -1.0388
n2 1.8000 1.8129 1.7820 1.8129 1.8134 1.8000 1.8000
n3 4.8925 4.9275 4.8900 4.9275 4.9289 4.9336 4.8925

Table 6.2. Computed Coefficients

6.8 Nonlinear Least Squares Problems

Let us consider some (nonlinear) function f : Rn �→ R
m with n ≤ m. We

want to find a point x ∈ R
n such that f(x) ≈ 0, or written in components,

fi(x1, x2, . . . , xn) ≈ 0, i = 1, . . . ,m. (6.83)

Example 6.23. In Example 6.2 we have x = (a0, a1, b)
� ∈ R

3 and
f : R3 �→ R

m, where

fi(x) = yi − x1 − x2e
−x3ti ≈ 0, i = 1, . . . ,m.

Now by f(x) ≈ 0, we mean we should make the 2-norm of f as small as

possible:

‖f(x)‖22 =

m∑
i=1

fi(x)
2 −→ min . (6.84)

Just like for the linear least squares case, we associate to a given vector x
the residual vector r = f(x), whose 2-norm is the residual sum of squares
that we seek to minimize.

6.8.1 Notations and Definitions

In order to develop algorithms to solve Problem (6.84), we need to recall
some mathematical notations from calculus. Let f : Rn �→ R be a continuous
and differentiable function.

Definition 6.7. (Gradient) The gradient of f is the vector

grad f = ∇f =
∂f(x)

∂x
=

(
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)�
.

Definition 6.8. (Hessian) The Hessian of f is the n × n matrix

hess f = ∇2f =
∂2f(x)

∂x2
= H = (hij) , with hij =

∂2f(x)

∂xi∂xj
.

Note that the Hessian is a symmetric matrix (if the derivatives commute).

Nonlinear Least Squares Problems 355

level line

x1

x2

∇f(x)

Figure 6.9. Illustration of the gradient ∇f(x).

For n = 2, we can draw the function f as a set of level curves (see Figure
6.9). The gradient at a given point x is a vector that points in the direction
along which the function f increases most rapidly. It is also orthogonal to the
level curve, as one can see using the Taylor expansion seen earlier in (5.94):

f(x+ h) = f(x) + ∇f(x)�h+
1

2
h�∇2f(x)h+O(‖h‖32). (6.85)

Since the a level curve is by definition a curve along which the value of f
remains constant, if we choose the direction h to be along a level curve and
only move a short distance away from x, then we must have f(x + h) =
f(x) + O(‖h‖22). Thus, we deduce that ∇f(x)�h = 0, i.e., the gradient is
orthogonal to the level curve.

For a vector function f ∈ R
m, we expand each component and obtain

f1(x+ h) = f1(x) + ∇f1(x)
�h+O(‖h‖22),

...
...

...

fm(x+ h) = fm(x) + ∇fm(x)�h+O(‖h‖22),

or in matrix notation

f(x+ h) ≈ f(x) + J(x)h,

where we have introduced the m × n Jacobian matrix

J(x) =

⎛
⎜⎝

∇f�
1
...

∇f�
m

⎞
⎟⎠ =

(∇f1, . . . , ∇fm
)�

=

⎛
⎜⎝

∂f1
∂x1

. . . ∂f1
∂xn

...
...

...
∂fm
∂x1

. . . ∂fm
∂xn

⎞
⎟⎠ .

356 LEAST SQUARES PROBLEMS

Notice the special case that the Hessian of the scalar function f(x) is the
same as the Jacobian of ∇f(x). In this case, the Jacobian is a square n × n
matrix.

Let us now recall Newton’s method for solving a system of nonlinear
equations, which was presented in Chapter 5. Let f(x) : Rn → R

n; we are
looking for a solution of f(x) = 0. Expanding f at some approximation xk,
we obtain

f(x) = f(xk) + J(xk)h+O(‖h‖22), with h = x − xk.

Instead of solving f(x) = 0, we solve the linearized system

f(xk) + J(xk)h = 0

for the Newton correction h and obtain a (hopefully better) approximation

xk+1 = xk + h = xk − J(xk)
−1f(xk). (6.86)

Note that computationally we would not invert the Jacobian; we would in-
stead solve by Gaussian Elimination the linear system

J(xk)h = −f(xk)

for the correction h.

6.8.2 Newton’s Method

Given m nonlinear equations with n unknowns (n ≤ m), we want to solve
f(x) ≈ 0 in the least squares sense, that is, we want

Φ(x) =
1

2
‖f(x)‖22 −→ min . (6.87)

A necessary condition for minimizing Φ(x) is ∇Φ = 0. We express this
condition in terms of f :

∂Φ(x)

∂xi
=

m∑
l=1

fl(x)
∂fl
∂xi

, i = 1, . . . , n, (6.88)

or in matrix notation
∇Φ(x) = J(x)�f(x).

Thus we obtain as a necessary condition for minimizing Φ(x) a nonlinear
system of n equations in n unknowns:

J(x)�f(x) = 0. (6.89)

We can compute a solution of (6.89) using Newton’s method (6.86). To do
so, we need the Jacobian of ∇Φ(x), which is the Hessian of Φ(x). If xk is

Nonlinear Least Squares Problems 357

an approximation then we obtain the Newton correction by solving a linear
system:

∇2Φ(xk)h = −J(xk)
�f(xk).

Let us express the Hessian in terms of the function f . From (6.88), we
compute the second derivatives,

∂2Φ(x)

∂xi∂xj
=

m∑
l=1

∂fl
∂xj

∂fl
∂xi

+

m∑
l=1

fl(x)
∂2fl

∂xi∂xj
. (6.90)

Now ∂2fl/∂xi∂xj is the (i, j) element of the Hessian of fl(x). Furthermore

m∑
l=1

∂fl
∂xj

∂fl
∂xi

= J�
: jJ : i

is the scalar product of columns i and j of the Jacobian matrix. Therefore,
we obtain in matrix notation

∇2Φ(x) = J�J +

m∑
l=1

fl(x)∇2fl(x).

The Newton iteration for the nonlinear least squares problem f(x) ≈ 0
becomes

1. solve the linear system for the correction h

(
J(xk)

�J(xk) +

m∑
l=1

fl(xk)∇2fl(xk)

)
h = −J(xk)

�f(xk) (6.91)

2. iterate: xk+1 = xk + h.

Example 6.24. Let us return to Example 6.2,

fl(x) = x1 + x2e
−x3tl − yl.

The gradient and the Hessian are readily computed using Maple:

with(LinearAlgebra):

with(VectorCalculus):

BasisFormat(false):

f:=x1+x2*exp(-x3*t)-y;

Gradient(f,[x1,x2,x3]);

Hessian(f,[x1,x2,x3]);

We obtain

∇fl =
(

1 e−x3tl −x2tle
−x3tl

)�

358 LEAST SQUARES PROBLEMS

and

∇2fl =

⎛
⎝

0 0 0

0 0 −tle
−x3tl

0 −tle
−x3tl x2t

2
l e

−x3tl

⎞
⎠

We can now write a program for the solution in Matlab:

Algorithm 6.31.
Newton Method for Nonlinear Least Squares

function [x,fv]=NewtonLSQ(x,xi,eta)

% NEWTONLSQ Curve fiting with Newton’s method

% [x,fv]=NewtonLSQ(x,xi,eta) fits the function f(t)=x1+x2*exp(-x3*t)

% to given points (xi,eta). x is the initial guess and is overwritten

% with fitted parameters x1,x2 and x3. fv contains norm(f) for

% each iteration

h=x; fv=[];

while norm(h)>100*eps*norm(x)

ee=exp(-x(3)*xi);

tee=xi.*ee;

J=[ones(size(xi)),ee,-x(2)*tee]; % Jacobian

f=x(1)+x(2)*ee-eta; % residual

s1=f’*tee; s2=x(2)*f’*(xi.*tee);

A=J’*J+[0 0 0; 0 0 -s1; 0 -s1 s2]; % Hessian of Phi

h=-A\(J’*f);

x=x+h;

xh=[x,h]

res=norm(f)

fv=[fv norm(f)];

end

In order to test the program we generate a test example:

format compact, format long

a0=1; a1=2; b=0.15;

xi=[1:0.3:7]’; etae=a0+a1*exp(-b*xi); % compute exact values

rand(’seed’,0); % perturb to simulate

% measurements

eta=etae+0.1*(rand(size(etae))-0.5);

[x1,fv1]= NewtonLSQ([1.8 1.8 0.1]’,xi,eta); % first example

plot([1:14],fv1(1:14),’-’)

pause % second example using a

[x2,fv2]= NewtonLSQ([1.5 1.5 0.1]’,xi,eta); % different initial guess

plot([1:14], fv1(1:14),’-’,[1:14], fv2(1:14),’:’)

The results are very interesting: the iterations converge to different so-
lutions. Because we print intermediate results (the matrix xh, showing the
current solution and the correction) we can observe quadratic convergence

Nonlinear Least Squares Problems 359

in both cases. In the first case with the starting values [1.8, 1.8, 0.1] we
obtain the parameters x1 = [2.1366, 0.0000, 0.0000], which means that the
fitted function is the constant f(t) = 2.1366. In the second case we obtain
x2 = [1.1481, 1.8623, 0.1702], thus f(t) = 1.1481 + 1.8623e−0.1702 t, a much
better fit. Figure 6.10 shows the residual sum of squares for both cases. We
see that in the first case (solid line) the iteration is trapped in a local mini-
mum! After 6 iteration steps both sequences have reduced the residual sum of
squares to about the final value, however, the first sequence does not converge
there but moves away to a local minimum with a higher value of the residual
sum of squares.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Residual Sum of Squares

Iteration Steps

Figure 6.10. Residual sum of squares

There is another derivation of Newton’s method which gives a different
interpretation of the algorithm. Consider approximating Φ at a point xk near
the minimum with a quadratic form Q(h) with h = x − xk by expanding in
a Taylor series :

Φ(x) =
1

2
‖f(x)‖22 ≈ Φ(xk) + ∇Φ(xk)

�h+
1

2
h�∇2Φ(xk)h =: Q(h).

Then instead of minimizing Φ we minimize the quadratic form Q:

∇Q(h) = 0 ⇐⇒ ∇2Φ(xk)h+ ∇Φ(xk) = 0.

But this is again Newton’s method. Thus, we have shown that applying
Newton’s method to the (nonlinear) equations ∇Φ(x) = 0 is equivalent to
approximating Φ locally by a quadratic form Q and computing its minimum.

360 LEAST SQUARES PROBLEMS

6.8.3 Gauss-Newton Method

The approximation of Φ by a quadratic form,

Φ(xk + h) ≈ Φ(xk) + ∇Φ(xk)
�h+

1

2
h�∇2Φ(xk)h,

can be written in terms of f ,

Φ(xk + h) ≈ 1

2
f�f + f�Jh+

1

2
h�J�Jh+

1

2
h�

m∑
l=1

fl(xk)∇2fl(xk)h.

Rearranging yields

Φ(xk + h) ≈ 1

2
‖J(xk)h+ f(xk)‖22 +

1

2
h�

m∑
l=1

fl(xk)∇2fl(xk)h. (6.92)

The quadratic form approximating Φ consists therefore of two parts: the first
involves only the Jacobian and the second the Hessians of the functions fl. If
we approximate Φ only by the first part Φ(x) ≈ 1

2
‖J(xk)h + f(xk)‖22, then

the minimum of this quadratic form can be obtained by solving a linear least
squares problem, namely

J(xk)h+ f(xk) ≈ 0. (6.93)

Computing the correction h by solving (6.93) is one step of the Gauss-Newton
method. Another derivation of the Gauss-Newton method is obtained by
linearizing f (x),

f(x) ≈ f(xk) + J(xk)h ≈ 0.

Summarizing, we obtain the algorithm Gauss-Newton for solving f(x) ≈ 0:

1. Compute the Jacobian of f and solve the linear least squares problem
for h

J(xk)h ≈ −f(xk).

2. Iterate xk+1 = xk + h.

Convergence is in general quadratic for Newton’s method and only linear
for Gauss-Newton. However, as we saw in Example 6.24, often the global
behavior of the method is more important than local quadratic convergence.
We will therefore consider in the next section a method that has been devised
to prevent Newton’s method from taking excessively large steps. The goal is
to avoid convergence situations as shown in Example 6.24 where the residual
sum of squares increases after step six.

Nonlinear Least Squares Problems 361

6.8.4 Levenberg-Marquardt Algorithm

Definition 6.9. (Descent Direction) The vector v is called a descent
direction of Φ(x) at the point x if

∇Φ(x)�v < 0.

Let us explain this definition for n = 2: the gradient points into the
direction of largest increase of Φ(x). If the scalar product of the gradient
with a direction vector v is negative, then the angle α between the two
vectors must be larger than 90◦. Thus, v must point downhill, as shown in
Figure 6.11. An algebraic explanation is based on the Taylor expansion,

Figure 6.11. Illustration of a descent direction v

Φ(x+ λv) = Φ(x) + ∇Φ(x)�v︸ ︷︷ ︸
<0

λ+O(λ2),

where we assumed that ‖v‖2 = 1. For sufficiently small λ > 0, we have
Φ(x+ λv) < Φ(x).

Let us now discuss whether the Newton and the Gauss-Newton corrections
use descent directions:

1. Newton correction: ∇2Φ(xk)h = −∇Φ(xk). If ∇2Φ(xk) is nonsingular,
i.e. the linear system has a solution, then

∇Φ(xk)
�h = −∇Φ(xk)

�(∇2Φ(xk))
−1∇Φ(xk).

The matrix ∇2Φ is symmetric. If in addition it is positive definite, then
the Newton correction is a descent direction.

Now the matrix ∇2Φ must be positive semidefinite in a neighborhood
of a local minimum of Φ, as one can see as follows: if x∗ is a local
minimum, then we must have

(a) Φ(x∗) ≤ Φ(x∗ + h) for all h
= 0 in a small neighborhood of x∗.

362 LEAST SQUARES PROBLEMS

(b) ∇Φ(x∗) = 0.

The Taylor expansion at x∗ gives

Φ(x∗ + h) = Φ(x∗) + ∇Φ(x∗)�h︸ ︷︷ ︸
=0

+
1

2
h�∇2Φ(x∗)h+O(‖h‖32).

Because Φ(x∗ + h) ≥ Φ(x∗), it follows that h�∇2Φ(x∗)h ≥ 0, which
means ∇2Φ(x) must be positive semidefinite in a neighborhood of x∗.
Thus we have obtained

Theorem 6.21. If ∇2Φ(xk) is nonsingular for xk in a neighborhood of
a local minimum x∗ then the Newton correction is a descent direction.

2. Gauss-Newton correction: J(xk)
�J(xk)h=−J(xk)

�f(xk)=−∇Φ(xk).
If J(xk)

�J(xk) is nonsingular, then this matrix and its inverse are
positive definite and therefore

∇Φ(xk)
�h = −∇Φ(xk)

� (J�J
)−1 ∇Φ(xk) (6.94)

=

{
< 0 if ∇Φ(xk)
= 0

= 0 if ∇Φ(xk) = 0
(6.95)

If ∇Φ(xk) = 0, then we have reached a solution. To summarize, we
have the result:

Theorem 6.22. If J(xk) is not rank deficient in a neighborhood of
a local minimum x∗, then the Gauss-Newton correction is a descent
direction.

Locally the best descent direction is of course the negative gradient,

h = −∇Φ(xk) = −J(xk)
�f(xk).

However, often the locally optimal minimizing direction may not be the best
for global optimization. The principal idea of Levenberg-Marquardt is a
compromise between the negative gradient and the Gauss-Newton correction,

(J(xk)
�J(xk) + λI)h = −J(xk)

�f(xk). (6.96)

In (6.96), we have to choose a parameter λ. For λ = 0, we obtain the Gauss-
Newton correction, whereas for λ � 0, the correction is along the direction
of the negative gradient. There are several interpretations of the Levenberg-
Marquardt correction:

• Tikhonov-regularization: If the matrix J(xk)
�J(xk) is singular, then

for λ > 0 the matrix J(xk)
�J(xk) + λI is again invertible and the

correction can be computed.

Nonlinear Least Squares Problems 363

• Approximation of the Hessian: We can regard λI as an approximation
of

m∑
l=1

fl(xk)∇2fl(xk).

Depending on the application on hand, one may choose to use a matrix
other than λI, such as λD with D a diagonal matrix.

• Limiting the norm of h: Consider the constrained minimization prob-
lem

‖Jh+ f‖22 −→ min subject to ‖h‖22 ≤ α2. (6.97)

The unconstrained problem has a unique minimizer h0 given by the
Gauss-Newton correction. We now have two cases:

1. if ‖h0‖2 ≤ α, then h0 also solves the constrained problem.

2. if ‖h0‖2 > α, then the solution of the constrained problem must
lie on the boundary, since there are no local minima inside the
disk ‖h‖2 ≤ α.

In the second case, the constrained problem can be solved using La-
grange multipliers as follows: consider the Lagrangian

L(h, λ) =
1

2
‖Jh+ f‖22 + λ(‖h‖22 − α2).

Setting the partial derivatives to zero, we obtain the equations

(J(xk)
�J(xk) + λI)h = −J(xk)

�f (6.98)

‖h‖22 = α2. (6.99)

Solving (6.98) gives h = −R(λ)f , where

R(λ) = (J(xk)
�J(xk) + λI)−1J(xk)

�.

To calculate the value of α corresponding to this solution, let J(xk) =
UΣV� be the SVD of J(xk). Then

R(λ) = V (Σ�Σ+ λI)−1Σ�U�,

so R(λ) has singular values

μi =
σi(J)

σi(J)2 + λ
,

and

α2 = ‖h‖22 =
n∑

i=1

μ2
i f̃

2
i ,

364 LEAST SQUARES PROBLEMS

where f̃ = U�f . Thus, we see that α = α(λ) is a strictly decreasing
function of λ, with α(0) = ‖h0‖2 and limλ→∞ α(λ) = 0. This means
for every λ > 0, there is an α(λ) < ‖h0‖2 such that the Levenberg-
Marquardt step h solves the constrained minimization problem (6.97)
with α = α(λ). In other words, the Levenberg-Marquardt method
solves the minimization problem over a reduced set of admissible so-
lutions, i.e., those that satisfy ‖h‖2 ≤ α(λ), effectively limiting the
correction step to within a region near xk; this is known as a trust
region in optimization, see Subsection 12.3.2.

Choosing a good λ is not easy. Besides trial and error, there are various
propositions in the literature, such as the one by Brown and Dennis:

λ = c‖f(xk)‖2, c =

⎧⎪⎨
⎪⎩

10 for 10 ≤ ‖f(xk)‖2
1 for 1 ≤ ‖f(xk)‖2 < 10

0.01 for ‖f(xk)‖2 < 1

The computation of the Levenberg-Marquardt correction (6.96) is equivalent
to solving the linear least squares problem

(
J√
λI

)
h ≈

(−f

0

)
, (6.100)

which is the numerically preferred way.
In Matlab there exists the function nlinfit for nonlinear least squares

data fitting by the Gauss-Newton method (in newer releases like R2011a
it is in the Statistics Toolbox). The Jacobian is approximated by a finite
difference and augmented by 0.01 I (i.e. λ = 10−4). Thus, the function
in fact uses Levenberg-Marquardt-adjusted Gauss-Newton steps, which are
computed using (6.100). The step is only accepted if the new residual norm is

smaller than the previous one. Otherwise, the step is reduced by h = h/
√
10

until the condition is met. The function nlinfit therefore does not get
trapped for Example 6.24 in the local minimum and is able also to deliver
the correct answer for the starting values [1.8, 1.8, 0.1]. With the function

>> f=@(beta,x) beta(1)+beta(2)*exp(-beta(3)*x);

we obtain the same parameters as before with the Newton method:

>> beta=nlinfit(xi,eta,f,[1.8 1.8 0.1])

beta =

1.148055903080751 1.862263964120192 0.170154093666413

6.9 Least Squares Fit with Piecewise Functions

We end the chapter with a good example of a constrained least squares prob-
lem with nonlinear constraints, which is solved in [45]. Consider the data set
given in Table 6.3 and displayed in Figure 6.12. The problem is to find piece-
wise functions with free knots that best fit the data set. The choice of the

Least Squares Fit with Piecewise Functions 365

knots is in fact part of the optimization problem, since the location of these
knots may have a physical interpretation, such as phase changes. The con-
straint is that global function should be continuous in the knots that separate
them; optionally, we may also require that the derivative be continuous.

0 1 2 3 4 5 6 7 8 9
1.0815

1.082

1.0825

1.083

1.0835

1.084

Figure 6.12. Data Set

Table 6.3. Given Data Set

x y x y x y

0.288175 1.08181 4.562725 1.08204 6.794990 1.08240
0.525650 1.08174 4.800200 1.08199 6.889980 1.08235
1.000600 1.08190 5.037675 1.08195 6.984970 1.08245
1.475550 1.08193 5.275150 1.08188 7.079960 1.08245
1.713025 1.08191 5.512625 1.08193 7.174950 1.08245
1.950500 1.08199 5.750100 1.08193 7.269940 1.08251
2.187975 1.08199 5.845090 1.08197 7.364930 1.08263
2.425450 1.08201 5.940080 1.08202 7.459920 1.08282
2.662925 1.08198 6.035070 1.08203 7.554910 1.08316
2.900400 1.08205 6.130060 1.08203 7.649900 1.08340
3.137875 1.08200 6.225050 1.08207 7.744890 1.08355
3.375350 1.08202 6.320040 1.08206 7.839880 1.08361
3.612825 1.08197 6.415030 1.08214 7.934870 1.08373
3.850300 1.08201 6.510020 1.08216 8.029860 1.08376
4.087775 1.08198 6.605010 1.08229 8.219840 1.08390
4.325250 1.08203 6.700000 1.08236 8.409820 1.08391

Since the nature of the piecewise functions is not known, we will use
polynomials of low degrees. The special case where all the polynomials have
the same degree corresponds to a well-known problem called least squares
approximation by splines with free knots. Many authors have worked on this
problem; a good survey is given for example in [123].

366 LEAST SQUARES PROBLEMS

Assume we are given some data points

x x1, x2 . . . xN

y y1, y2, . . . yN
. (6.101)

where the x-coordinates are ordered: a = x1 < x2 < · · · < xN = b. We want
to partition this set by two knots ξ and η such that

x1 < · · · < xn1
< ξ ≤ xn1+1 < · · · < xn2

< η ≤ xn2+1 < · · · < xN .

These two knots define three intervals: (x1, ξ), (ξ, η) and (η, xN). We will fit
in the least squares sense three given functions f , g and h in each interval to
the data points,

f(a, xi) ≈ yfi i = 1, . . . , n1,

g(b, xi) ≈ ygi i = n1 + 1, . . . , n2,

h(c, xi) ≈ yhi i = n2 + 1, . . . , N.

(6.102)

The superscript in the y-coordinates indicates that we have also partitioned
the data points accordingly,

x =

⎛
⎝

xf

xg

xh

⎞
⎠ , y =

⎛
⎝

yf

yg

yh

⎞
⎠ .

The parameters of the functions f , g and h to be determined by the least
squares fit are denoted by a, b and c.

To enforce continuity of the global piecewise function, we have to impose
the constraints

f(a, ξ) − g(b, ξ) = 0,
g(b, η) − h(c, η) = 0.

(6.103)

If the first derivative is also required to be continuous at the knots, then the
additional constraints

f ′(a, ξ) − g′(b, ξ) = 0,
g′(b, η) − h′(c, η) = 0.

(6.104)

must also be considered.
Let us introduce the vector functions

f(a) =

⎛
⎜⎝

f(a, x1)
...

f(a, xn1
)

⎞
⎟⎠ , g(b) =

⎛
⎜⎝
g(b, xn1+1)

...
g(b, xn2

)

⎞
⎟⎠ , h(c) =

⎛
⎜⎝
h(c, xn2+1)

...
h(c, xN)

⎞
⎟⎠ ,

and the vector of unknowns

z =

⎛
⎜⎜⎜⎜⎝

a
b
c
ξ
η

⎞
⎟⎟⎟⎟⎠

, F (z) =

⎛
⎝

f(a)
g(b)
h(c)

⎞
⎠ and G(z) =

(
f(a, ξ) − g(b, ξ)
g(b, η) − h(c, η)

)
.

Least Squares Fit with Piecewise Functions 367

Then the problem of fitting a continuous global function becomes a con-
strained nonlinear least squares problem

min
z

‖F (z) − y‖2 subject to G(z) = 0. (6.105)

If we also require continuity of the derivative, then we have to replace G in
(6.105) by

G(z) =

⎛
⎜⎜⎝

f(a, ξ) − g(b, ξ)
g(b, η) − h(c, η)
f ′(a, ξ) − g′(b, ξ)
g′(b, η) − h′(c, η)

⎞
⎟⎟⎠ .

We will solve Problem (6.105) by an alternating minimization procedure:
in each iteration step, we will use the current values of ξ and η to allocate the
points to the functions f , g and h. Then we will apply the Gauss-Newton
method to solve the nonlinear least squares problem. For this, we linearize
the functions F and G to obtain a linear least squares problem with linear
constraints, from which we calculate the correction Δz. Assume z̄ is an
approximation of a solution of Problem (6.105). If we expand

F (z̄ +Δz) ≈ F (z̄) + JFΔz,

and do the same for G(z), we can replace Problem (6.105) by a constrained
linear least squares problem with the Jacobian matrices for the correction

JF Δz ≈ y − F (z̄),
JG Δz = −G(z̄) .

(6.106)

We will use the LinearlyConstrainedLSQ Algorithm 6.21 for the solution.

6.9.1 Structure of the Linearized Problem

The linearly constrained least squares problem (6.106) is structured: the
Jacobian matrix of F is block diagonal and contains the Jacobin matrices of
the three functions f , g and h,

JF =

⎡
⎢⎣

Jf 0 0 0 0

0 Jg 0
...

...
0 0 Jh 0 0

⎤
⎥⎦ .

Since in our case the size of the matrix JF is small, we will not treat it
as a sparse matrix. The following function DirectSum comes in handy to
construct such block-diagonal matrices :

Algorithm 6.32. Generating Direct Sums

function A=DirectSum(A,varargin)

368 LEAST SQUARES PROBLEMS

% DIRECTSUM computes the direct sum of matrices

% A=DirectSum(A1,A2,...,An) computes the direct sum of matrices of

% arbitrary size (Peter Arbenz, May 30, 1997)

for k=1:length(varargin)

[n,m]=size(A);

[o,p]=size(varargin{k});

A=[A zeros(n,p); zeros(o,m) varargin{k}];

end

For the continuity condition, the Jacobian of G is

JG =

[
∇f(a,ξ)� −∇g(b,ξ)� 0 f ′(a,ξ)−g′(b,ξ) 0

0 ∇g(b,η)� −∇h(c,η)� 0 g′(b,η)−h′(c,η)

]
.

Note that we denote with ∇f(a, ξ) the gradient of f with respect to the
parameters a, while f ′ denotes the derivative of f with respect to the inde-
pendent variable x.

If also the derivatives should be continuous then

JG =

⎡
⎢⎣

∇f(a,ξ)� −∇g(b,ξ)� 0 f ′(a,ξ)−g′(b,ξ) 0

0 ∇g(b,η)� −∇h(c,η)� 0 g′(b,η)−h′(c,η)
∇f ′(a,ξ)� −∇g′(b,ξ)� 0 f ′′(a,ξ)−g′′(b,ξ) 0

0 ∇g′(b,η)� −∇h′(c,η)� 0 g′′(b,η)−h′′(c,η)

⎤
⎥⎦ .

(6.107)

6.9.2 Piecewise Polynomials

For polynomials, the Jacobians become Vandermonde matrices if we use the
standard representation. If f(a, x) = a1x

p + a2x
p−1 + · · ·+ apx+ ap+1, then

Jf =

⎛
⎜⎝

xp
1 xp−1

1 . . . x1 1
...

...
...

...
...

xp
n1

xp−1
n1

. . . xn1
1

⎞
⎟⎠ .

If f , g and h are polynomials of degree p, q and r, then for the continuity of
the global function, we need

JG =

(
ξp ··· ξ 1 −ξq ··· −ξ −1 0 ··· 0 0 f ′(a,ξ)−g′(b,ξ) 0
0 ··· 0 0 ηq ··· η 1 −ηr ··· −η −1 0 g′(b,η)−h′(c,η)

)
.

For the continuity of the derivative we have

f ′(a, ξ) = pa1ξ
p−1 + (p − 1)a2ξ

p−2 + · · · + ap,

and thus we use in (6.107) the expression

∇f ′(a, ξ)� = [pξp−1, (p − 1)ξp−2, . . . , 2ξ, 1, 0].

Least Squares Fit with Piecewise Functions 369

For the following main program we need to first read the data, stored in
a file xy.m. This file contains only the definition of the matrix XY:

XY = [0.288175 1.08181

0.525650 1.08174

... ...

8.219840 1.08390

8.409820 1.08391]

For the sake of brevity, we did not print all the data of Table 6.3, but we
will print intermediate results and also plot the approximations. To plot the
given points, we will use the function PlotPoints:

Algorithm 6.33. Plot the Points

function ax=PlotPoints(X)

% PLOTPOINTS plots the points X and returns the axis handle

clf; hold off;

plot(X(:,1),X(:,2),’o’);

ax=axis; hold on;

During the iterations, the breakpoints ξ and η will change, so we need to
repartition the data after each iteration. This is done with the function
Partition:

Algorithm 6.34. Partition of the Data

function [n1,n2,xf,yf,xg,yg,xh,yh]=Partition(xi,eta,XY,N)

% PARTITION Partitions the data XY into three data sets

% [n1,n2,xf,yf,xg,yg,xh,yh]=Partition(xi,eta,XY,N) partition the

% date set in XY into three subsets according to xi and eta.

n1=sum(XY(:,1)<xi); n2=sum(XY(:,1)<eta);

xf=XY(1:n1,1); yf=XY(1:n1,2);

xg=XY(n1+1:n2,1); yg=XY(n1+1:n2,2);

xh=XY(n2+1:N,1); yh=XY(n2+1:N,2);

The Jacobian matrices are Vandermonde matrices and are generated using
the function van:

Algorithm 6.35. Generate Jacobian

function J=van(p,x)

% VAN construct a Vandermonde matrix

% J=van(p,x) computes p+1 columns of the Vandermonde matrix of x

n=length(x); J=ones(n,1);

for j=1:p

J=[x.^j J];

end

370 LEAST SQUARES PROBLEMS

After each iteration, we will pause and plot the current approximation using
the function PlotFunctions:

Algorithm 6.36. Plot Functions

function PlotFunctions(xi,eta,a,b,c,ax);

% PLOTFUNCTIONS plots the three polynomials

xx=[0:0.1:xi]; plot(xx,polyval(a,xx),’r’), axis(ax)

xx=[xi:0.1:eta]; plot(xx,polyval(b,xx),’g’), axis(ax)

xx=[eta:0.1:9]; plot(xx,polyval(c,xx),’b’), axis(ax)

The initial approximations for coefficients of the polynomials are computed
using the Matlab function polyfit to fit each polynomial to the partitioned
data sets in the least squares sense. For the evaluation of a polynomial, we
use the Matlab function polyval. Finally, to compute the coefficients of
the derivative of a polynomial we use dpoly :

Algorithm 6.37. Derivative of a Polynomial

function DA=dpoly(n,A)

% DPOLY derivative of a polynomial

% DA=dpoly(n,A) computes the coefficients DA of the derivative of

% the polynomial of degree n given by the coefficients A.

DA=0;

for j=1:n, DA(j)=(n+1-j)*A(j); end

The following program main1 computes the Gauss-Newton approxima-
tions. Of course the iterations may or may not converge. Even when the
method converges, we cannot guarantee that the limit point is the global
minimumm, since the problem has many local minima.

The degrees of the polynomials can be chosen by changing the statements
for p, q and r. The variable derivative is used as a switch to decide whether
the derivative should also be continuous at the break points (derivative=1)
or not.

The iteration is stopped if no convergence has been reached after 40 iter-
ations. It is also stopped if the break points switch their order, i.e. if η < ξ.

Algorithm 6.38. Fitting Piecewise Polynomials

% Piecewise Polynomial Fit: main1.m

xy; N=max(size(XY)); % read data

ax=PlotPoints(XY) % plot given points

Least Squares Fit with Piecewise Functions 371

p=3; q=3; r=3; % choose degrees and

derivatives=1 % derivatives (1=continuos, 0=no)

xi0=6.4; eta0=8; % initialize break points

% xi < eta

xi=xi0; eta=eta0; % first partition of data

[n1,n2,xf,yf,xg,yg,xh,yh]=Partition(xi,eta,XY,N);

Jf=van(p,xf); Jg=van(q,xg); Jh=van(r,xh);

% initialize polynomial coef-

% ficients by individual least

% squares fit

a=polyfit(xf, yf,p); b=polyfit(xg,yg,q); c=polyfit(xh,yh,r);

% plot initial approximation

% functions

PlotFunctions(xi,eta,a,b,c, ax);

k=0; % count interations

dp=1; % initialize correction

while (norm(dp)>1e-5) & (k<40),

k= k+1;

JF=[DirectSum(Jf,Jg,Jh), zeros(N,2)];

gradfxi=van(p,xi); gradgxi=van(q,xi);

gradgeta=van(q,eta); gradheta=van(r,eta);

% coeffs of derivatives

da=dpoly(p,a); db=dpoly(q,b); dc=dpoly(r,c);

% constraints for continuity

JG=[gradfxi -gradgxi zeros(size(gradheta)) ...

polyval(da,xi)-polyval(db,xi) 0

zeros(size(gradfxi)) gradgeta -gradheta ...

0 polyval(db,eta)-polyval(dc,eta)]

if derivatives, % continuity of derivative

gradfsxi =[[p:-1:1].*van(p-1,xi),0];

gradgsxi=[[q:-1:1].*van(q-1,xi),0];

gradgseta=[[q:-1:1].*van(q-1,eta),0];

gradhseta=[[r:-1:1].*van(r-1,eta),0];

dda=dpoly(p-1,da); % coeffs of second derivative

ddb=dpoly(q-1,db);

ddc=dpoly(r-1,dc);

JG=[JG

gradfsxi -gradgsxi zeros(size(gradhseta))...

polyval(dda,xi)-polyval(ddb,xi) 0

zeros(size(gradfsxi)) gradgseta -gradhseta ...

0 polyval(ddb,eta)-polyval(ddc,eta)]

end

% Right hand side for lsq

z=[yf-polyval(a,xf);yg-polyval(b,xg);yh-polyval(c,xh)]

% Right hand side for constraints

mG=-[polyval(a,xi)-polyval(b,xi)

polyval(b,eta)-polyval(c,eta)]

if derivatives, % add constraints

372 LEAST SQUARES PROBLEMS

mG=-[-mG; polyval(da,xi)-polyval(db,xi)

polyval(db,eta)-polyval(dc,eta)]

end

% solve for corrections

dp=LinearlyConstrainedLSQ(JF,JG,z,mG);

a=a+dp(1:p+1)’; % update unknowns

b=b+dp(p+2:p+q+2)’; c=c+dp(p+q+3:p+q+r+3)’;

xi=xi+dp(p+q+r+4); eta=eta+dp(p+q+r+5);

if xi>eta, error(’xi > eta’); end

norm(dp) % print norm of correction

% plot current approximation

PlotFunctions(xi,eta,a,b,c, ax);

pause

% new partition of the data

[n1,n2,xf,yf,xg,yg,xh,yh]=Partition(xi,eta,XY,N);

Jf=van(p,xf); Jg=van(q,xg); Jh=van(r,xh);

end

% plot final result

ax=PlotPoints(XY); PlotFunctions(xi,eta,a,b,c, ax);

% compute residual and print

% results

rf=norm(polyval(a,xf)-XY(1:n1,2));

rg=norm(polyval(b,xg)-XY(n1+1:n2,2));

rh=norm(polyval(c,xh)-XY(n2+1:N,2));

rr=norm([rf, rg, rh]) % residuals

dpnorm=norm(dp) % norm of last correction

disp(’degrees of polynomials, derivative (yes=1), # of iterations’)

[p q r derivatives k]

disp(’breakpoints: initial, final’)

[xi0 eta0 xi eta]

6.9.3 Examples

Figure 6.13 shows an approximation by classical smoothing splines of degree
3 with free knots. Using ξ = 7.34 and η = 7.78 as initial approximations for
the breakpoints, after 9 Gauss-Newton iterations the norm of the correction
vector drops to 4.3180e−06 and the break points converge to ξ = 7.3157 and
η = 7.7275. The norm of the true residual for the three spline functions is
3.4965e−04.
However, the solution to which we converged may be only a local minimum
of the nonlinear least squares function. In fact, if we use other initial approx-
imations for the break points, we may obtain no convergence or convergence
to other solutions. Table 6.4 shows some results. There are three different so-
lutions with almost the same norm of the residual (3.4965e−04, 3.6819e−04
and 3.6499e−04). This shows that the problem is ill-conditioned.

In the next example, we choose linear functions and ask only for continuity
(see Figure 6.14). For the initial values ξ = 7.34 and η = 7.78 we obtain the

Least Squares Fit with Piecewise Functions 373

Figure 6.13.

Classical Smoothing Splines
with Free Knots

0 1 2 3 4 5 6 7 8 9
1.0815

1.082

1.0825

1.083

1.0835

1.084

Figure 6.14.

Piecewise Linear Functions
with Free Knots

0 1 2 3 4 5 6 7 8 9
1.0815

1.082

1.0825

1.083

1.0835

1.084

Table 6.4.
Different Solutions for Different Initial Breakpoints for Smoothing Splines

initial appr. norm of corr. # of inter.
final breakp. norm of res.

7.34 7.78 4.3180e-06 9
7.31570 7.72746 3.4965e-04

6.5 8 6.3398e-06 12
7.31570 7.72746 3.4965e-04

6.4 8 5.3655e-06 21
6.03633 6.98520 3.6819e-04

5 7 7.4487e-06 28
5.53910 7.04320 3.6499e-04

break points ξ = 7.1750 and η = 7.7623.

Again by choosing different initial values for the break points, the Gauss-
Newton method converges to different local minima (see Table 6.5). The ill
conditioning here is even more pronounced.

Next we choose different degrees p = 3, q = 1 and r = 2 and fit a continuous
global function, see Table 6.6. For the initial values ξ = 7.34 and η = 7.78 the
break points become ξ = 7.3552 and η = 7.6677 and we obtain in 4 iterations
Figure 6.15 with a residual norm of 3.5422e−04. However, for the initial
values ξ = 6.5 and η = 8 a better solution with break points 5.7587 and
7.3360 and a slightly reduced residual of 2.7396e-04 is obtained, see Figure
6.16. This example shows again how difficult it is to converge to a global
minimum.

Finally, we increase the degrees to p = 5, q = 3 and r = 2 and ask for the
continuity of the derivative as well, see Figure 6.17. Now the break points
are ξ = 7.3717 and η = 7.6494.

374 LEAST SQUARES PROBLEMS

Table 6.5. Solutions for Piecewise Linear Functions

initial appr. norm of corr. # of inter.
final breakp. norm of res.

7.34 7.78 7.8568e-14 4
7.17495 7.76231 7.6797e-04

3 6 2.4061e-13 6
1.97596 6.57421 8.1443e-04

5 7 4.5775e-13 7
6.12802 7.169537 6.7463e-04

Figure 6.15.

Polynomials with degrees p = 3,
q = 1 and r = 2

0 1 2 3 4 5 6 7 8 9
1.0815

1.082

1.0825

1.083

1.0835

1.084

Figure 6.16.

Polynomials with degrees p = 3,
q = 1 and r = 2, second solution

0 1 2 3 4 5 6 7 8 9
1.0815

1.082

1.0825

1.083

1.0835

1.084

Again other starting values for the break points e.g. ξ = 6 and η = 8 lead
to another solution, see Figure 6.18, with almost the same residual, see Table
6.7.

6.10 Problems

Problem 6.1. A person brings two packages to the post. One weighs 5 kg,
the other 2 kg. However, at the post office both weigh together 8 kg. Adjust
their weights using the least squares method.

Problem 6.2. Let the matrix A ∈ R
m×n with m > n and rank(A) = n.

Prove that the matrix A�A of the normal equations is positive definite.

Problem 6.3. Let the matrix A ∈ R
n×n be symmetric and positive

definite. Prove that the singular values of A are the same as its eigenvalues.
What is the relation between singular values and eigenvalues if A is symmetric
but not positive definite?

Problem 6.4. Let A,B ∈ R
m×n and let A = QBP� where Q and P are

Problems 375

Table 6.6. Solutions for p = 3, q = 1 and r = 2

initial appr. norm of corr. # of inter.
final breakp. norm of res.

7.34 7.78 3.6034e-06 4
7.3552 7.6677 3.5422e-04

6.5 8 1.4420e-08 8

5.7587 7.3360 2.7396e-04

Figure 6.17.

Polynomials with degrees p = 5,
q = 3 and r = 2

0 1 2 3 4 5 6 7 8 9
1.0815

1.082

1.0825

1.083

1.0835

1.084

Figure 6.18.

Polynomials with degrees p = 5,
q = 3 and r = 2, second solution

0 1 2 3 4 5 6 7 8 9
1.0815

1.082

1.0825

1.083

1.0835

1.084

orthogonal matrices. Prove that

‖A‖F = ‖B‖F .

Problem 6.5. Let Q ∈ R
m×n with m > n be an orthogonal matrix.

Consider the matrix P = QQ�

Is P an orthogonal projector? If yes where does it projects? Justify your
answer.

Table 6.7. Solutions for p = 5, q = 3 and r = 2, (continuous derivatives)

initial appr. norm of corr. # of inter.
final breakp. norm of res.

7.34 7.78 5.1228e-09 12
7.3717 7.6494 2.8155e-04

6 8 8.9962e-06 15
6.7139 7.4377 2.5334e-04

376 LEAST SQUARES PROBLEMS

Problem 6.6. Consider the plane in R
3 given by the equation

x1 + x2 + x3 = 0.

Construct a matrix P which projects a given point on this plane. Hint: con-
sider first the orthogonal complement of the plane.

Problem 6.7. Given the matrix

A =

⎛
⎜⎜⎝
1 2 6
1 3 7
1 4 8
1 5 9

⎞
⎟⎟⎠

Compute a Householder matrix P such that

PA =

⎛
⎜⎜⎝
σ x x
0 x x
0 x x
0 x x

⎞
⎟⎟⎠

It is sufficient to determine σ and the Householder-vector u.

Problem 6.8. Consider the plane in R
3 given by the equation

2x1 − 2x3 = 0.

Construct a matrix P ∈ R
3×3 which reflects a given point at this plane (com-

putes the mirror image).

Problem 6.9. Let the measured points (tk, yk) for i = k, . . . ,m be given.
We want to fit the function f(a, b) = aebt such that

m∑
k=1

(
aebtk − yk

)2 −→ min

using the Gauss-Newton method. Write up the system of equations for the
first iteration step.

Problem 6.10. Let b = (b1, b2, b3, b4) be the measured lengths of the sides
of a rectangle. Correct the measurements using least squares and determine
side lengths x such that ‖x − b‖22 −→ min subject to the condition that two
corresponding sides have the same length i.e. x1 = x3 and x2 = x4. Compute
the corrected values.

Problem 6.11. Let A,B ∈ R
m×n and let A = QBP� where Q and P

are orthogonal matrices. Prove that

‖A‖2 = ‖B‖2.

Problems 377

Problem 6.12. Consider the matrix

A =

⎛
⎝
1
2
3

⎞
⎠

1. Compute and describe geometrically the 4 fundamental subspaces

2. Compute the 4 projectors on the fundamental subspaces.

Problem 6.13. Consider the constrained least squares problem with given
A ∈ R

m×n and b ∈ R
m and m > n:

min ‖b − y‖22 subject to y = Ax.

1. Interpret the problem geometrically.

2. Assume A has full rank, give an explicit expression for the solution y.

3. How can you compute y using the function ModifiedGramSchmidt (Al-
gorithm 6.9)?

Problem 6.14. A student wants to update the QR decomposition by
removing a column using the function UpdateQR. He has defined ek to be the
k-th unit vector.

v=-A(:,k);

[Qs,Rs]=UpdateQR(Q,R,v,ek)

What is he effectively computing?

Problem 6.15. Minimizing the length of the residual vector r = b−Ax
is equivalent of minimizing the quadratic form

Q(x) = r�r = (b − Ax)�(b − Ax) = b�b − 2x�A�b+ x�A�Ax.

By differentiating with respect to x and equating to zero show that the result-
ing equations are the normal equations.

Problem 6.16. Savitzky-Golay Filter. Noisy data often have to be fil-
tered. One way to do this is to compute a least squares fit of a polynomial
P (x) of degree d through 2N + 1 points left and right of the middle point xi

and to replace the function value yi by the smoothed value P (xi).
The smoothed value is an average of the neighboring points and thus the

process is called a moving average (see Chapter 9 in [45]).
If the abscissas xi are equidistant then the average is the same for all

points and depends only on the degree of the polynomial and the number of
points used for the average.

378 LEAST SQUARES PROBLEMS

We consider therefore the data

x −N · · · −1 0 1 · · · N
y y−N · · · y−1 y0 y1 · · · yN

We want to fit a polynomial

P (x) = bdx
d + bd−1x

d−1 + · · · + b1x+ b0

to this data. The coefficients bi are obtained as solution of

P (i) ≈ yi, for i = −N, . . . ,N

which is a linear least squares problem Ab ≈ y. The smoothed value is
P (0) = b0. Since b = A+y we obtain

b0 = e�p+1A
+y = c�y

Write a Maple script to compute the coefficient vector c.

Hint: in Maple’s CurveFitting package there is a function
LeastSquares which is useful.

Problem 6.17. A triangle has been measured, the measurements are as
follows:

x1 = α x2 = β x3 = γ x4 = a x5 = b x6 = c
67◦30′ 52◦ 60◦ 172m 146m 165m

The measurements x have errors. We would like to correct them so that the
new values x̃ = x + h are consistent quantities of a triangle. They have to
satisfy:

Sum of angles: x̃1 + x̃2 + x̃3 = 180◦

Sine theorem: x̃4 sin x̃2 − x̃5 sin x̃1 = 0
x̃5 sin x̃3 − x̃6 sin x̃2 = 0

(6.108)

Solve the constrained least squares problem ‖h‖2 −→ min subject to the
constraints (6.108). Replace the nonlinear constraints f(x̃) = 0 by the lin-
earized equations f(x)+Jh = 0 where J is the Jacobian. Solve the linearized
problem using e.g. NullSpaceMethod. Iterate the process if necessary. Hint:
Don’t forget to work in radians!

Check that for the new values also e.g. the cosine-theorem c2 = a2 + b2 −
2ab cos(γ) holds.

You will notice that the corrections will be made mainly to the angles
and much less to the lengths of the sides of the triangle. This is because
the measurements have not the same absolute errors. While the error in last
digit of the sides is about 1, the errors in radians of the angles are about 0.01.

Problems 379

Repeat your computation by taking in account with appropriate weighting the
difference in measurement errors. Minimize not simply ‖h‖2 but

∥∥∥∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎜⎜⎜⎝

100h1

100h2

100h3

h4

h5

h6

⎞
⎟⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥
2

Problem 6.18. Prove that the following compact algorithm solves the
linear least squares problem Ax ≈ b.

1. Form the augmented matrix

Ā = [A, b] ∈ R
m×n+1.

2. Compute the augmented normal equation matrix and decompose it using
the Cholesky decomposition

Ā�Ā = R̄�R̄.

3. Partition

R̄ =

(
R y
0 ρ

)
. (6.109)

4. The least squares solution x̃ is obtained by solving Rx = y with back-
substitution.

5. The residual is ‖r‖2 = ‖b − Ax̃‖2 = ρ.

Problem 6.19. Suppose you are given the decomposition of the matrix
A = LU where L is a lower and U an upper triangular matrix. Thus you can
solve the system Ax = b in two steps

1. Solve Ly = b by forward substitution

2. Solve Ux = y by backward substitution.

Example

L =

⎛
⎜⎜⎜⎜⎝

1
9 1
1 5 1
9 10 5 1
6 10 8 10 1

⎞
⎟⎟⎟⎟⎠

, U =

⎛
⎜⎜⎜⎜⎝

8 1 2 1 7
3 10 4 0

10 9 8
8 9

7

⎞
⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎜⎝

15
138
39
211
209

⎞
⎟⎟⎟⎟⎠

380 LEAST SQUARES PROBLEMS

Write two Matlab functions y = ForwardSubstitution(L,b) and x =

BackSubstitution(U,y) so that they can be used to solve the linear system
LUx = b. Both functions can be programmed using either scalar-product-
operations or SAXPY-operations. A SAXPY is defined as a linear combina-
tion of two vectors:

s = αx+ y.

For modern processors the SAXPY variant is preferred, therefore program
these versions.

Problem 6.20. Fitting of circles. We are given the measured points
(ξi, ηi):

ξ 0.7 3.3 5.6 7.5 6.4 4.4 0.3 −1.1
η 4.0 4.7 4.0 1.3 −1.1 −3.0 −2.5 1.3

Find the center (z1, z2) and the radius r of a circle (x− z1)
2 +(y− z2)

2 = r2

that approximate the points as well as possible. Consider the two cases

1. Algebraic fit: Rearrange the equation of the circle as

2z1x+ 2z2y + r2 − z21 − z22 = x2 + y2. (6.110)

With c := r2 − z21 − z22 , we obtain with (6.110) for each measured point
a linear equation for the unknowns z1, z2 and c.

2. Geometric fit: Use the Gauss-Newton method to minimize the sum of
squares of the distances

di = |
√

(z1 − ξi)2 + (z2 − ηi)2 − r|.

Compute and plot in both cases the data points together with the circles.
As a second example do the same with the data set

ξ 1 2 5 7 9 3
η 7 6 8 7 5 7

Hint: A circle with center (c1, c2) and with radius r is best plotted using the
parametric representation:

x(t) = c1 + r cos t, y(t) = c2 + r sin t 0 ≤ t ≤ 2π.

Problem 6.21. The parametric form commonly used for the circle is
given by

x = z1 + r cosϕ

y = z2 + r sinϕ.

Problems 381

The distance di of a point Pi = (xi1, xi2) may be expressed by

d2i = min
ϕi

(xi1 − x(ϕi))
2 + (xi2 − y(ϕi))

2.

Now we want again compute a geometric fit, i.e. determine z1, z2 and r by
minimizing

m∑
i=1

d2i −→ min .

We can simultaneously minimize for z1, z2, r and {ϕi}i=1...m; i.e. find the
minimum of the quadratic function

Q(ϕ1, ϕ2, . . . , ϕm, z1, z2, r) =

m∑
i=1

(xi1 − x(ϕi))
2 + (xi2 − y(ϕi))

2.

This is equivalent to solving the nonlinear least squares problem

z1 + r cosϕi − xi1 ≈ 0
z2 + r sinϕi − xi2 ≈ 0

i = 1, 2, . . . ,m.

Solve this problem with the Gauss-Newton method. The Jacobian J is highly
structured. Taking in account the structure when solving Jh ≈ −f develop
an effective algorithm.

Problem 6.22. Write a Matlab programs to fit two orthogonal lines
by minimizing the distance of measured points to the line. Assume that two
different sets of points are given for the two lines involved.

Problem 6.23. The function

h(x) = 1 − 3

x

sinh x − sin x

cosh x − cosx

should be fitted to the following data:

x 0.100 0.800 1.500 2.200 2.900 3.600 4.300 5.000 5.700 6.400

y 0.049 0.051 0.153 0.368 0.485 0.615 0.712 0.717 0.799 0.790

Find the value of the parameter a such that h(axi) ≈ yi for i = 1, . . . , 10 in
the least squares sense.

Solve the problem using the Gauss-Newton and also the Newton method.
Compute the function and the derivatives using algorithmic differentiation
(see Section 8.3).

Problem 6.24. We are given the coordinates of the points (ξi, ηi), i =
1, . . . ,m in the plane. For a new point P = (x1, x2) the distances si = |Pi−P |
from the given points have been measured:

xi 16 65 85 53 16 25
yi 56 64 37 7 3 32
si 32 35 44 30 42 16

382 LEAST SQUARES PROBLEMS

Compute the coordinates of P by solving the nonlinear least squares problem.

Problem 6.25. Fit the function f(x) = k/(1 + be−ax) to the data

x 0 2 3 4 5 6 7 8 9 10 11 12 13 14

y .145 .19 .248 .29 .78 .78 1.16 1.4 1.94 2.3 2.5 2.8 3.12 3.32

using the Matlab function nlinfit. Plot the points and the fitted curve.

Problem 6.26. Determine the parameters a and b such that the function
f(x) = aebx fits the following data

x 30.0 64.5 74.5 86.7 94.5 98.9
y 4 18 29 51 73 90

Hint: If you fit log f(x) the problems becomes very easy!

Problem 6.27. The following program fits a polynomial of degree n = 5
to given points. The points are input with the mouse using the Matlab

function ginput. After each new point the coefficients are computed and the
polynomial is plotted. The program is inefficient because it does not update
the QR decomposition – the solution is fully recalculated for every new point.

format compact

clf

axis([0 10 0 10]) % plot window

hold

degr=5; % degree of polynomial

n=degr+1; % number of coefficients

h=degr:-1:0 % to generate matrix row

t=0:0.1:10; % to plot polynomial

[x,y]=ginput(1);

plot(x,y,’*r’) % generate first row

A= x.^h; b=y; k=1;

while 1 % stop with ctrl-w in plot window

[x,y]=ginput(1); % get new point

plot(x,y,’*r’)

k=k+1; % count points

A=[A; x.^h]; % generate new row

b=[b;y]; % and right hand side

if k>=n

a=A\b; % solve for degrew coefficients

a’ % display coefficients

end

if k>degr

p=polyval(a,t); % evaluate polynomial

plot(t,p) % and plot

end

end

Problems 383

1. Study the program and run a few examples with different degrees.

2. Replace the part between the comment signs so that the solution is up-
dates with Givens rotations or -reflections. Each time when a new point
is read the matrix R is updated with n Givens transformations. These
Givens transformations annihilate the matrix-elements of the new equa-
tion and by back-substitution we obtain the new coefficients of the poly-
nomial. Use the scalar product form for back-substitution.

Problem 6.28. Assume you have decomposed a large matrix A = QR
and afterward you discover that the element ajk is wrong. Use our update-
techniques to fix the QR decomposition.

Test your Algorithm for the small matrix A= gallery(5); A=A(:,1:3)

A =

⎛
⎜⎜⎜⎜⎝

−9 11 −21
70 −69 141

−575 575 −1149
3891 −3891 7782
1024 −1024 2048

⎞
⎟⎟⎟⎟⎠

Change the element a2,3 = 141 to a2,3 = 1414 and compute the new decom-
position.

Problem 6.29. Consider the augmented matrix Ā = [A, b]. Show that
the following “compact” algorithm solves the least squares problem Ax ≈ b
and is equivalent with the method of normal equations:

1. decomposeĀĀ� = L̄L̄� (Cholesky).

2. Set R = L(1:n,1:n), y = L(n+1,1:n)’ and ρ = L(n+1,n+1).

3. Solve Rx = y by back-substitution.

4. min ‖b − Ax‖2 = ρ.

Problem 6.30. Derivation of modified Gram-Schmidt via matrix decom-
position. Let A be a m × n matrix and consider the decomposition A = QR.
If we set L = RT we can view the factorization as an outer product expansion

A = QLT =

n∑
i=1

qil
T
i

where lTi = (0, . . . , 0, rii, . . . , rin) is the ith column vector of R. Observe that
the first i − 1 columns of the rank one matrix qil

T
i consist entirely of 0’s.

Define

A(k) = A −
k−1∑
i=1

qil
T
i =

n∑
i=k

qil
T
i k = 1, . . . , n+ 1. (6.111)

384 LEAST SQUARES PROBLEMS

Clearly the recursion holds

A(1) = A, A(k+1) = A(k) − qkl
�
k , An+1 = 0.

Assume now that k−1 columns of Q and k−1 rows of L are already computed.
Multiply the recursion from the right be the unit vector ek and from the left by
q�
k to get expressions for the k-th column of Q and the k-th row of L. Write

a Matlab-program to compute this way the QR decomposition.

Problem 6.31. Consider the matrix A which is constructed by

c=4.11;

m=13;

n=13;

condA_glob=c;

B=inv(pascal(m));

B=B(:,1:n);

[A,R]=qr(B,0);

C=inv(hilb(n));

[B,R]=qr(C,0);

A=A*diag([10.^(0:condA_glob/(n-1):condA_glob)])*B;

[m,n]=size(A);

Compute the QR decomposition

1. with classical Gram-Schmidt

2. with modified Gram-Schmidt

3. via Cholesky decomposition of A�A

4. with Matlab’s function qr

In each case, test the departure from orthogonality using norm(eye(13)-Q’*Q).
(This matrix was communicated by Alicja Smoktunowicz).

Problem 6.32. We are given the following data concerning the growth
of pigs. The weight of a pig has been measured over a period of 240 days.
The values are given in the following table:

t 0 10 20 30 40 50 60 70 80
y 1.64 2.68 5.81 7.45 9.98 12.51 15.34 19.07 23.24

t 90 100 110 120 130 140 150 160 170
y 28.90 35.60 42.90 51.39 61.07 69.71 79.54 88.03 95.18

t 180 190 200 210 220 230 240
y 100.42 105.01 108.07 111.87 115.12 118.01 120.67

The data suggest an exponential growth of the weight in a first phase followed
by an exponential decrease of the growth to a final limit weight (which is not
reached since the pigs are transformed to meat before that stage).

Problems 385

Thus it seems reasonable to approximate the data by two piecewise func-
tions

F (x) =

{
f(a, t) = a0 + a1 exp(a3t) t < ξ
g(b, t) = b0 + b1 exp(b3t) t > ξ

We expect that by a least squares fit we will obtain exponents a3 > 0 and
b3 < 0. The break point ξ is a free knot and the two functions should have
the same value and the same derivatives for t = ξ.

Use the theory developed in Section 6.9 to determine the parameters by
the Gauss-Newton method.

Depending on the initial values, you may have a hard time to converge to
a solution. Use the Levenberg-Marquardt correction to avoid large correction
steps.

http://www.springer.com/978-3-319-04324-1

