
Remarks on Gaussian Noise Stability,
Brascamp-Lieb and Slepian Inequalities

Michel Ledoux

Abstract E. Mossel and J. Neeman recently provided a heat flow monotonicity
proof of Borell’s noise stability theorem. In this note, we develop the argument
to include in a common framework noise stability, Brascamp-Lieb inequalities
(including hypercontractivity), and even a weak form of Slepian inequalities. The
scheme applies furthermore to families of measures with are more log-concave than
the Gaussian measure.

1 Introduction

Borell’s noise stability theorem [12] expresses that if � is the standard Gaussian
measure d�.x/ D d�n.x/ D e�jxj2=2 dx

.2�/n=2
on R

n, and ifA;B are Borel measurable
sets in R

n and H;K parallel half-spaces

H D ˚
.x1; : : : ; xn/ 2 R

nI x1 � a
�
; K D ˚

.x1; : : : ; xn/ 2 R
nI x1 � b

�

with respectively the same Gaussian measures �.H/ D �.A/, �.K/ D �.B/, then,
for every t � 0,

ˆ
Rn

1A Qt.1B/d� �
ˆ
Rn

1H Qt.1K/d�: (1)

Here .Qt/t�0 D .Qn
t /t�0 is the Ornstein-Uhlenbeck semigroup defined, on suitable

functions f W Rn ! R, by

Qtf .x/ D
ˆ
Rn

f
�
e�t x C

p
1 � e�2t y

�
d�.y/; t � 0; x 2 R

n: (2)
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According to this representation, setting � D e�t , if X D Xn and Y D Y n are
independent with distribution � D �n,

ˆ
Rn

1A Qt .1B/d� D P
�
X 2 A; �X C

p
1 � �2 Y 2 B�

so that the conclusion (1) equivalently reads as

P
�
X 2 A; �X C

p
1 � �2 Y 2 B� � P

�
X 2 H; �X C

p
1 � �2 Y 2 K�

: (3)

The result then extends to any � 2 Œ�1;C1�, with however the inequality in (3)
reversed when � 2 Œ�1; 0�. For simplicity in the exposition, we mostly only consider
� 2 Œ0; 1� below (actually � 2 .0; 1/ since the cases � D 0 and � D 1 are
straightforward). The content of (3) is that the (Gaussian) noise stability (of a set A)

P
�
X 2 A; �X C

p
1 � �2 Y 2 A�

is maximal for half-spaces.
Towards the proof of (1), C. Borell [12] developed symmetrization arguments

with respect to the Gaussian measure introduced by A. Ehrhard in [20] (see also
[10,15]). Recently, E. Mossel and J. Neeman [28] proposed an alternative semigroup
proof. The purpose of this note is to somewhat broaden their argument to cover in the
same mould various related inequalities such as hypercontractivity, Brascamp-Lieb
and Slepian inequalities. Heat flow arguments towards Brascamp-Lieb inequalities
[13] have been investigated in the recent years by E. Carlen et al. [16] and J. Bennett
et al. [8] (see also [5, 7, 17]). Section 2 describes the main theorem of [28] as
an equivalent concavity property covering at the same time hypercontractivity and
Borell’s noise stability theorem. In Sect. 3, we consider multidimensional versions
which were recently emphasized in [30], and discuss their applications to various
families of concave functions towards Brascamp-Lieb and (a weak form of) Slepian-
type inequalities. In the next section, we address extensions from the Gaussian
model to families of measures d� D e�V dx with a lower bound on the Hessian
of V following the basic semigroup interpolation argument. Section 5 comments on
some analogous issues on the discrete cube which raise questions on a family of
concave functions in connection with the recent discrete proof by A. De et al. [18]
of the “Majority is Stablest” theorem of [29].

2 Hypercontractivity and Gaussian Noise Stability

The main result of E. Mossel and J. Neeman [28] expresses an integral concavity
property for correlated Gaussian vectors for a specific family of functions on R

2.
Say that a C2 function J on R

2, or some open rectangle R D I1 � I2 � R
2, where

I1 and I2 are open intervals, is �-concave for some � 2 R if the matrix
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�
@11J � @12J

� @12J @22J

�

is (uniformly) semi-negative definite. � D 1 amounts to standard concavity while
� D 0 amounts to concavity along each coordinate.

Theorem 1. Let � 2 .0; 1/ and let J on R D I1 � I2 � R
2 be of class C2. Then,

ˆ
Rn

ˆ
Rn

J
�
f .x/; g

�
�x C

p
1 � �2 y��

d�.x/d�.y/

� J

� ˆ
Rn

f d�;

ˆ
Rn

g d�

� (4)

for every suitably integrable functions f W Rn ! I1, g W Rn ! I2 if and only if J
is �-concave.

Let us sketch at this stage the heat flow proof of Theorem 1 following [28], the
detailed argument being developed in the more general context of Sect. 4. Consider,
for t (> 0) fixed and (smooth) functions f W Rn ! I1, g W Rn ! I2,

 .s/ D
ˆ
Rn

ˆ
Rn

J
�
Qsf .x/;Qsg

�
�x C

p
1 � �2 y��

d�.x/d�.y/; s � 0:

By ergodicity,Qsf ! ´
Rn
fd� andQsg ! ´

Rn
gd� as s ! 1 so that it is enough

to show that  is non-decreasing in order that  .0/ �  .1/. Differentiating and
integrating by parts with respect to the infinitesimal generator L D �� x � r of the
Ornstein-Uhlenbeck semigroup .Qs/s�0 yields

 0.s/ D
ˆ
Rn

ˆ
Rn

�
@1J LQsf C @2J LQsg

�
d� d�

D �
ˆ
Rn

ˆ
Rn

�
@11J jrQsf j2 C �@12J rQsf � rQsg

�
d� d�

C
ˆ
Rn

ˆ
Rn

@2J LQsg d� d�:

By Gaussian rotational invariance, setting .x; y/� D �x C p
1 � �2 y,

ˆ
Rn

ˆ
Rn

@2J LQsg d� d�

D
ˆ
Rn

ˆ
Rn

@2J
�
Qsf .x/;Qsg

�
.x; y/�

��
LQsg

�
.x; y/�

�
d�.x/d�.y/

D
ˆ
Rn

ˆ
Rn

@2J
�
Qsf

�
.x;�y/�

�
;Qsg.x/

�
LQsg.x/d�.x/d�.y/
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D �
ˆ
Rn

ˆ
Rn

h
�@12J

�
Qsf

�
.x;�y/�

�
;Qsg.x/

�rQsf
�
.x;�y/�

� � rQsg.x/

C @22J
�
Qsf

�
.x;�y/�

�
;Qsg.x/

� ˇ
ˇrQsg.x/

ˇ
ˇ2

i
d�.x/d�.y/

D �
ˆ
Rn

ˆ
Rn

h
�@12J

�
Qsf .x/;Qsg

�
.x; y/�

�� rQsf .x/ � rQsg
�
.x; y/�

�

C @22J
�
Qsf .x/;Qsg

�
.x; y/�

�� ˇ
ˇrQsg

�
.x; y/�

�ˇˇ2�d� d�:

Finally

 0.s/ D
ˆ
Rn

ˆ
Rn

h
.�@11J /jrQsf j2 C .�@22J /jrQsgj2

�2 � @12J rQsf � rQsg
i
d� d�

From the hypothesis of �-concavity on J , it follows that  0 � 0 which is the result.
The converse was observed by R. O’Donnell, and communicated to us by

J. Neeman. Indeed, applying (4) to f .x/ D aC"x and g.y/ D bC"y (in dimension
one) and letting " ! 0 shows that J is �-concave.

It may be mentioned that due to the product structure of the Gaussian measure
�n, the inequality of Theorem 1 immediately tensorizes so that it is actually enough
to establish it in dimension one.

Let us now illustrate the application of Theorem 1 to two main examples of
�-concave function J , covering hypercontractivity and noise stability at the same
time.

Let first

J H.u; v/ D u˛vˇ; .u; v/ 2 Œ0;1/2:

Since

@11J
H D ˛.˛ � 1/u˛�2vˇ; @22J

H D ˇ.ˇ � 1/u˛vˇ�2; @12J
H D ˛ˇu˛�1vˇ�1;

J H is �-concave on .0;1/2 as soon as ˛; ˇ 2 Œ0; 1� and

�2˛ˇ � .˛ � 1/.ˇ � 1/: (5)

The function J H will be called the hypercontractive function in this context.
Indeed, let 1 < p < q < 1 and � D e�t 2 .0; 1/ be such that

1

�2
D q � 1

p � 1
:

Denote by q0 the conjugate of q, 1
q

C 1
q0

D 1. Then, according to (5), the function

J H with ˛ D 1
q0

and ˇ D 1
p

is �-concave on .0;1/2. By Theorem 1, for strictly
positive functions f; g W Rn ! R,
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ˆ
Rn

ˆ
Rn

f 1=q0

.x/g1=p
�
e�t x C

p
1 � e�2t y

�
d�.x/d�.y/

�
�ˆ

Rn

f d�

�1=q0� ˆ
Rn

g d�

�1=p
:

In other words, changing f into f q0

and g into gp ,

ˆ
Rn

f Qtg d� � kf kq0kgkp:

By duality

kQtgkq � kgkp
which amounts to hypercontractivity of the Ornstein-Uhlenbeck semigroup [23,31]
(cf. e.g. [3]). Clearly, the conclusion of Theorem 1 for J H is actually equivalent to
hypercontractivity. Note that a prior to the proof of hypercontractivity along these
lines may be found in [24].

The second example involves a new function introduced in [28] defined for
.u; v/ 2 Œ0; 1�2 by

J B.u; v/ D J B
� .u; v/ D P

�
X1 � ˆ�1.u/; �X1 C

p
1 � �2 Y 1 � ˆ�1.v/

�

where ˆ.a/ D �1..�1; a�/, a 2 R, is the distribution of the standard normal on
R and � 2 Œ�1;C1�. For the connection with Borell’s theorem, observe that if H
and K are the (parallel) half-spaces H D fx1 � ag and K D fx1 � bg for some
a; b 2 R, with � D e�t and the integral representation (2) ofQt ,

J B�
�.H/; �.K/

� D P
�
X1 � a; �X1 C

p
1 � �2 Y 1 � b

�

D
ˆ
Rn

1H Qt.1K/d�:
(6)

Apply now Theorem 1 to the function J B. Since J B.u; 0/ D J B.0; v/ D 0 and
J B.1; 1/ D 1, for f and g approaching 1A and 1B respectively,

ˆ
Rn

ˆ
Rn

J
�
f .x/; g

�
�x C

p
1 � �2 y��

d�.x/d�.y/ D
ˆ
Rn

1A Qt .1B/d�:

We then recover Borell’s noise stability theorem (1) since by (6),

J B

� ˆ
Rn

f d�;

ˆ
Rn

g d�

�
D J B�

�.A/; �.B/
� D J B�

�.H/; �.K/
�

D
ˆ
Rn

1H Qt.1K/d�
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for parallel half-spacesH and K such that respectively �.A/ D �.H/ and �.B/ D
�.K/. When � 2 Œ�1; 0�, observe that

J B
� .u; v/ D u � J B��.u; 1� v/

so that J B is �-convex in this case, and the conclusion of Theorem 1 for the function
J B
� is thus reversed. As pointed out in [28], (1) on sets may actually be turned to

Theorem 1 (for J B) through epigraphs of functions on R
n�1.

It remains to check the �-concavity of J B. To this task, it is convenient to recall
that Qtf .x/ may be given alternatively by the Mehler kernel

Qtf .x/ D
ˆ
Rn

f .y/qt .x; y/d�.y/ (7)

where, for t > 0, .x; y/ 2 R
n � R

n,

qt .x; y/ D qnt .x; y/

D 1p
1 � e�2t exp

�
� e�2t

2.1� e�2t /
�jxj2 C jyj2 � 2 etx � y��

:
(8)

In particular, if � D e�t ,

J B.u; v/ D
ˆ ˆ�1.u/

�1

ˆ ˆ�1.v/

�1
q1t .x; y/d�

1.x/d�1.y/:

Observe also that .ˆ�1/0 D 1
'ıˆ�1 where ' D ˆ0 is the density of �1 on R. Hence,

@1J
B.u; v/ D

ˆ ˆ�1.v/

�1
q1t

�
ˆ�1.u/; y

�
d�1.y/

and

@12J
B.u; v/ D q1t

�
ˆ�1.u/; ˆ�1.v/

�
:

On the other hand, by the integral representations (2) and (7), for h smooth enough,

@x

ˆ
R

h.y/q1t .x; y/d�
1.y/D @xQ

1
t h.x/D �Q1

t h
0.x/D �

ˆ
R

h0.y/q1t .x; y/d�1.y/:

With h a smooth approximation of 1.�1;b�,

@x

ˆ b

�1
q1t .x; y/d�

1.y/ D �� q1t .x; b/'.b/:
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Therefore,

@11J
B.u; v/ D �� q1t

�
ˆ�1.u/; ˆ�1.v/

� ' ıˆ�1.v/
' ıˆ�1.u/

:

Similarly,

@22J
B.u; v/ D �� q1t

�
ˆ�1.u/; ˆ�1.v/

� ' ıˆ�1.u/
' ıˆ�1.v/

:

Hence, on .0; 1/2,

@11J
B @22J

B � �2.@12J
B/2 D 0

and @11J B � 0, @22J B � 0 so that J B is indeed �-concave.
It would be of interest to find other relevant examples of function J . It is also of

interest to directly compare the conclusion of Theorem 1 for the hypercontractive
function J H and for the Borell noise stability function J B, and namely to show
that noise stability is a stronger statement implying hypercontractivity. One way
towards this end, however along a rather long detour, is to observe, as emphasized
in [26], that Borell’s noise stability theorem may be used to reach the Gaussian
isoperimetric inequality. Now, the latter implies in turn the standard logarithmic
Sobolev inequality for the Gaussian measure, equivalent to hypercontractivity
(cf. [3, 26]).

There is an alternative direct argument towards this relationship, applying
Theorem 1 for J B to "f and ıg and letting "; ı ! 0. To this task, it is necessary
to investigate the asymptotics of J B."u; ıv/ as "; ı ! 0. Similar asymptotics are
investigated in [19].

Set � D e�t 2 .0; 1/ and fix 0 < u; v < 1. Let furthermore 0 < " < 1, ı D "�
2

where � < � < 1
�

, and

Z D
r

2 log
1

"
; U D log

1

u
; V D log

1

v
:

In this notation, after a change of variables,

J B."u; ıv/ D UV

�Z2

ˆ 1

c

ˆ 1

d

Qq1t
	

�Z � Ux

Z
;��Z � Vy

�Z



dxdy

where

c D �Z
U

�
Z Cˆ�1."u/

�
and d D � Z

�V

�
�Z Cˆ�1.ıv/

�
;
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and

Qq1t .x; y/ D .2�/�1q1t .x; y/ e�.x2Cy2/=2; .x; y/ 2 R � R:

After some algebra,

J B."u; ıv/ D UV e	Z
2

2�
p
1 � �2�Z2

ˆ 1

c

ˆ 1

d

e�˛Ux�ˇVy�R.x;y/dxdy

where

	 D �1 � 2��C �2

2.1� �2/
; ˛ D 1 � ��

1� �2
; ˇ D 1 � ��1�

1 � �2

and

R.x; y/ D � 1

2.1� �2/

�
U 2x2

Z2
C V 2x2

�2Z2
� 2�

UVxy

�Z2

�
:

It is classical that

ˆ�1."/ D �
r

2 log
1

"
C o

�r

2 log
1

"

�

as " ! 0, so that

ˆ�1."u/ D �Z � U

Z
C o.Z/

as Z ! 1. Moreover, o.Z/ can be made uniform over 
 � u � 1 � 
 for 
 > 0

fixed. As a consequence, as " ! 0, c; d ! 1 and

2�
p
1 � �2 �Z2e�	Z2J B."u; ıv/ ! UV

ˆ 1

1

ˆ 1

1

e�˛Ux�ˇVydxdy D 1

˛ˇ
e�˛U�ˇV :

By definition of U and V , the right-hand side is 1
˛ˇ

u˛vˇ .
Let now f; g on R

n such that 
 � f; g � 1� 
 for some fixed 
 > 0. Translating
the preceding asymptotics into the inequality

ˆ
Rn

ˆ
Rn

J B
�
"f .x/; ıg

�
�x C

p
1 � �2 y��

d�.x/d�.y/

� J B

�
"

ˆ
Rn

f d�; ı

ˆ
Rn

g d�

�
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yields

ˆ
Rn

ˆ
Rn

f ˛.x/gˇ
�
�x C

p
1 � �2 y

�
d�.x/d�.y/ �

�ˆ
Rn

f d�

�˛� ˆ
Rn

g d�

�ˇ
:

This inequality extends to all positive measurable functions f; g W Rn ! R by
homogeneity. Now, as is immediately checked, for the values of ˛; ˇ defined above,

.˛ � 1/.ˇ � 1/ D �2˛ˇ;

that is condition (5) of hypercontractivity holds. Given therefore any ˛; ˇ 2 .0; 1/

satisfying this relation, one may choose � < � < 1
�

such that ˛ D 1���
1��2 and

ˇ D 1���1�

1��2 as above. The announced claim follows.
It would be worthwhile to examine similarly noise stability for the Lebesgue

measure � with respect to the standard heat kernel expressing that for Borel sets A,
B in R

n with finite volume,

ˆ
Rn

1A Ht .1B/dx �
ˆ
Rn

1C Ht .1D/dx

where

Htf .x/ D
ˆ
Rn

f .y/ e�jx�yj2=4t dy

.4�t/n=2
; t > 0; x 2 R

n;

and C and D are centered balls in R
n such that �.A/ D �.C / and �.B/ D �.D/.

This classical result is going back to the Riesz rearrangement inequality [33]
(see also [14,27,34]), and one might wonder for a heat flow proof. A similar question
may be formulated on the sphere (cf. [1, 10, 15]).

3 Multidimensional Extensions

On the basis of the heat flow proof of Theorem 1, we address in this section multidi-
mensional extensions and develop connections to Brascamp-Lieb and Slepian-type
inequalities. The multidimensional version of noise stability was already put
forward by J. Neeman in [30]. The Brascamp-Lieb applications are essentially
contained with the same approach in [8, 16] (see also [17]). At the same time, the
investigation provides a somewhat different analytical treatment of the conclusions
of Sect. 2.

Let J be a (smooth) real-valued function on some rectangle subset R of Rm. It
will implicitly be assumed below that a composition like J ıf is meant for functions
f with values in R.
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Let f1; : : : ; fm be (smooth) functions on R
n and consider, for f D .f1; : : : ; fm/,

 .s/ D
ˆ
Rn

J ıQsf d�; s � 0;

where .Qs/s�0 is the Ornstein-Uhlenbeck semigroup on R
n (extended to functions

with values in R
m). Arguing as in Sect. 2, by integration by parts with respect to the

Ornstein-Uhlenbeck generator,

 0.s/ D
nX

kD1

ˆ
Rn

@kJ ıQsf LQsfk d�

D �
mX

k;`D1

ˆ
Rn

@k`J ıQsf rQsfk � rQsf` d�:

(9)

Definition. Given a smooth function J on an open subset of R
m and

� D .�k`/1�k;`�m where �k` are p�p matrices (p � 1), say that J is �-concave if

mX

k;`D1
@k`J �k` vk � v` � 0 (10)

for all vectors vk , k D 1; : : : ; m, in R
p. If p D 1, the meaning of this condition is

that the point-wise (Hadamard) product Hess.J / ı � of the Hessian of J and of �
is (semi-) negative definite.

When m D 2, p D n and � is the 2n � 2n matrix

�
Idn � Idn
� Idn Idn

�
(11)

where � 2 R, the �-concavity of J (on R
2) amounts to its �-concavity.

In (9), replace now n by qn, q� 1 integer, and assume that for every
k D 1; : : : ; m,

fk D gk ı Ak
where gk W Rp ! R and Ak is a (constant) p � qn matrix such that Ak tAk is the
identity matrix (of Rp). By the integral representation (2) of Qs ,

rQsfk D e�s tAk.rQsgk/ ı Ak
where on the left-hand side the semigroupQs is acting on R

qn and on the right-hand
side, it is acting on R

p. Hence

 0.s/ D � e�2s
mX

k;`D1

ˆ
Rqn
@k`J ıQsf �k`.rQsgk/ ı Ak � .rQsg`/ ı A` d�
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where �k` D A`
tAk (which is a p � p matrix).

With this choice of � D .�k`/1�k;`�m, the following proposition summarizes the
conclusion at this level of generality.

Proposition 2. In the preceding setting, assume that J is �-concave. Then´
Rqn J ı f d� � J.

´
Rqn f d�/, that is

ˆ
Rqn
J.g1 ı A1; : : : ; gm ı Am/d� � J

� ˆ
Rqn
g1 ı A1d�; : : : ;

ˆ
Rqn
gm ı Amd�

�
:

To connect with Sect. 2, take for example p D n and q D m D 2 and let A1 and
A2 be the n � 2n matrices A1 D .IdnI 0n/ and A2 D .� IdnI

p
1 � �2 Idn/ so that

f1.x; y/ D g1.x/ and f2.x; y/ D g2
�
�x C

p
1 � �2 y�

; .x; y/ 2 R
n � R

n:

Since � is given by (11), the monotonicity property follows from the �-concavity
of J .

We next systematically investigate illustrations of Proposition 2 for some main
examples of interest. For simplicity, we only consider p D q D 1, the multidimen-
sional cases being often obtained by tensor products with the identity matrix (as in
the preceding example). The �-concavity thus amounts to Hess.J / ı � � 0 in the
following.

(i) The first illustration examines Brascamp-Lieb inequalities under geometric
conditions. Consider unit vectors A1; : : : ; Am which decompose the identity in R

n

in the sense that for 0 � ck � 1, k D 1; : : : ; m,

mX

kD1
ckAk ˝ Ak D Idn: (12)

Then, for

J.u1; : : : ; um/ D uc11 � � � ucmm

on .0;1/m and fk.x/ D gk.Ak � x/, gk W R ! R, k D 1; : : : ; m, the �-concavity
with respect to �k` D Ak � A`, k; ` D 1; : : : ; m, is expressed by

mX

k;`D1
ckc`Ak � A` vkv` �

mX

kD1
ckv2k (13)

for all v1; : : : ; vm 2 R. Now, if x D Pm
kD1 ckAkvk ,

jxj2 D
mX

kD1
ckAkvk � x �

� mX

kD1
ckv2k

�1=2� mX

kD1
ck.Ak � x/2

�1=2
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Since, by the decomposition (12), jxj2 D Pm
kD1 ck.Ak � x/2, it follows that

jxj2 D
ˇ
ˇ
ˇ̌
mX

kD1
ckAkvk

ˇ
ˇ
ˇ̌
2

�
mX

kD1
ckv2k

which is precisely the requested condition (13). We therefore conclude to the
following result.

Corollary 3. Under the decomposition (12), for non-negative functions gk on R,
k D 1; : : : ; m,

ˆ
Rn

mY

kD1
g
ck
k .Ak � x/d� �

mY

kD1

� ˆ
R

gkd�

�ck
:

This inequality is part of the Brascamp-Lieb inequalities under the geometric
Ball condition (12) [4] (cf. e.g. [7, 8]). It is more classically stated with respect to
the Lebesgue measure as

ˆ
Rn

mY

kD1
f
ck
k .Ak � x/dx �

mY

kD1

� ˆ
R

fkdx

�ck

which is immediately obtained after the change fk.x/ D gk.x/e�x2=2 (using thatPm
kD1 ck D n/.
The heat flow proof of Corollary 3 is thus going back to [16] and [8] in which

more general statements are considered and achieved in this way. One of the
motivations of [16] was actually to investigate similar inequalities for coordinates
on the sphere. Let Sn�1 be the standard n-sphere in R

n and denote by 	 the uniform
(normalized) measure on it. In this framework, one result then reads as follows. If
gk , k D 1; : : : ; n, are, say bounded measurable, functions on R, then

ˆ
Sn�1

J
�
g1.x1/; : : : ; gn.xn/

�
d	 � J

� ˆ
Sn�1

g1.x1/d	; : : : ;

ˆ
Sn�1

gn.xn/d	

�

as soon as J on R
n, or some open (convex) set in R

n, is separately concave in any
two variables. The proof proceeds as the one of Proposition 2 along now the heat
flow of the Laplace operator

� D 1

2

nX

k;`D1
.xk@` � x`@k/2

on S
n�1. The monotonicity condition on J then takes the form

nX

k;`D1
@k`J .ık` � xkx`/vkv` � 0
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which is easily seen to be satisfied under concavity of J in any two variables. The
case considered in [16] simply corresponds to

J.u1; : : : ; un/ D .u1 � � � un/
1=2

on R
nC. More general forms under decompositions (12) of the identity have been

considered in [6, 7].
In the further illustrations, consider X D .X1; : : : ; Xm/ a centered Gaussian

vector on R
m with covariance matrix � D A tA such that �kk D 1 for every

k D 1; : : : ; m. The vector X has the distribution of Ax, x 2 R
n, under the standard

normal distribution � on R
n. Applying the general Proposition 2 to the unit vectors

(1 � n matrices) Ak , k D 1; : : : ; m, which are the lines of the matrix A, and to
fk.x/ D gk.Ak � x/, x 2 R

n, where gk W R ! R, k D 1; : : : ; m, with respect to
� , yields that whenever Hess.J / ı � � 0, under suitable integrability properties on
the gk’s,

E

	
J

�
g1.X1/; : : : ; gm.Xm/

�
 � J
	
E

�
g1.X1/

�
; : : : ;E

�
gm.Xm/

�

: (14)

Note that, as in Sect. 1, the condition Hess.J / ı � � 0 is actually necessary and
sufficient for (14) to hold.

(ii) This illustration deals with a correlation inequality for Gaussian vectors which
covers in particular the classical hypercontractivity property. For a Gaussian vector
X as above, let as in the first illustration,

J.u1; : : : ; um/ D uc11 � � � ucmm

on .0;1/m, with 0 � ck � 1, k D 1; : : : ; m. This function J is the suitable
multidimensional analogue of the hypercontractive function J H. For this choice of
J , the condition Hess.J / ı� � 0 (where � is the covariance matrix of X ) amounts
to

mX

k;`D1
ckc` �k` vkv` �

mX

kD1
ckv2k (15)

for all vk 2 R, k D 1; : : : ; m. Note that this condition expresses equivalently
that � � �c in the sense of symmetric matrices where �c is the diagonal matrix
. 1
ck
/
1�k�m. While the next Corollary 4 is somewhat part of the folklore (implicit for

example in [7]), it has been emphasized recently in [17] together with reverse and
multidimensional versions (in particular, if � � �c , the conclusion is reversed in
(16)).
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Corollary 4. Under (15), for all non-negative functions gk WR!R, k D 1; : : : ; m,

E

� mY

kD1
g
ck
k .Xk/

�
�

mY

kD1
E

�
gk.Xk/

�ck
: (16)

One application concerns the Ornstein-Uhlenbeck process Z D .Zt /t�0 (in
dimension one) with stationary measure � D �1 and associated Markov semigroup
.Qt/t�0 D .Q1

t /t�0. If X is the vector .Zt1 ; : : : ; Ztm/ with 0 � t1 � � � � � tm, the

covariance matrix � has entries �k` D e�jtk�t`j, k; ` D 1; : : : ; m. In particular, for
t1 D 0 and t2 D t > 0, (15) reads

2 e�t c1c2v1v2 � c1.1 � c1/v
2
1 C c2.1 � c2/v22

for all v1; v2 2 R which amounts to (5)

e�2t c1c2 � .c1 � 1/.c2 � 1/

and the conclusion of Corollary 4 leads to hypercontractivity. The condition

mX

k;`D1
ckc` e�jtk�t`jvkv` �

mX

kD1
ckv2k

yields a multidimensional form of hypercontractivity

E

� mY

kD1
g
ck
k .Zsk /

�
�

mY

kD1
E

�
gk.Zsk /

�ck :

In terms of the Mehler kernel (8),

ˆ
R

� � �
ˆ
R

mY

kD1
g
ck
k .xk/ qt2�t1 .x1; x2/ � � �qtm�tm�1 .xm�1; xm/d�.x1/ � � �d�.xm/

�
mY

kD1

� ˆ
R

gkd�

�ck
:

(iii) We next turn to the multidimensional versions of Gaussian noise stability
following [30]. As above, let X D .X1; : : : ; Xm/ be a centered Gaussian vector
on R

m with (non-degenerate) covariance matrix � . Define, for u1; : : : ; um in
.0; 1/,

J.u1; : : : ; um/ D P
�
X1 � ˛1.u1/; : : : ; Xm � ˛m.um/

�
(17)
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where ˛1; : : : ; ˛m are smooth functions on .0; 1/. For specific choices of ˛k , this
function will turn as the multidimensional analogue of the noise stability function
J B. Denoting by p the density of the distribution of X with respect to the
Lebesgue measure, elementary (although a bit tedious, see [30]) differential calculus
leads to

@k`J D ˛0
k.uk/˛

0̀ .u`/
ˆ ˛1.u1/

�1
� � �

ˆ ˛m.um/

�1
pk` dx

for k 6D ` and

@kkJ D
�
˛00
k .uk/ � ˛k.uk/˛0

k.uk/
2

�kk

� ˆ ˛1.u1/

�1
� � �

ˆ ˛m.um/

�1
pk dx

� ˛0
k.uk/

2
X

6̀Dk

�k`

�kk

ˆ ˛1.u1/

�1
� � �

ˆ ˛m.um/

�1
pk` dx

where

pk D p
�
x1; : : : ; ˛k.uk/; : : : ; xm

�
;

pk` D p
�
x1; : : : ; ˛k.uk/; : : : ; ˛`.u`/; : : : ; xm

�
:

Choose now ˛k D ˆ�1, k D 1; : : : ; m, where we recall the distribution function
ˆ of the standard normal, and ' its derivative. Since

˛0
k D 1

' ıˆ�1 and ˛00
k D ˆ�1

.' ıˆ�1/2
;

in order for the condition Hess.J / ı � � 0 to hold it is thus sufficient that �kk D 1

for every k D 1; : : : ; m and

mX

kD1

X

6̀Dk
�k` pk` v2k �

X

k 6D`
pk` �k` vkv` � 0

for all v1; : : : ; vm 2 R. This holds as soon as �k` � 0 for all k; `.
For the application to the following corollary, recall that for the choice of

˛k D ˆ�1, the function J of (17) is equal to 0 if one of the uk’s is (approaches)
0, and is equal to (approach) 1 if all the uk’s are equal to 1. The following corollary,
thus due to J. Neeman [30], is then a consequence of (14) applied to gk D 1Bk ,
k D 1; : : : ; m. The restriction �kk D 1, k D 1; : : : ; m, is lifted after a simple scaling
of the Gaussian vector and the Borel sets.
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Corollary 5. Let X D .X1; : : : ; Xm/ be a centered Gaussian vector in R
m with

(non-degenerate) covariance matrix � such that �k` � 0 for all k; ` D 1; : : : ; m.
Then, for any Borel sets B1; : : : ; Bm in R,

P.X1 2 B1; : : : ; Xm 2 Bm/ � P.X1 � b1; : : : ; Xm � bm/

where P.Xk 2 Bk/ D ˆ.bk=	k/, 	k D p
�kk, k D 1; : : : ; m.

When �k` � 0 whenever k 6D `, the inequality in the conclusion of Corollary 5
is reversed. As developed in [30], the result applies similarly to Gaussian vectors
X1; : : : ; Xm with covariance identity matrix. A related work by M. Isaksson and
E. Mossel [25] establishes the conclusion of Corollary 5 under the (stronger)
hypothesis that the off-diagonal elements of the inverse of � are non-positive. Their
approach relies on a rearrangement inequality for kernels on the sphere. Corollary 5
(as well as actually, after some work, the result of [25]—see [30]) covers the
example of the Ornstein-Uhlenbeck process, and thus of C. Borell’s result [12] in
the form of the following corollary.

Corollary 6. Let .Zt /t�0 be the Ornstein-Uhlenbeck process on the line, and let
0 � t1 � � � � � tm. For any Borel sets B1; : : : ; Bm in R,

P.Zt1 2 B1; : : : ; Ztm 2 Bm/ � P.Zt1 � b1; : : : ; Ztm � bm/

where P.Ztk 2 Bk/ D �.Bk/ D ˆ.bk/, k D 1; : : : ; m.

(iv) This illustration is a variation on the previous multidimensional noise stability
result which actually leads to a weak form of the classical Slepian inequalities. Let
as above X D .X1; : : : ; Xm/ be a centered Gaussian vector on R

m with covariance
matrix � D �X such that �Xkk D 1 for every k D 1; : : : ; m. Consider furthermore
Y D .Y1; : : : ; Ym/ a centered Gaussian vector on R

m with covariance matrix �Y

also such that �Ykk D 1 for every k D 1; : : : ; m, yielding a J function (17)

J.u1; : : : ; um/ D P
�
Y1 � ˛1.u1/; : : : ; Ym � ˛m.um/

�
; u1; : : : ; um 2 .0; 1/:

Choose now again ˛k D ˆ�1. Arguing as in (iii) towards Hess.J / ı �X � 0, the
condition is now that

mX

kD1

X

6̀Dk
�Yk` pk` v2k �

X

k 6D`
pk` �

X
k` vkv` � 0

for all v1; : : : ; vm 2 R (where p is here the density of the law of Y ). This holds as
soon as �Yk` � 0 and

�
�Xk`

�2 � �
�Yk`

�2

for all k 6D `. As a conclusion
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Corollary 7. Let X D .X1; : : : ; Xm/ and Y D .Y1; : : : ; Ym/ be centered Gaussian
vectors on R

m with respective (non-degenerate) covariance matrices �X and �Y .
Assume that �Xkk D �Ykk D 1 and

ˇ
ˇ�Xk`

ˇ
ˇ � �Yk`

for all k; ` D 1; : : : ; m. Then, for any Borel sets B1; : : : ; Bm in R,

P.X1 2 B1; : : : ; Xm 2 Bm/ � P.Y1 � b1; : : : ; Ym � bm/

where P.Xk 2 Bk/ D ˆ.bk/, k D 1; : : : ; m. In particular, for every r1; : : : ; rm in R,

P.X1 � r1; : : : ; Xm � rm/ � P.Y1 � r1; : : : ; Ym � rm/:

This result is of course a weak form, in particular due to the constraint �Yk` � 0

(with however a somewhat stronger conclusion), of the classical Slepian lemma
which indicates that for Gaussian vectors X and Y in R

m, the conclusion of
Corollary 7 holds whenever �Xkk D �Ykk and �Xk` � �Yk` for all k; ` D 1; : : : ; m.
Note that the traditional proof of Slepian’s lemma [21,22,32,36] is an interpolation
between the covariances �X and �Y which is not exactly the same as the one at the
root of Corollary 7.

4 Log-Concave Measures

In this section, we develop the heat flow proof of Theorem 1 of E. Mossel and
J. Neeman in the somewhat extended context of probability measures d� D e�V dx
on R

n such that V is a smooth potential with a uniform lower bound on its Hessian.
The typical application actually concerns potentials V which are more convex
than the quadratic one, corresponding to Gaussian measures. The argument may
be extended to the more general context of Markov diffusion semigroups and the
�-calculus as exposed in [3] although for the simplicity of this note, we stay in the
familiar Euclidean setting.

Consider therefore a probability measure d� D e�V dx on the Borel sets of
R
n, invariant and symmetric measure of the second order differential operator

L D � � rV � r where V is a smooth potential on R
n. The (symmetric) semigroup

.Pt /t�0 with generator L may be represented by (smooth) probability kernels

Pth.x/ D
ˆ
Rn

h.y/ pt .x; dy/: (18)

It will be assumed that V � c jxj2
2

is convex for some c 2 R, in other words the
Hessian of V is bounded from below by c Idn as symmetric matrices. It is by
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now classical (cf. [3]) that this convexity assumption ensures that for all (smooth)
h W Rn ! R,

jrPthj � e�ctPt
�jrhj�: (19)

The Gaussian example of the Ornstein-Uhlenbeck semigroup .Qt/t�0 with invariant
measure � is included with c D 1. In this case, due to the representation (2), the
gradient bound (19) actually turns into the identity rQth D e�tQt .rh/.

We start with the analogue of Theorem 1 in this context following therefore the
argument of [28].

Theorem 8. Let J be �-concave, � > 0, on R D I1 � I2 � R
2 where I1 and I2 are

open intervals. Then, for every f W Rn ! I1, g W Rn ! I2 suitably integrable, and
with � D e�ct, t > 0,

ˆ
Rn

ˆ
Rn

J
�
f .x/; g.y/

�
pt .x; dy/d�.x/ � J

� ˆ
Rn

f d�;

ˆ
Rn

g d�

�
:

Proof. It is enough to assume that f and g are taking values in respective compact
sub-intervals of I1 and I2. Set

 .s/ D
ˆ
Rn

ˆ
Rn

J
�
Psf .x/; Psg.y/

�
pt .x; dy/d�.x/; s � 0:

The task is to show that  is non-decreasing. Taking derivative in time s,

 0.s/ D
ˆ
Rn

ˆ
Rn

@1J
�
Psf .x/; Psg.y/

�
LPsf .x/pt .x; dy/d�.x/

C
ˆ
Rn

ˆ
Rn

@2J
�
Psf .x/; Psg.y/

�
LPsg.y/pt .x; dy/d�.x/:

By integration by parts in space with respect to the operator L, expressed (for smooth
functions 
; � W Rn ! R) by

ˆ
Rn


.�L�/d� D
ˆ
Rn

r
 � r� d�;

it holds
ˆ
Rn

ˆ
Rn

@1J
�
Psf .x/; Psg.y/

�
LPsf .x/pt .x; dy/d�.x/

D �
ˆ
Rn

ˆ
Rn

@11J
�
Psf .x/; Psg.y/

�ˇ̌rPsf .x/
ˇ̌2
pt .x; dy/d�.x/

�
ˆ
Rn�Rn

@1J
�
Psf .x/; Psg.y/

�rPsf .x/ � rxpt .x; dy/d�.x/:
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For x 2 R
n fixed, consider h.y/ D @1J.Psf .x/; Psg.y//, y 2 R

n. Since

rPth.z/ D
ˆ
Rn

h.y/rzpt.z; dy/; z 2 R
n;

at z D x,

ˆ
Rn

@1J
�
Psf .x/; Psg.y/

�rPsf .x/ � rxpt .x; dy/ D rPth.x/ � rPsf .x/:

Now, by (19),

ˇ
ˇrPth.x/

ˇ
ˇ � e�ctPt

�jrhj�.x/ D e�ct
ˆ
Rn

ˇ
ˇrh.y/ˇˇpt .x; dy/:

Since

rh.y/ D @12J
�
Psf .x/; Psg.y/

�rPsg.y/;

it follows that
ˆ
Rn

ˆ
Rn

@1J
�
Psf .x/; Psg.y/

�rxpt .x; dy/ � rPsf .x/d�.x/

� e�ct
ˆ
Rn

ˆ
Rn

j@12J j�Psf .x/; Psg.y/
�ˇˇrPsg.y/

ˇ
ˇ
ˇ
ˇrPsf .x/

ˇ
ˇpt.x; dy/d�.x/:

Summarizing, and by the symmetric conclusion in the y variable,  0.s/ is
bounded from below by

ˆ
Rn

ˆ
Rn

h
.�@11J /jrPsf j2 C .�@22J /jrPsgj2 � 2 e�csj@12J jjrPsf jjrPsgj

i

� pt .x; dy/d�.x/:

From the hypothesis on the Hessian of J , it follows that  0 � 0 which is the result.
ut

As in the Gaussian case, the examples of illustration of Theorem 8 cover both
hypercontractivity and noise stability for the choices of J D J H or J D J B. Under
c > 0, the choice of J H yields hypercontractivity of the semigroup associated
to this family of invariant measures, and thus the equivalent logarithmic Sobolev
inequality for � (cf. [3]). On the other hand, the noise stability part actually turns
into a comparison theorem.

Corollary 9. Let .Pt /t�0 be the Markov semigroup with invariant reversible mea-
sure d� D e�V dx where V is a smooth potential on R

n such that Hess.V / � c Idn
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with c > 0. Then, whenever A;B are Borel sets in R
n and H;K are respective

parallel half-spaces such that �.A/ D �.H/, �.B/ D �.K/, then

ˆ
Rn

1APt .1B/d� �
ˆ
Rn

1H Qct.1K/d�:

Again, as in the Gaussian setting (cf. [26]), the comparison property of
Corollary 9 may be shown to imply the isoperimetric comparison theorem of [2]
(see [3]) comparing the isoperimetric profile of measures d� D e�V dx to the
Gaussian one.

Next, we turn to the multidimensional version of the preceding result, with
therefore in the following c > 0. Let X D .Xt/t�0 be the Markov process with
generator L D � � rV � r and initial invariant distribution d� D e�V dx. We
are interested in the distribution of .Xt1; : : : ; Xtm/ where 0 � t1 � � � � � tm.
Consider the covariance matrix � the Ornstein-Uhlenbeck process at speed ct, that
is �k` D e�cjtk�t`j, k; ` D 1; : : : ; m. In the Gaussian case, this extension (for thus
the Ornstein-Uhlenbeck process) was achieved by the study of general Gaussian
vectors. In the present case, we deal with the kernels as given by (18), for simplicity
one-dimensional.

Theorem 10. In the preceding notation, assume that the Hadamard product of
.j@k`J j/1�k;`�m and � is (semi-) negative-definite. Then, for every fi W R ! Ii ,
i D 1; : : : ; m, suitably integrable,

ˆ
R

� � �
ˆ
R

J
�
f1.x1/; : : : ; fm.xm/

�
ptm�tm�1 .xm�1; dxm/ � � �pt2�t1 .x1; dx2/d�.x1/

� J

� ˆ
R

f1 d�; : : : ;

ˆ
R

fm d�

�
:

We outline the argument when m D 3. Consider

 .s/ D
ˆ
R

ˆ
R

ˆ
R

J
�
Psf .x/; Psg.y/; Psh.z/

�
pt�u.y; dz/pt .x; dy/d�.x/; s � 0;

for t > u > 0 and three functions f; g; h. Differentiating  and integrating by parts
in space leads to consider expressions such as

ˆ
R

ˆ
R

ˆ
R

@1J pt�u.y; dz/@xpu.x; dy/@xPsf d�.x/:

Arguing as in the proof of Theorem 8, this expression is equal to

ˆ
R

@xPsk @xPsf d�.x/
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where k D k.y/ D ´
R
@1J pt�u.y; dz/. Now by (19)

j@xPskj � e�csPs
�j@ykj�:

Since

@yk D
ˆ
R

@12J pt�u.y; dz/C
ˆ
R

@1J @ypt�u.y; dz/;

similarly

j@ykj �
ˆ
R

j@12J jpt�u.y; dz/C e�c.t�u/
ˆ
R

j@13J j@ypt�u.y; dz/:

The proof is then completed in the same way.
With the J function (17) associated to a finite-dimensional distribution of the

Ornstein-Uhlenbeck process, the following consequence holds true.

Corollary 11. Let c > 0 and 0 � t1 � � � � � tm. For any Borel sets B1; : : : ; Bm
in R,

P.Xt1 2 B1; : : : ; Xtm 2 Bm/ � P.Zct1 � b1; : : : ; Zctm � bm/

where P.Xtk 2 Bk/ D �.Bk/ D ˆ.bk/, k D 1; : : : ; m and where .Zct/t�0 is the
Ornstein-Uhlenbeck process with speed ct.

As suggested by J. Neeman following his arguments developed in [30], Corol-
lary 11 may be used towards a comparison property between hitting times. For a
Borel set B in R, let eXB D infft � 0 IXt … Bg be the exit time of the Markov
process X D .Xt/t�0 from the set B .

Corollary 12. Under the preceding notation, for any s � 0,

P
�
eXB � s

� � P
�
eZH � s

�

where H is a half-line in R such that �.H/ D �.B/ and Z D .Zct/t�0 the
Ornstein-Uhlenbeck process at speed ct.

5 The Discrete Cube

To conclude this note, we briefly address in this last section the corresponding noise
stability issue on the discrete cube, and collect a few remarks in connection with the
recent development [18] on the “Majority is Stablest” theorem.
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By Theorem 1, a function J is �-concave in the sense that

�
@11J � @12J

� @12J @22J

�
� 0

if and only if for all suitable functions f and g on R
n,

ˆ
Rn

ˆ
Rn

J
�
f .x/; g

�
�x C

p
1 � �2 y

��
d�.x/d�.y/

� J

� ˆ
Rn

f d�;

ˆ
Rn

g d�

�
:

(20)

The analogue of the Gaussian couple .X; �X C p
1 � �2 Y / with correlation

� Idn, � 2 Œ�1; 1�, on the discrete cube †n D f�1;C1gn, with n D 1 to start with,
leads to consider a couple with distribution

.1C �xy/d�.x/d�.y/

on †2, where � is the uniform probability measure on † D f�1;C1g. The latter
inequality (20) on the two-point space † D f�1;C1g therefore amounts to

ˆ
†

ˆ
†

J
�
f .x/; g.y/

�
K�.x; y/d�.x/d�.y/ � J

� ˆ
†

f d�;

ˆ
†

g d�

�
(21)

for every functions f; g W † ! R, where K�.x; y/ D 1C �xy. This inequality (21)
is stable under product. On †n D f�1;C1gn equipped with the uniform product
measure �n, let for � 2 R and x D .x1; : : : ; xn/ 2 †n, y D .y1; : : : ; yn/ 2 †n,

K�.x; y/ D
nY

iD1
.1C � xiyi /:

If (21) holds, for every f , g on †n,

ˆ
†n

ˆ
†n
J

�
f .x/; g.y/

�
K�.x; y/d�

n.x/d�n.y/ � J

� ˆ
†n
fd�n;

ˆ
†n
gd�n

�
:

One may of course wonder for the equivalence of (21) with the �-concavity of
J . Actually, (21) expresses equivalently a 4-point inequality similar to the standard
characterization of concavity. Say namely that a function J on some open convex
set O of R2 is strongly �-concave for some � 2 R if for all .u; v/ 2 O, .u0; v0/ 2 O,

1C�
4
J.u; v/C 1��

4
J.u0; v/C 1��

4
J.u; v0/C 1C�

4
J.u0; v0/

� J
	

uCu0

2
; vCv0

2



:

(22)
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Lemma 13. Strong �-concavity implies �-concavity (for smooth functions).

Proof. By a Taylor expansion, at any .a; b/ 2 O, .h; k/ 2 R
2, such that

.a˙ h; b ˙ k/ 2 O,

.1C �/
�
J.a C h; b C k/C J.a � h; b � k/� 2J.a; b/

�

C .1 � �/�J.a C h; b � k/C J.a � h; b C k/ � 2J.a; b/�

D 2h2@11J.a; b/C 4�hk@12J.a; b/C 2k2@22J.a; b/C o.h2 C k2/:

With u D a C h, v D b C k, u0 D a � h, v0 D b � k, (22) implies the �-concavity
of J as h; k ! 0. ut

It is a main result, namely the Bonami-Beckner hypercontractivity theorem
[9,11], that the hypercontractive function J H is strongly �-concave under (5) (along
the equivalence between hypercontractivity and Theorem 1 described in Sect. 2 for
the Ornstein-Uhlenbeck semigroup). However, we could not establish directly the
strong �-concavity of J H in this case. Such a proof could give a better understanding
of the strong �-concavity property.

On the other hand, it is not true in general that �-concavity implies back strong
�-concavity and one example, taken from [18], is simply Borell’s noise stability
function J B (with parameter � 2 .0; 1/). Indeed, for u D v D 1 and u0 D v0 D 0 (in
the Boolean analysis terminology, this choice corresponds to the dictator functions
f .x/ D 1

2
C x

2
, g.y/ D 1

2
C y

2
), (22) would imply that

1C � � 4 J B
	1
2
;
1

2



(23)

since J B.1; 1/ D 1 and J B.1; 0/ D J B.0; 1/ D J B.0; 0/ D 0. But

J B
	1
2
;
1

2



D

ˆ 0

�1

ˆ 0

�1
q1t .x; y/d�

1.x/d�1.y/ D
ˆ 1

0

ˆ.˛x/d�1.x/

where ˛ D �p
1��2 and � D e�t . Taking the derivative in ˛ easily shows that

J B
	1
2
;
1

2



D 1

4
C 1

2�
arctan.˛/ D 1

2
� 1

2�
arccos.�/

so that (23) indeed fails as � ! 0. This value of J B
�
1
2
; 1
2

�
appears in Sheppard’s

formula put forward in [35] as early as 1899 as the asymptotic noise stability of the
Majority function (see [18, 29]).

It would be of interest to understand which additional property to �-concavity
ensures strong �-concavity. A. De et al. [18] recently observed by a suitable Taylor
expansion that there exists, for any � 2 .0; 1/, C.�/ > 0 such that

ˇ
ˇ
ˇ
ˇ
@3J B

� .u; v/

@iu @j v

ˇ
ˇ
ˇ
ˇ � C.�/

�
uv.1 � u/.1 � v/

��C.�/
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for all i; j � 0 with i C j D 3. This property then implies the approximate validity
of (22) in the sense that for every u; u0; v; v0 2 Œ"; 1 � "� for some " > 0,

1C�
4
J B
� .u; v/C 1��

4
J B
� .u

0; v/C 1��
4
J B
� .u; v

0/C 1C�
4
J B
� .u

0; v0/

� J B
�

	
uCu0

2
; vCv0

2



C C 0.�/ "�C 0.�/

�ju � u0j3 C jv � v0j3�:
(24)

As a main achievement, the authors of [18] develop from this conclusion and
tensorization a fully discrete proof of the “Majority is Stablest” theorem of [29]
(with Sheppard’s constant J B

�
1
2
; 1
2

�
as stability value) by suitably controlling the

error term via the influences of the Boolean functions under investigation.
One further observation of [18] is that the preceding two-point inequality (24) is

still good enough to reach, after tensorization and the central limit theorem, Borell’s
noise stability theorem for the Ornstein-Uhlenbeck semigroup.
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