
Chapter 2
Distributed Consensus Estimation of Wireless
Sensor Networks

Recently, consensus based distributed estimation has attracted considerable attention
from various fields to estimate deterministic parameters and track time-varying ones.
In this chapter, the state-of-the-art of distributed consensus estimation is discussed.

2.1 Consensus Based Distributed Parameter Estimation

2.1.1 Average Consensus

Average consensus develops with multi-agent systems where consensus is a vital
aspect in coordination and cooperation [5]. It is a linear iteration scheme where each
node updates its value as a linear weighted combination of the values received from
neighbors and its own. Consensus can be guaranteed by appropriately designing the
weights used in the linear schemes. However, the characteristics of WSNs introduce
several challenges for average consensus as summarized below: (1) The nodes are
always supplied by portable batteries whose energies are also constrained by limited
physical sizes. As a result, efficiency is a vital aspect in average consensus. (2)
Nodes need to exchange messages through unreliable wireless communication. The
unreliability can introduce noise, dynamic topology, time delays, and other problems.
How to obtain robust estimation is another issue should be concerned with. (3) The
nodes are easy to be compromised and the security problem in estimation is also
important.

Plenty of research work have been reported to tackle these challenges and they are
classified in Table 2.1 . On the aspect of efficiency, designing protocols for reaching
consensus with fast convergence rate is a choice. Matrix optimization is utilized to
design the weight coefficients in [6]. The increased convergence time based on matrix
optimization is limited by network connectivity. It can be slowed down even if the
weights are optimized. A local prediction component is added to the update protocol
in [7] and [8] which propose theoretical analysis to demonstrate the improvement
of the convergence time. Lower bounds for iteration steps in average consensus
and a minimum-time consensus scheme are also proposed in [9]. [10] couples the
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6 2 Distributed Consensus Estimation of Wireless Sensor Networks

Table 2.1 Average consensus

Efficiency

Fast convergence by designing weights [6]

Fast convergence by a prediction component [7, 8]

Achieving consensus with minimum iterations [9]

Removing the computation of maximum degree [10]

Transmitting with bounded peak power [11]

Quantized communication data with time-varying topologies [12]

A low complexity quantizer and refined quantization [13]

Robustness

Finding the weights causing least-mean-square deviation with channel noises [14]

Convergence property under imperfect communications [15]

Coupling consideration of channel noise and convergence rate [16]

Convergence under Markovian random graphs [17]

Average consensus with random topologies and noisy channels [18]

Average consensus with asynchronous communications between sensors [19]

Weighted average on directed graphs [20]

Consensus over directed graphs with quantized communication [21]

Directed networks with distributed time delays [22]

Cyber-Security

Analysis secure consensus through a system theoretic framework [23, 24]

Considering two types of outlier attackers [24]

Secure average consensus algorithms in spectrum sensing [25, 26]

Privacy preserving consensus [27]

Secure average consensus-based time synchronization protocol [28]

computation of the consensus value and the estimation of Laplacian matrix that can
remove the computation process of the maximum degree of the network. Notice
that the main power consumption is in the communication of a node. Therefore,
another way to save the energy is to use quantized communication data. A nonlinear
average consensus scheme with bounded peak power is proposed in [11]. Every node
proceeds a prior stage to map the data through a bounded function in order to bound
the transmit power. A uniform quantizer with constant step size and a communication
feedback component are introduced to deal with the sensor saturation and time-
varying topologies in [12]. The correlation between the exchanged values during the
consensus process is exploited in [13]. It results in a low complexity quantizer and
refined quantization during the convergence process.
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There are also some methods to address the second challenge. Channel noise is
inevitable in WSNs. Thus, many standard consensus algorithms under perfect com-
munication may fail to converge as observed in [14]. A solution is then provided
to find the best edge weights resulting in optimal estimation. In [15], authors focus
on the imperfect communications and prove the convergence property under some
perturbation models of exchanged data between nodes. A scheme considering both
the channel noise and convergence rate is proposed in [16]. Typical WSNs also suf-
fer from link failures, packet drops, and node failures, which results in switching
topology, time delays, and other problems. [17] shows some convergence results un-
der Markovian random graphs using the theory of Markovian jump linear systems.
Average consensus with random topologies and noisy channels are investigated in
[18]. Two algorithms called A-ND and A-NC are proposed to address the trade-off
between bias and variance caused by link failures and noisy channels. All the av-
erage consensus algorithms require clock synchronization which is hard to achieve.
Asynchronous average consensus algorithms are appropriate to tackle this problem.
It is known that the necessary condition for all sensors converge to the average value
is that the sum value remains the same. [19] proposes an implementation that guar-
antees the necessary condition in spite of asynchronous communications between
nodes. Weighted average consensus takes node measurement accuracy and environ-
mental conditions into consideration which makes the estimation more accurate and
reliable. Authors in [20] modify the existing weighted average consensus algorithms
to remove the requirement of bidirectional communication between neighbors. As
a result, the modified algorithm can work under directed graphs. The problem of
reaching consensus of a general unbalanced directed network under limited infor-
mation communication is addressed in [21]. Directed networks with distributed time
delays are investigated in [22]. Single and multiple time delays are investigated,
respectively.

Cyber-Security is another aspect that matters in distributed average consensus.
And secure average consensus algorithms have been more and more important with
the wide application of distributed average consensus protocols. It aims at ensur-
ing trustworthy computation in linear iterations in the presence of malicious inner
sensors or outer intrusions. References [23, 24] model misbehavior as unknown and
unmeasurable inputs and address the detection and identification problem through an
unknown-input system theoretic framework. Two types of adversarial outer attacks
are considered in [24]. The adversary is either able to break a number of links or
add noise on the values of the nodes. Both attacks are analyzed by optimal control
theory. References [25, 26] apply the secure average consensus algorithms in spec-
trum sensing. The secure schemes can adaptively adjust the weights of neighbors
and gradually isolate the malicious nodes. The adaptive threshold is also able to
mitigate the misbehaviors of inside nodes. A PPAC algorithm is proposed to guar-
antee the privacy of the initial values while ensure the whole network converge to
the exact average in [27]. The key point is to add and subtract random noises to the
iterative process. Some theoretical analyses are also given in [27]. A secure average
consensus-based time synchronization protocol is proposed in [28].
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Table 2.2 In-network regression consensus

Consensus-based D-LS Using ADMM [29]

DiCE: introducing new consensus constraints to reduce exchanged message [30]

Fast-DiCE: fast convergence by using Nesterov’s optimal gradient descend method [31]

Consensus-based D-LS with quantization and communication noise [32]

Consensus-based D-TLS [34]

IPI-based D-TLS: reduced computational complexity [35]

Two stage consensus-based solution for L norm regularization [36]

Three stage solution with low complexity and memory requirement [37]

PSSE: iteratively exclude abnormal values [38]

Consensus-based framework from both attacker and defender aspects [39]

2.1.2 In-Network Regression Consensus

As discussed in the previous subsection,we focus on the state of observation z or the
observation matrix that is equal to the identity matrix I in average consensus. How-
ever, in many application scenarios, the state of the original target x matters. The
observation matrix H often has a more general form. These problems are called lin-
ear inverse problems, and in-network regression consensus is a class of algorithms to
solve them. Although in-network regression consensus is a subclass of observation-
only consensus, it employs regression analysis methods like maximum likelihood and
least squares estimation, which is different from average consensus. The difference
leads to different research emphases. In in-network regression consensus, we always
formulate the estimation of the target into a convex minimization problem which
exhibits a separable structure. Using the separable characteristic of the problem,
consensus-based distributed solutions are exploited. Despite of this basic formula-
tion which directly uses the regression analysis methods, there are also algorithms
considering more limitations that introduce regularization into the convex problem.
Typical applications of in-network regression consensus include distributed spec-
trum sensing, distributed field estimation, distributed target localization and state
estimation in smart grid, etc. References on in-network regression consensus are
listed in Table 2.2. Reference [29] adopts the least squares (LS) technique to for-
mulate the convex problem. By introducing the consensus constraints and following
the method called alternating direction method of multiplier (ADMM), a distributed
consensus algorithm is proposed. Considering new consensus constraints, a new al-
gorithm called DiCE which can reduce the exchange messages between neighboring
nodes is proposed in [30]. A Fast-DiCE that takes the advantage of Nesterov’s op-
timal gradient descend method is then presented in [31]. However, these algorithms
do not consider the communication noises and link failures which are unavoidable in
WSNs. In [32], authors introduce a distributed consensus scheme for an LS problem
which guarantees the convergence even in the presence of quantization or commu-
nication noise. Reference [33] investigates the performance of the algorithm when
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there are erroneous links between neighboring nodes. A scheme is also proposed
in order to mitigate the influences and ensure satisfactory overall performance. A
distributed TLS (D-TLS) is proposed in [34] to tackle the situation where the obser-
vation matrix H is also noisy. To reduce the large computational complexity caused
by the process of eigenvalue decomposition in each step, a modified D-TLS called
IPI-based D-TLS is proposed in [35]. Sometimes L norm regularization is added into
the convex problem in order to improve the estimation accuracy or obtain stable solu-
tions. This idea leads to the L norm recovery methods widely applied in compressed
sensing, smart grid, field estimation, and other situations. Distributed consensus so-
lutions are often chosen to solve the recovery problems. Basically, the introduction
of the L norm regularization is dependent on the sparsity of the state to be esti-
mated. [36] proposes a two stage algorithm to solve the L1 norm recovery problem.
A model-robust adaptation is also adopted to control the approximation error caused
by spatial quantization. An iterative thresholding and input driven consensus-based
three-step method appears in [37] with low complexity and memory requirement.
In order to obtain robust power state estimation, [38] proposes a distributed PSSE
estimator based on ADMM to iteratively exclude the abnormal values. Sparse attack
construction and state estimation are exploited in [39]. A distributed framework for
both aspects are considered at the same time followed by corresponding distributed
consensus algorithms.

2.1.3 Observation+Innovation Consensus

Considering the fluctuation of the deterministic parameters to be estimated and the
timescales of communication and observation, the mentioned two classes of algo-
rithms are not suitable. Observation+innovation consensus interwinds observation
and estimation to tackle the problem. The estimation accuracy can be improved by
introducing new observations during estimation process. And the observation matrix
H also has a special form with some diagonal entries being zeros. Convergence, con-
sensus, estimation error, and the rate of convergence rate are the important metrics to
evaluate the observation+innovation consensus algorithms. They are enumerated in
Table 2.3. Reference [4] provides an observation+innovation consensus algorithm for
a deterministic target to remove the requirements of local observability. [40] proves
the bounded estimation error of the algorithm and quantify the trade-off between
connectivity, observability, and stability. Reference [41] gives a bound on the mean
square of the convergence rate and studies the behavior of the algorithm with the
measurements fading with time. The nonlinear observation models and noisy com-
munication links are considered with theoretical analysis. Reference [42] addresses
the problems of random link failures, stochastic communication noises, and Marko-
vian switching topologies. Both the mean square and almost sure convergence are
established. Quantization errors, successive packet dropouts, and randomly vary-
ing nonlinearities of the target are considered together in [43]. For non-Gaussian
observations, there is a threshold of network degree of connectivity. If it is below
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Table 2.3 Observation+innovation consensus

Removing the requirements of local observability [4]

Quantifying the trade-off between connectivity, observability, and stability [40]

A bound on the mean square of the convergence rate with measurement fading [41]

Nonlinear observation models and noisy communication links

Random link failures, stochastic communication noises, and Markovian switching
topologies

[42]

Quantization errors, successive packet dropouts, and randomly varying nonlinearities [43]

Analysing the gap between distributed algorithm and corresponding central algorithm [3]

Applications of observation+innovation consensus [44, 45]

Considering heterogeneous sensor networks [46]

the threshold, a gap between distributed algorithm and its corresponding central
algorithm appears. The conclusions can be found in [3]. Applications of observa-
tion+innovation consensus algorithms for economic dispatch in power systems and
for wide area monitoring systems are described in [44] and [45], respectively. Notice
that all the estimation models are homogeneous in the previous part, which means
the nodes are identical in the network. However, heterogeneous sensor networks
introduce different kinds of nodes in order to prolong the life of networks. The in-
teresting work of applying the observation+innovation consensus in heterogeneous
sensor networks is firstly addressed in [46].

2.2 Consensus Based Distributed Tracking

Estimation and tracking of dynamic targets is one of the main objectives of WSNs.
However, the previous three classes of distributed consensus algorithms are not
suitable for tracking dynamic targets. Although centralized filters like Kalman
filters, particle filters can track the dynamical processes, they are not implementable
in distributed WSNs. To solve the estimation problem in WSNs, a lot of distributed
versions have been proposed as summarized in Table 2.4. On the aspect of
distributed Kalman filters, Olfati-Saber first introduces a consensus-based Kalman
filter inspired by the consensus strategy in [47]. The filter consists two stages: a
Kalman like measurement update and an inserted consensus term to eliminate the
disagreements of sensors. A further study of the optimality and stability performance
of the algorithm is then examined in [48]. An alternative consensus-based Kalman
filter is proposed in [49] with the investigation of the correlation between Kalman
gain and the consensus matrix. Some parameters design guides are also given in
the literature in order to minimize the estimation error. However, it is far from
optimal in Kalman-consensus filter (KCF) because of the correlation between local
estimates. Furthermore, it is hard to exactly determine the correlation that causes the
nonoptimality. An adaptive consensus-based Kalman filter is proposed in [50]. By
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Table 2.4 Consensus based filters for dynamic targets

Consensus-based distributed Kalman filter [47]

Further study of the optimality and and stability performance [48]

Investigating correlation between Kalman gain and the consensus matrix [49]

An adaptive consensus-based Kalman filter [50]

Information consensus-based filter [51, 52]

Further improving performance by designing consensus weights [53]

Considering the network induced delays and dropouts [54]

Robust estimator addressing uncertain channels [55]

Quantised communications and random sensor failures [56]

Event-driven transmission schemes [57, 58]

Distributed optimal consensus filter for heterogeneous networks [46]

Considering a nonlinear system model [59]

Distributed consensus-based particle filters [60, 61]

Distributed particle filter for nonlinear tracking [62]

adding extra exchanged information between nodes indicating whether or not a node
observes the target, the algorithm can improve the estimation accuracy compared
with KCF. Other techniques resorting to information filter have been developed in
[51, 52] which give insight into the influence of the correlation. Based on the infor-
mation consensus-based filter, a scheme designing the consensus weights to further
improve the performance is presented in [53]. In practical applications, there are
often network-induced phenomena, such as delays and packets dropouts. A scheme
based on local Luenberger-like observers is proposed in [54] to address the network
induced delays and dropouts. Considering uncertain channels, a robust estimator
with adaptive channel estimator is presented in [55]. WSNs also suffer from power
constraints in practical situations which makes the energy consumption problem
important. Authors in [56] adopt the probabilistic strategy to reduce the energy
consumption. Alternatives such as event-driven transmission schemes are provided
in [57, 58]. Each node transmits a new data only when a predefined event happens,
which can significantly reduce the transmission power. Distributed optimal consen-
sus filter appropriate for heterogeneous sensor networks can be found in [46]. [59]
extends the linear consensus-based Kalman filter to a nonlinear system model. In ad-
dition to consensus-based Kalman filters, there are some other approaches designed
to reach consensus. Distributed consensus-based particle filters are developed in [60]
and [61]. Both of them consist of two major steps with the difference being whether
average consensus or support vector machine is used at the first step. To deal with
the nonlinear systems, a corresponding unscented particle filter is proposed in [62].
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