
Preface

We are conducting ever more complex computations
built upon the assumption that the underlying numer-
ical methods are mature and reliable.
When we bundle existing algorithms into libraries and
wrap them into packages to facilitate easy use, we create
de facto standards that make it easy to ignore numerical
analysis.

John Guckenheimer, president SIAM, in SIAM News,
June 1998: Numerical Computation in the Information
Age

When redrafting the book I was tempted to present the
algorithms in ALGOL, but decided that the difficulties
of providing procedures which were correct in every de-
tail were prohibitive at this stage.

James Wilkinson, The Algebraic Eigenvalue Problem, Ox-
ford University Press, 1988.

This book is an introduction to scientific computing, the mathematical mod-
eling in science and engineering and the study of how to exploit computers
in the solution of technical and scientific problems. It is based on mathe-
matics, numerical and symbolic/algebraic computations, parallel/distributed
processing and visualization. It is also a popular and growing area — many
new curricula in computational science and engineering have been, and con-
tinue to be, developed, leading to new academic degrees and even entire new
disciplines.

A prerequisite for this development is the ubiquitous presence of com-
puters, which are being used by virtually every student and scientist. While
traditional scientific work is based on developing theories and performing ex-
periments, the possibility to use computers at any time has created a third
way of increasing our knowledge, which is through modeling and simulation.
The use of simulation is further facilitated by the availability of sophisticated,
robust and easy-to-use software libraries. This has the obvious advantage
of shielding the user from the underlying numerics; however, this also has
the danger of leaving the user unaware of the limitations of the algorithms,
which can lead to incorrect results when used improperly. Moreover, some
algorithms can be fast for certain types of problems but highly inefficient for
others. Thus, it is important for the user to be able to make an informed
decision on which algorithms to use, based on the properties of the problem
to be solved. The goal of this book is to familiarize the reader with the basic



VIII

concepts of scientific computing and algorithms that form the workhorses
of many numerical libraries. In fact, we will also emphasize the effective
implementation of the algorithms discussed.

Numerical scientific computing has a long history; in fact, computers were
first built for this purpose. Konrad Zuse [154] built his first (mechanical)
computer in 1938 because he wanted to have a machine that would solve
systems of linear equations that arise, e.g., when a civil engineer designs
a bridge. At about the same time (and independently), Howard H. Aiken
wanted to build a machine that would solve systems of ordinary differential
equations [17].

The first high quality software libraries contained indeed numerical algo-
rithms. They were produced in an international effort in the programming
language ALGOL 60 [111], and are described in the handbook “Numerical
Algebra” [148]. These fundamental procedures for solving linear equations
and eigenvalue problems were developed further, rewritten in FORTRAN,
and became the LINPACK [26] and EISPACK [47] libraries. They are
still in use and available at www.netlib.org from Netlib. In order to help
students to use this software, Cleve Moler created around 1980 a friendly in-
terface to those subroutines, which he called Matlab (Matrix Laboratory).
Matlab was so successful that a company was founded: MathWorks. Today,
Matlab is “the language of technical computing”, a very powerful tool in
scientific computing.

Parallel to the development of numerical libraries, there were also efforts
to do exact and algebraic computations. The first computer algebra systems
were created some 50 years ago: At ETH, Max Engeli created Symbal, and
at MIT, Joel Moses Macsyma. Macsyma is the oldest system that is still
available. However, computer algebra computations require much more com-
puter resources than numerical calculations. Therefore, only when computers
became more powerful did these systems flourish. Today the market leaders
are Mathematica and Maple.

Often, a problem may be solved analytically (“exactly”) by a computer
algebra system. In general, however, analytical solutions do not exist, and
numerical approximations or other special techniques must be used instead.
Moreover, computer Algebra is a very powerful tool for deriving numerical
algorithms; we use Maple for this purpose in several chapters of this book.
Thus, computer algebra systems and numerical libraries are complementary
tools: working with both is essential in scientific computing. We have chosen
Matlab and Maple as basic tools for this book. Nonetheless, we are aware
that the difference between pure computer algebra systems and numerical
Matlab-like systems is disappearing, and the two may merge and become
indistinguishable by the user in the near future.

www.netlib.org


IX

How to use this book

Prerequisites for understanding this book are courses in calculus and linear
algebra. The content of this book is too much for a typical one semester
course in scientific computing. However, the instructor can choose those sec-
tions that he wishes to teach and that fit his schedule. For example, for
an introductory course in scientific computing, one can very well use the
least squares chapter and teach only one of the methods for computing the
QR decomposition. However, for an advanced course focused solely on least
squares methods, one may also wish to consider the singular value decompo-
sition (SVD) as a computational tool for solving least squares problems. In
this case, the book also provides a detailed description on how to compute
the SVD in the chapter on eigenvalues. The material is presented in such a
way that a student can also learn directly from the book. To help the reader
navigate the volume, we provide in section 1.2 some sample courses that have
been taught by the authors at various institutions.

The focus of the book is algorithms: we would like to explain to the
students how some fundamental functions in mathematical software are de-
signed. Many exercises require programming in Matlab or Maple, since
we feel it is important for students to gain experience in using such pow-
erful software systems. They should also know about their limitations and
be aware of the issue addressed by John Guckenheimer. We tried to include
meaningful examples and problems, not just academic exercises.

Acknowledgments

The authors would like to thank Oscar Chinellato, Ellis Whitehead, Oliver
Ernst and Laurence Halpern for their careful proofreading and helpful sug-
gestions.

Walter Gander is indebted to Hong Kong Baptist University (HKBU)
and especially to its Vice President Academic, Franklin Luk, for giving him
the opportunity to continue to teach students after his retirement at ETH.
Several chapters of this book have been presented and improved successfully
in courses at HKBU. We are also thankful to the University of Geneva, where
we met many times to finalize the manuscript.

Geneva and Zürich, August 2013

Walter Gander, Martin J. Gander, Felix Kwok



http://www.springer.com/978-3-319-04324-1


