
With an Open Mind: How to Write
Good Models

Cyrille Artho1(B), Koji Hayamizu1, Rudolf Ramler2, and Yoriyuki Yamagata1

1 RISEC, AIST, Amagasaki, Japan
c.artho@aist.go.jp

2 Software Competence Center Hagenberg, Hagenberg, Austria

Abstract. Writing effective models for systems and their environment
is a challenge. The task involves both mastering the modeling tool and
its notation, and faithfully translating all requirements and specifications
into a complete model. The former ability can be learned, while the latter
one is a continuous challenge requiring experience and tools supporting
the visualization and understanding of models. This paper describes our
experience with incomplete models, the types of changes that were made
later, and the defects that were found with the improved models.

Keywords: Model-based analysis · Model design · Model checking ·
Model-based testing

1 Introduction

Model-based techniques use abstract models to define many possible system
behaviors. In model-based testing, a test model gives rise to many concrete test
cases. In model checking, all possible behaviors of a given model are explored
to check if given properties hold. Both types of analysis have in common that
a model of the environment is needed, which represents possible stimuli to the
system under test (SUT). Analysis of the SUT involves exploring interactions
between the SUT (model) and the environment, and verifying if a set of stated
properties holds for all possible interactions (see Fig. 1).

When using testing (run-time verification), tests can be executed against the
implementation of the system. In model checking, a model of the SUT is needed;
that model may be written by an engineer, or a tool may derive the system model
from its implementation. In either case, the environment needs to be modeled
from requirements, which is a largely manual task.

The resulting model should reflect the requirements and capture all relevant
system behaviors. Creation of a good model is a challenge, both for modeling
the system and maybe even more so for modeling its environment.

If a property is violated by a given execution trace, then the trace is analyzed
to determine whether the model is incorrect or the SUT contains a defect. As
long as such counterexample traces are found, there is an inconsistency between
the stated properties and the possible state space, as determined by the model.

C. Artho and P.C. Ölveczky (Eds.): FTSCS 2013, CCIS 419, pp. 3–18, 2014.
DOI: 10.1007/978-3-319-05416-2 2, c© Springer International Publishing Switzerland 2014

4 C. Artho et al.

Full system

Environment,
usage, or test

model

System under test
(implementation or

system model)

drives Properties?

Fig. 1. Verification of a system in its environment.

Defect resolution may involve relaxing a property that is too strict, restricting
an environment model that is too general, or fixing a defect in the SUT. No
matter which artifact in the verification process is at fault, property violations
always show that development is not complete yet.

Unfortunately, it is a common fallacy to believe that if a model is analyzed
exhaustively, a system has been “proven correct” if no defects are found by the
analysis. There are many subtle ways in which a model may be too restrictive,
or a stated property too weak, to cover possible defects. This paper describes
our experience with this problem, and suggests steps to be taken to improve the
situation.

To highlight this issue, we label the right arrow in Fig. 1 with a question
mark. We think that the common notion of “system models properties” as a
verification goal is a good one. However, the notation is often thought of in the
reverse direction as “properties hold for the system” once verification is complete.
The danger in that notation lies in the fact that without validation of the model,
property verification guarantees little in terms of system correctness.

Good models are those that help to exhibit defects in the system under test.
What are the problems that restrict a model’s defect detection capability?

In this paper, we first describe various projects in which initial models were
insufficient to find certain defects. However, even small changes or additions to
these models uncovered many additional features. We identify factors that nega-
tively influenced the design of the original models, and propose both procedural
as well as technical remedies.

This paper is organized as follows: Section 2 describes related work. Our
experience with software test models is described in Sects. 3 and 4, while Sect. 5
shows a discrepancy between models and reality in hardware. Section 6 discusses
our findings, and Sect. 7 concludes and outlines future work.

2 Related Work

In hardware and software analysis, properties may be trivially fulfilled, because
not all relevant parts of a system have been analyzed, due to an incomplete
system or environment model.

In hardware analysis, the problem of properties being trivially true has been
well-known for two decades [4,5]. So-called vacuous properties include implica-
tions of type a → b, where the antecedent a is never true. Regardless of the value
of b, such a property holds. However, because the second part of the formula

With an Open Mind: How to Write Good Models 5

becomes irrelevant, this case of an “antecedent failure” is likely not what the
modeler intended [4].

For temporal logics, so-called zeno-timelocks describe cases where parts of a
model would have to execute infinitely fast (being subject to an infinite number
of transitions in a finite amount of time) for a property to hold [8]. Such timelocks
often relate to a problem in the way parts of a system are modeled [9].

More recently, a different case, parts of a property that are unsatisfiable
per se, has been investigated [20]. This property can be used to “debug” a
specification, i.e., to analyze why a specification does not hold. There is emerging
work in the field of diagnosing model checker specifications using scenarios to
analyze the model [17].

In software testing, modified condition/decision coverage (MC/DC) and sim-
ilar test coverage criteria try to ensure that each part of a complex conditional
statement is actually relevant for the outcome of a test suite [1,26]. For each loca-
tion in the software code where compound conditionals exist, MC/DC demands
that, among other criteria, each condition in a decision is shown to indepen-
dently affect the outcome of the decision [26]. If a condition has no effect on the
outcome of a decision, it is likely incorrect (too weak) or redundant. The appli-
cation of coverage criteria on the model level is emerging work, with only a few
relatively simple coverage criteria such as state, transition, and path coverage,
being commonly used so far [1].

Work investigating how human developers write test sequences has found
that there is a bias towards designing a test case up to a “critical” operation
that is expected to possibly fail, but not beyond [10,18]. In particular, test cases
are often designed to cover possible exceptions, but tend to stop at the first
exception. This bias was confirmed in our case studies for designing models for
network libraries [2,3] and is described in more depth below.

Finally, the problem of model validation is also well known in model-driven
engineering [6]. In that case, the model cannot be verified but only validated;
recent work suggests generating questions about model properties as a form of
sanity check [6].

3 Modeling the Java Network Library with Modbat

Even in widely used commercial software such as the Java platform [15], the
official specification and documentation is written in English and not available
as a fully rigorous formal document. This may give rise to ambiguities. In our
experience, the biggest challenge in using the given specification was that many
details are implicit, making it difficult to create a faithful model that also covers
all relevant behaviors.

3.1 Setting

This section concerns the use of Modbat, a model-based test tool [2], for veri-
fying a custom implementation of the java.nio network application program-
ming interface (API) [15]. This network library allows the use of non-blocking

6 C. Artho et al.

input/output (I/O) operations. Unlike blocking operations, which suspend the
current thread until the full result is obtained, non-blocking variants return a
result immediately; however, the result may be incomplete, requiring that the
operation be retried for completion.

The goal of this project was to test conformance of a custom version of the
java.nio library [3] w.r.t. the official documentation [15]. The custom implemen-
tation of the java.nio library is designed to run on Java PathFinder [25], which
requires a model implementation of code that interacts with the environment [3].
When using Modbat on this library, the model replaces the environment and
generates calls to the API of the SUT.

Modbat uses an extended finite state machine [23] as its underlying model.
State transitions are labeled with actions that are defined as program code
(functions implemented in Scala [14]). This program code can directly execute
the system under test (in our case, parts of the Java API). In addition to that,
Modbat also supports exception handling, by allowing a declaration of possible
exceptions that may result by (failed) actions. Finally, Modbat supports non-
blocking I/O by allowing the specification of alternative target states to cover
both the successful and the failed (incomplete) outcome of non-blocking I/O.

We have modeled the usage of the key classes ServerSocketChannel and
SocketChannel with Modbat (see Fig. 2 for the server case). Both APIs have
in common that a channel object first needs to be created by calling open.
Our models take the resulting state as the initial state. In the server case, the
created object represents the ability to accept incoming connections; the object
therefore also needs to be bound to a port and IP address before a connection
can be accepted. In the client case, the connection can be established directly by

open configureBlocking

bound

bind

err

accept:
NotYetBoundException

closed

closenon-bl. accept
(failed)

connected

bl. accept non-bl. accept
(successful) closeclose

 read

accept:
ClosedChannelException

 close

Fig. 2. Initial model for java.nio server API (Color figure online).

With an Open Mind: How to Write Good Models 7

supplying the IP address and port of the server as a function argument. However,
the client API is slightly more complex in general in the sense that finishing a
pending connection (after an unsuccessful non-blocking connect call) attempt
requires a different function than the initial attempt, viz., finishConnect. There
are also more possible exceptions [15].

In the figure, dashed transitions correspond to the successful (completed)
case of a non-blocking operation that would otherwise have to be repeated
(non-blocking accept). Red, accordingly labeled edges correspond to exceptions
resulting from actions that are not allowed in a given state. In these cases,
the edge label denotes the exception type. Some nodes have a self-transition
that denotes a possible switch from blocking to non-blocking mode using
configureBlocking. A self-loop may also denote a retry of a previously failed
non-blocking action; in the successful case, the dashed alternative transition is
taken to the connected state. Finally, there is a self-transition in the connected
state that reads from the newly connected channel before the connection is closed
again.

3.2 Weaknesses of the Initial Model

We first executed the test cases generated from the models against the standard
Java implementation, using it as a reference implementation. This ensures that
no false positives are reported by the test model when it is used as an oracle
against the reference implementation. We then used the given test model in a
second test run, against our network model for JPF. Using this approach, we
found a complex defect that was not covered with manually written tests [3].
However, several defects were not discovered by this initial model.

First, the initial model did not cover all possibilities of disallowed operations
in the closed state. In that state, only close is allowed, as its semantics is defined
to be idempotent in Java [15]. All other operations are expected to throw a
ClosedChannelException. This part of the semantics is trivial to model, because
most operations behave identically. However, the initial model missed several
possible alternatives, because they have to be enumerated by the modeler. As it
turned out, the implementation did not track its internal state correctly in all
cases, and the wrong type of exception was thrown for a particular sequence of
commands that included close and another operation after close. The challenge
is that the model has to cover a large number of possible transitions, and it is
easy to overlook some.

Second, it was difficult to express a property related to an end-of-file return
code correctly [2]. An older version of the model was using a precondition to avoid
reading from a stream where an end-of-file has been received. This meant that
sequences that attempt to read beyond the end of a file were never generated,
missing a defect in that case. A newer model included such sequences but its
property to be checked was a bit too lenient. The reason for this was that it is not
trivial to account for all possibilities of reading data in non-blocking mode. Even
for an input of very limited length (2), the state space of all possibly incomplete
read operations that eventually lead to the end-of-file is quite large (see Fig. 3).

8 C. Artho et al.

connected

read() == 0

read_1read() == 1

read() == 0

read_2read() == 1

read() == 0

eofread() == -1

read() == -1

Fig. 3. Model of end-of-file semantics; dashed transitions are incomplete reads.

Fig. 4. Unit test including the end-of-file property.

The property was initially written programmatically, and the code did not track
the internal state strictly enough under all possible circumstances; Fig. 4 shows
how a unit test that includes repeated calls to readByte and checks the result
in a case where the input has length 2. Most of the code, including a counter
and a flag, is devoted to expressing the property. As Fig. 3 shows, a finite-state
machine can express the property much more succinctly [2].

Third, the initial model was also limited in that it included an error state
for all cases where an exception has occurred [2]. This limits test cases to exe-
cute only up to a possible exception, but not beyond it. The reasoning behind
this is that a well-behaved user of a library never triggers an exception due
to incorrect use, of the types specified in the model. However, a component
(an object provided by the SUT) can usually survive an incorrect command
by refusing to execute it and throwing an exception instead. Because of this,
it is possible to continue a test beyond such a step, issuing more correct or
incorrect commands. This situation tends to be overlooked when modeling the
environment of a system. Earlier case studies have shown that this is a com-
mon human bias in testing [10,18], and this has also carried over to modeling.
While there indeed exist common cases where an object cannot be used after an
exception has been thrown, this is not the case for incorrect operations used on
communication channels.1 In the updated server model (see Fig. 5), a trace can

1 On the other hand, a communication channel is usually in an unrecoverable state
after an exception thrown due to an I/O failure.

With an Open Mind: How to Write Good Models 9

open configureBlocking accept:
 NotYetBoundException

bound

bind

closed

closenon-bl. accept
(failed)

connected

bl. accept non-bl. accept
(successful) closeclose

 read
 bind, accept, read,
 configureBlocking:
 ClosedChannelException

 close

Fig. 5. Improved model for java.nio server API.

include other operations (or the same one) after a given operation resulted in an
exception.

3.3 Summary

We found three problems with an initial model for a complex API in Java. The
first problem was caused by the model not including all possible alternatives.
The second problem was caused by a property that cannot be easily expressed
in code, but where a finite-state machine may capture its semantics succinctly.
Finally, the third problem stemmed from a human bias that tends to focus on
operations up to a “critical” operation throwing an exception, which lead to
the model being restricted by using an error state as a global target state for all
exceptions. Instead, a self-loop should have been used to allow traces to continue
beyond an exception.

4 Experiences with Models for Testing Collection Classes

4.1 Setting

In a series of experiments we studied the effectiveness of tool-supported test
case generation in comparison to humans developing unit tests [18,19]. The
experiment was based on a library of collection classes (i.e., containers such as
list, array, set, stack, and map) with manually seeded defects. The library we
used resembles the common Java collection classes. Thus, the study material had
the benefit of being well known by the study participants and did not require
additional background information or familiarization. The size of the library
was about 2,800 lines of Java code distributed to 34 classes and interfaces and
a total of 164 methods. Most classes showed high algorithmic complexity and
used object-oriented concepts such as interfaces, abstract classes, inheritance,
polymorphism and dynamic binding.

10 C. Artho et al.

In this context, we also briefly looked into the possibilities of model-based
approaches for unit testing [23] and developed some preliminary ideas about how
to construct models for our collection classes. However, model-based testing was
not part of one of our studies so far and, thus, the initial models have not been
evaluated further. In the following, we document our observations about some
of the challenges involved in constructing these initial models.

4.2 Modeling Test Scenarios

The starting point of our modeling attempts was the focus on developing unit
test suites for the collection classes. The main motivation was to reduce the
manual effort involved in implementing unit tests by automatically generating
some or all of the test cases. So our initial perspective on modeling was influenced
by the ideas and scenarios we wanted to explore in unit testing.

One of the first models was, thus, a generalization of a specific scenario that
can be implemented as simple unit test. The objective of this test was to add and
remove elements to/from a collection and to check the corresponding size of the
collection as well as that the removed elements were those that had previously
been added (Fig. 6).

This test implements one specific, representative case out of the many pos-
sible sequences in which elements may be added and removed. The model we
initially developed still focused on the particular scenario of adding and removing
elements (see Fig. 7).

Yet with the help of this model, we were able to generate a huge set of test
cases that covered a wide range of combinations in which elements were added
and removed, eventually including also all the combinations implemented in the
manually developed test cases. Several other scenarios (e.g., using iterators or
sorting) were modeled in the same way, again with the intention to explore them
more extensively with huge sets of generated tests.

Fig. 6. Exemplary unit test capturing a specific sequence of add/remove operations.

init main counter = 0

add(++counter)

remove() == counter--

Fig. 7. Simple model for generating arbitrary sequences of add/remove operations.

With an Open Mind: How to Write Good Models 11

A weakness all these initial models had in common was that no further defects
were revealed, other than those that already had been found by the manually
written unit tests. By simply transferring the unit test scenarios into test models,
the resulting models were inherently limited to the underlying scenarios. Since
in our case these scenarios were already sufficiently covered by a (small) set of
manually implemented unit test cases, the model-based testing approach was
not able to reveal new errors.

4.3 Modeling Actions on the System Under Test

To improve the initially generated test cases and to better unleash the potential
of the model-based testing approach, we tried to advance the models towards
more realistic usage patterns. For example, we added further actions to include
all methods exposed in the public interface of a collection class and we removed
the guards preventing invalid method calls to cover a broad range of interac-
tions in addition and in combination to adding and removing elements. We also
integrated the different small models into one large model. For example, we inte-
grated the model testing iterators to make sure several iterators were used as part
of a larger scenario where collections are modified concurrently. The advanced
models actually generated new fault-revealing test cases we were not thinking
about when manually writing tests. Eventually, thus, we reached the conclusion
that the most realistic results will be achieved by developing a model that resem-
bles the complete system under test as closely as possible in favor of developing
several more specific models that reflect only individual test scenarios.

So far we have not completed the development of a full model for the collec-
tion classes. Nevertheless, we found that partial models or models at a higher
level of abstraction are already capable of detecting some of the faults, although
they are not rigorous enough to detect all the faults. Incrementally developing
and refining the models provides the benefit of early defect detection and allows
to balance the invested modeling effort to the achieved test results.

When proceeding towards a more complete model, we encountered another
challenge that still remains an open issue. With the exponentially increasing
number of possible scenarios described by a large model, the probability to suf-
ficiently cover all the known interesting scenarios and critical corner cases tends
to decrease. For example, since add and remove are equally probable, the num-
ber of elements in a collection usually stays low and collections rarely grow to
the point where new memory is allocated. Another example is related to the
special cases when inserting and removing list elements; the first and the last
position of a filled list have to be treated differently and should to be covered by
dedicated test cases. Yet this knowledge is not part of the model. However, since
this knowledge is already available when creating the model, it would be useful
to include it at this point as an aid to guide test case generation in direction of
the relevant scenarios.

12 C. Artho et al.

4.4 Modeling Test Data

Models of collection classes usually exhibit only a small number of relevant states.
We found that an important aspect of the model relates to the test data, i.e.,
the data elements to be stored in the collections.

Our initial model concerning the add and remove operations used a counter
nrOfElements to keep track of the size of the collection and to compute its
state, i.e., empty or filled. When adding an element to the collection, we used
the counter as new integer object to be added. When removing an element, we
compared the obtained element with the counter to make sure the expected
element had been returned. Thus, this simple mechanism dynamically generated
reproducible test data. To avoid that the sequential order of the elements derived
from the counter created unbalanced sequences, e.g., new elements are always
added to the end of the collection, we used the counter as seed for a random
number generator.

A weakness of this first model was that it missed errors caused by mixing data
elements of different type. The containers TreeSet and TreeMap are sensitive to
such errors as are the operations for sorting and searching in collections. Thus,
the initial model did not find the related seeded defects since only comparable
data objects of type Integer were used.

We extended the initial model by creating numerous test data elements of
different types when setting up the model. The data elements were stored in
an array in arbitrary order. The counter we previously used in the model now
served as array index, which still allowed to determine the expected element to
be returned by a remove operation.

Only later we found a new fault that indicated that there is still room for
further improvement. The implementation of the collection classes was not able
to handle the case of a collection being added to itself. Some operations such as
toString would then lead to an unbounded recursion (see Fig. 8). We further
extended the model to dynamically add new data elements to the test data set
not only at startup but also while the model is executed. In future we plan to
extended the model to incorporate the idea of feedback-directed test genera-
tion [16].

A related issue is involved in using null values, since the implementation
of some container classes accept null as valid data elements whereas others
do not. This issue was found when we tried to reuse generic models for dif-
ferent container classes. This observation led us to the (ongoing) discussion to
what extent a model should reflect the behavior of the system under test versus
its environment, i.e., the allowable inputs from the anticipated usage. While
Utting et al. [24] classify this scope as a binary decision (input-only versus
input-output models), we found that our models always combined both sides

Fig. 8. Sequence revealing an unbound recursion in the implementation of Stack.

With an Open Mind: How to Write Good Models 13

since modeling the input side also required some knowledge about the expected
output.

4.5 Summary

We reported on work on modeling the behavior of Java container classes. Initial
models that were created from generalizations of existing unit tests ended up
not being effective at finding defects that were not already covered by unit
tests. When extending these models, we found that models that are convenient
to define (for example, using only numbers) end up not covering important
cases such as different data types or null values. Finally, creating modular and
reusable models is difficult, because small differences in components result in
pervasive differences in the allowable inputs requiring extra effort to adjust.

5 Industrial Project: Electric Circuit

5.1 Adapted Work Flow

As described in Sect. 2, various subtleties regarding the aspects of timed models
and the reachability of model and system states in hardware are known. To
avoid incorrect models, verification engineers validate their model with domain
experts, who design the circuit. In this project, we employed the following work
flow to eliminate false positives (spurious warnings) and false negatives (missed
defects):

1. For a set of given desired states, reachability of these states is checked. For
example, any terminal state in the system should be reachable.

2. The specification is negated and model checked. This means that the model
checker analyzes whether there exist paths in the model that fulfill the desired
property. In a correct model, correct execution paths should be generated.
These execution paths are generated as counterexamples by the model checker,
as the real property has been negated. Different counterexample paths are
subsequently reviewed together with domain experts to determine whether
they are correct and reflect the expected behavior of the system.

3. Properties that are trivially expected to hold are checked as well, as a form
of sanity check.

5.2 Problem Found

The work flow described above prevents many defects in the model. However,
despite this, a modeling problem was found in an industrial project on an electric
circuit. The problem is related to how time is modeled in a real system. The
system model uses discrete time, where the state of each component is updated
on the next model clock tick. However, in real hardware, components can change
their state almost immediately; the “slowness” introduced by discrete time gave
rise to a counter-example in this model (see Fig. 9). The problem in this model is

14 C. Artho et al.

Fig. 9. Part of a model transition describing an industrial circuit.

that gSet PT Voltage A01 is updated in the next state even though the voltage
change is immediate in real hardware.

After the counterexample was investigated together with domain experts, it
was considered to be spurious (a false positive). To fix the model, the first line
in the model was amended to gSet PT Voltage A01 := case (i.e., next was
removed). This eliminated the false positive.

6 Discussion

We have reported our experience from several modeling projects. In each project,
there were unexpected problems with creating a correct and sufficiently good
model to fulfill the purpose of model-based verification. In our opinion, it is
interesting that the problems were not caused by ambiguities of the requirements
or documentation. Where ambiguities caused problems, we were able to identify
them and clarify the open points by checking the reference implementation.

6.1 Model Design

In our projects, problems arose when requirements were transformed into a
model. We often failed to create a model that matches a wide range of all possible
behaviors stated in the requirements. All of the models were “correct” but failed
to cover certain behaviors of the system, some of which were even implemented
incorrectly. In the software projects, the uncovered behaviors resulted in missed
defects (false negatives); in the hardware project, it resulted in a spurious error
(false positive), which gives an indication of a mismatch between the model and
reality.

The lack of expressiveness in the models did not originate from unintended
errors or oversights, but from intentional abstractions or decisions that led to
elegant models. The resulting lack of coverage was therefore a side-effect of con-
scious design decisions. From this observation, we identify the right level of
abstraction and human bias [10] as the key problems.

Abstraction. A major problem of creating a good model is to choose the right
level of abstraction. This is a very difficult problem that takes years of experience
to solve well. Some people even claim that this skill may not be teachable but
an innate ability [12]. In the future, we expect (modeling/abstraction) teaching
methods, and design tools, to improve to make the task a bit less daunting.

With an Open Mind: How to Write Good Models 15

Human Bias. When choosing an abstraction, human bias also often exists in
that the model is designed for a narrower purpose than necessary. This leads
to the omission of certain behaviors in the model. Like abstraction, this is a
fundamentally difficult problem to overcome; it requires to attack the problem
from various angles to obtain a comprehensive solution. We think that involving
a team of people in modeling, and making an effort to avoid any preconception,
can at least mitigate this problem. Ideally, models are created with an open, fresh
mind, and no possibilities, regardless of being difficult or trivial to handle, should
be disregarded. In practice, this may require careful engineering of the model
w.r.t. code reuse, if one takes into account that many small subtle differences in
system components result in a large increase of different possible behaviors (and
thus models or parameterizations thereof).

6.2 Model Validation

Our experience shows that model-based verification has to be grounded in an
extensive validation of the model. Even though validation is in itself not a fully
mechanized activity, there exists tool support for tasks such as coverage analysis
and visualization, which contribute to validation. Furthermore, computer sup-
port can also be used in the modeling stage itself if certain artifacts such as a
reference implementation are available.

Machine Learning. Machine learning of models has the obvious advantage of
not missing system states due to a simple oversight. If a correct (reference)
implementation of a system exists, then a model can be derived from the existing
system using machine learning [13,21]. The resulting model may not be human-
readable but its verification verdict may confirm or refute the result obtained
from a model designed by a human.

This approach can even be used if it is not known if a given system is correct;
in that case, the model reflects its current (possibly not fully correct) behavior
and can be used in regression testing to see if the behavior of the system changes
in unexpected ways. Changes that violate a given property then would likely be
found by a model that reflects the semantics of an older (“known good”) version
of the system.

Diagnosis and Visualization. Some of the weaknesses observed in models arose
from the fact that they were generalizations of existing test scenarios. Therefore,
just lifting a set of execution traces to a grammar-based model is not guaran-
teed to add much value. It is also necessary to check whether the existing test
scenarios, and the derived model, are comprehensive enough.

We therefore advocate that model-based verification be combined with model
diagnosis and visualization, so possible flaws in a model learned from an incom-
plete set of tests, or a defective system, may be found. In our hardware project,
we already had adapted such a workflow by checking a sample of all possible
execution traces generated by the model checker.

Model Coverage and Mutation Analysis. It is important to analyze the cover-
age of the model in the real system; this can be done for software testing in a

16 C. Artho et al.

straightforward way [1,26]. However, coverage analysis on the final product gives
us limited information on the expressiveness of the model itself (in addition to
not being able to tell us whether all requirements are actually met). Hence, we
also advocate mutation operators for models to find mutants that still pass the
properties.

Mutating model properties is well-known [7] (and very similar to program
code [11]). However, work needs to be done on mutating the structure of the
model: a model could also be mutated by duplicating or deleting a transition, or
changing its source or target state. This reflects what we have learned from our
software model, where the model structure itself (and not just a given predicate
or property) restricted its behavior.

Combination of Model-Based and Model-Free Techniques. When analyzing the
implementation of a system, fully automated analysis techniques can comple-
ment human efforts. Unlike in the case where a model is designed by a human,
automated techniques have no test oracle that evaluates the output of the ana-
lyzed behaviors; instead, they serve as a “sanity check” for a wide range of
generic properties (accessed memory must be initialized, no deadlocks, etc.).

When using such “model-free” techniques, randomized testing [16] often finds
defects that humans miss [18]. Defects found by such tools may in turn spur an
improvement in a manually written model. A comparison of the states covered
by model-free techniques with the coverage of a manually written model, may
unveil weaknesses in the latter as well.

7 Conclusions and Future Work

Writing good models is a challenge. Models should not only be correct but suffi-
ciently expressive and inclusive to fulfill the purpose of finding defects or ensuring
their absence. Finding the right level of abstraction, and trying to avoid human
bias, or two of the key challenges in this process. A high level of abstraction
that allows an efficient encoding of a model (or reuse of existing model code)
may not cover enough details of all possible behaviors. Modeling languages and
tools should strive to improve this trade-off. Teaching engineers about commonly
encountered problems or human bias is also essential.

We have listed several non-trivial flaws that we found in existing model devel-
opment projects, and we have given suggestions how these may be avoided in
the future. Tool-supported analysis of the model itself will help to explore the
system behavior in its full breadth and may uncover missing model aspects that
human inspection misses. In this context, we advocate using model-free, auto-
mated approaches where possible, so that their coverage can be compared with
the coverage yielded by a model derived from the specification.

We believe that more case studies can also shed more light into why certain
properties tend to be forgotten, and what types of modeling challenges engineers
typically encounter. This may eventually lead to the creation of a body of knowl-
edge for modeling and its effective use in practice. Existing work tends to focus
on surveying approaches and tools, such as MCBOK, a body of knowledge on

With an Open Mind: How to Write Good Models 17

model checking for software development [22]; we hope that more fundamental
cognitive and process-level issues will also be covered in the future.

Acknowledgments. We would like to thank Takashi Kitamura and Kenji Taguchi
for their suggestions on this paper.

References

1. Ammann, P., Offutt, J.: Introduction to Software Testing, 1st edn. Cambridge
University Press, New York (2008)

2. Artho, C., Biere, A., Hagiya, M., Platon, E., Seidl, M., Tanabe, Y., Yamamoto,
M.: Modbat: a model-based API tester for event-driven systems. In: Bertacco, V.,
Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp. 112–128. Springer, Heidelberg
(2013)

3. Artho, C., Hagiya, M., Potter, R., Tanabe, Y., Weitl, F., Yamamoto, M.: Software
model checking for distributed systems with selector-based, non-blocking commu-
nication. In: Proceedings of 28th International Conference on Automated Software
Engineering (ASE 2013), Palo Alto, USA (2013)

4. Beatty, D., Bryant, R.: Formally verifying a microprocessor using a simulation
methodology. In: Proceedings of 31st Conference on Design Automation (DAC
1994), San Diego, USA, pp. 596–602 (1994)

5. Beer, I., Ben-David, S., Eisner, C., Landver, A.: Rulebase: an industry-oriented
formal verification tool. In: Proceedings of 33rd Conference on Design Automation
(DAC 1996), Las Vegas, USA, pp. 655–660 (1996)

6. Bertolino, A., De Angelis, G., Di Sandro, A., Sabetta, A.: Is my model right? let
me ask the expert. J. Syst. Softw. 84(7), 1089–1099 (2011)

7. Black, P., Okun, V., Yesha, Y.: Mutation of model checker specifications for test
generation and evaluation. In: Wong, E. (ed.) Mutation Testing for the New Cen-
tury Ages, pp. 14–20. Kluwer Academic Publishers, Norwell (2001)

8. Bowman, H.: How to stop time stopping. Form. Asp. Comput. 18(4), 459–493
(2006)

9. Bowman, H., Faconti, G., Katoen, J-P., Latella, D., Massink, M.: Automatic veri-
fication of a lip synchronisation algorithm using UPPAAL. In: Proceedings of 3rd
International Workshop on Formal Methods for Industrial Critical Systems, CWI,
pp. 97–124 (1998)

10. Calikli, G., Bener, A.: Empirical analyses of the factors affecting confirmation
bias and the effects of confirmation bias on software developer/tester performance.
In: Proceedings of 6th International Conference on Predictive Models in Software
Engineering, PROMISE 2010, pp. 10:1–10:11. ACM, New York (2010)

11. Yue, J., Mark, H.: An analysis and survey of the development of mutation testing.
IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

12. Kramer, J.: Is abstraction the key to computing? Commun. ACM 50(4), 36–42
(2007)

13. Memon, A., Nguyen, B.: Advances in automated model-based system testing of
software applications with a GUI front-end. Adv. Comput. 80, 121–162 (2010)

14. Odersky, M., Spoon, L., Venners, B.: Programming in Scala: A Comprehensive
Step-by-Step Guide, 2nd edn. Artima Inc., Sunnyvale (2010)

15. Oracle. Java Platform Standard Edition 7 API Specification. http://docs.oracle.
com/javase/7/docs/api/ (2013)

http://docs.oracle.com/javase/7/docs/api/
http://docs.oracle.com/javase/7/docs/api/

18 C. Artho et al.

16. Pacheco, C., Lahiri, S., Ernst, M., Ball, T.: Feedback-directed random test gener-
ation. In: Proceedings of 29th International Conference on Software Engineering,
ICSE 2007, pp. 75–84. IEEE Computer Society, Washington, DC (2007)

17. Pill, I., Quaritsch, T.: Behavioral diagnosis of LTL specifications at operator level.
In: Proceedings of 23rd International Joint Conference on Artificial Intelligence
(IJCAI 2013), Beijing, China. IJCAI/AAAI (2013)

18. Ramler, R., Winkler, D., Schmidt, M.: Random test case generation and manual
unit testing: substitute or complement in retrofitting tests for legacy code? In:
36th Conference on Software Engineering and Advanced Applications, pp. 286–
293. IEEE Computer Society (2012)

19. Ramler, R., Wolfmaier, K., Kopetzky, T.: A replicated study on random test case
generation and manual unit testing: How many bugs do professional developers
find? In: Proceedings of 37th Annual International Computer Software and Appli-
cations Conference, COMPSAC 2013, pp. 484–491. IEEE Computer Society, Wash-
ington, DC (2013)

20. Schuppan, V.: Towards a notion of unsatisfiable and unrealizable cores for LTL.
Sci. Comput. Program. 77(7–8), 908–939 (2012)

21. Steffen, B., Howar, F., Isberner, M.: Active automata learning: from DFAs to
interface programs and beyond. J. Mach. Learn. Res.-Proc. Track 21, 195–209
(2012)

22. Taguchi, K., Nishihara, H., Aoki, T., Kumeno, F., Hayamizu, K., Shinozaki, K.:
Building a body of knowledge on model checking for software development. In:
Proceedings of 37th Annual International Computer Software and Applications
Conference (COMPSAC 2013), Kyoto, Japan. IEEE (2013)

23. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers Inc., San Francisco (2006)

24. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012)

25. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. J. 10(2), 203–232 (2003)

26. Yu, Y., Lau, M.: A comparison of MC/DC, MUMCUT and several other coverage
criteria for logical decisions. J. Syst. Softw. 79(5), 577–590 (2006)

http://www.springer.com/978-3-319-05415-5

	With an Open Mind: How to Write Good Models
	1 Introduction
	2 Related Work
	3 Modeling the Java Network Library with Modbat
	3.1 Setting
	3.2 Weaknesses of the Initial Model
	3.3 Summary

	4 Experiences with Models for Testing Collection Classes
	4.1 Setting
	4.2 Modeling Test Scenarios
	4.3 Modeling Actions on the System Under Test
	4.4 Modeling Test Data
	4.5 Summary

	5 Industrial Project: Electric Circuit
	5.1 Adapted Work Flow
	5.2 Problem Found

	6 Discussion
	6.1 Model Design
	6.2 Model Validation

	7 Conclusions and Future Work
	References

