
Collecting University Rankings
for Comparison Using Web Extraction

and Entity Linking Techniques

Nick Bassiliades(&)

Department of Informatics, Aristotle University of Thessaloniki,
Thessaloniki, Greece

nbasssili@csd.auth.gr

Abstract. University rankings are rankings of institutions in higher education,
ordered by combinations of factors. Rankings are conducted by various orga-
nizations, such as news media, websites, governments, academics and private
corporations. Due to huge financial and other interests, the rankings of uni-
versities worldwide recently received increasing attention. The rankings are
based on different criteria and collect data in various ways. As a result, there is a
large divergence in the specific rankings of different institutions. In order to
compare rankings so that safe conclusions about their reliability are drawn, data
from the sites of different such ranking lists must be collected. In this paper we
present this first step for university ranking comparison, namely we discuss in
detail how we have developed a Prolog application, called URank, that collects
the data, by (a) extracting them from the various ranking list web sites using web
data extraction techniques, (b) uniquely identifying the University entities
within the above lists by linking them to the DBpedia linked open data set, and
(c) constructing a combined data set by merging the individual ranking list data
sets using their DBpedia URI as a primary key.

Keywords: University rankings �Web data extraction � Entity linking � Linked
open data � Semantic web

1 Introduction and Problem Definition

University/College/Higher Education rankings are rankings of institutions in higher
education, ordered by combinations of factors, such as measures of wealth, research
excellence and/or influence, student choices, eventual success and/or demographics, on
surveys, and others. Rankings are conducted by various organizations, such as news
media, websites, governments, academics and private corporations. Rankings can
evaluate institutions within a single country and/or region, or worldwide. In this paper
we consider worldwide/global university rankings.

Due to huge financial and sometimes political interests, the rankings of universities
worldwide recently received increasing attention. The rankings are based on different
criteria and collect data in various ways. As a result, there is a large divergence
in the specific rankings of different institutions. Therefore, rankings have produced
much debate about their usefulness and accuracy. The expanding diversity in rating

© Springer International Publishing Switzerland 2014
V. Ermolayev et al. (Eds.): ICTERI 2014, CCIS 469, pp. 23–46, 2014.
DOI: 10.1007/978-3-319-13206-8_2



methodologies and accompanying criticisms of each indicate the lack of consensus in
the field. In order to compare rankings so that safe conclusions about their reliability
are drawn, data from the sites of different such ranking lists must be collected and then
statistically tested [1–4, 9, 10, 19, 21, 22].

In this paper we present the first step needed in order to compare university
rankings, which is data collection. Actually, we have developed a Prolog application,
called URank after “University Ranking”, using SWI-Prolog [24], that (a) extracts data
from the various ranking list web sites, (b) uniquely identifies the University entities
within the above lists, and (c) constructs a combined data set that can be fed to the
statistical comparison test. The actual comparison of rankings is beyond the scope of
this paper; an initial report of a statistical comparative analysis of rankings (based on
the data collection methodology described in this paper) can be found at [2].

Table 1 contains the University ranking lists we have used in this study, performed
during academic year 2012–2013. In order to collect data from all those different ranking
lists/sites several technical challenges exist. First of all is the acquisition of data, which
are published in heterogeneous ways and formats. Usually, there are no downloadable
and/or structured data, which in most cases must be extracted (scrapped) from HTML
pages. To this end, web data extraction tools must be employed [7]. In our case, we have
used DEiXTo [12], a powerful web data extraction tool based on the W3C DOM. It
allows users to create highly accurate “extraction rules” (wrappers) that describe what
pieces of data to scrape from a website. Actually, we have used only the GUI of
DEiXTo, a friendly graphical user interface that is used to manage extraction rules
(build, test, fine-tune, save and modify). Then, we have used the extraction rules built
with DEiXTo GUI for the wrapper component of URank to extract data at run-time.

Data acquisition also “suffers” from the heterogeneity of the schemata of the data
extracted from the various sites. In order to resolve this we have developed a small
OWL ontology that describes ranked universities homogeneously and we have cus-
tomized extraction rules (using Prolog) in order to map the extracted data (sometimes

Table 1. University Ranking Lists used in the paper.

Acronym Full name URL Collected
Universities

ARWU Academic Ranking of
World Universities

www.shanghairanking.com 500/500

Leiden CWTS Leiden Ranking www.leidenranking.com 500/750
QS Quacquarelli Symonds www.topuniversities.com 600/800
THE Times Higher Education www.timeshighereducation.

co.uk
400/400

URAP University Ranking
by Academic
Performance

www.urapcenter.org 750/2000

Webometrics Ranking Web of
Universities

www.webometrics.info 600/*12000

24 N. Bassiliades

http://www.shanghairanking.com
http://www.leidenranking.com
http://www.topuniversities.com
http://www.timeshighereducation.co.uk
http://www.timeshighereducation.co.uk
http://www.urapcenter.org
http://www.webometrics.info


using tailored transformations) into this common schema. Actually, as a byproduct of
our project, each extracted data set takes the form of RDF data that can be published
into the Linked Open Data (LOD) cloud individually from the rest of the datasets.

The second and third challenges depend on each other. In order to merge different
ranking lists into a single table (third challenge) one has to find a unique identification
key for the Universities along the different ranking lists (second challenge). This is not
a trivial task, since the names used in the different ranking lists are not always the same.
For example, in the ARWU list (Table 1) the Imperial College1 is mentioned as “The
Imperial College of Science, Technology and Medicine”, whereas in the QS list it is
mentioned as “Imperial College London”. In order to find a unique primary key for
each list that can be safely used across datasets in order to merge them together, we
should consider finding a unique immutable identifier for each University entity. We
decided to consider DBpedia,2 a crowd-sourced community effort to extract structured
information from Wikipedia and make this information available on the Web. DBpedia
offers the ability to ask sophisticated queries against Wikipedia and to link the different
data sets on the Web to Wikipedia data. So, linking the entities extracted from the
different ranking datasets to DBpedia could serve two goals: (a) linking the data
extracted in the first step with a very well-known and rich linked open dataset, and
(b) using the DBpedia ID (actually a URI) as a unique primary key across datasets to
enable dataset merging.

Linking entities to DBpedia is not a trivial task either. DBpedia (and Wikipedia)
contain crowd-sourced data, so they not always accurate or complete. For example,
there might cases where a DBpedia entity that represents a University is not classified
correctly under the University or Educational Institution class, but to a class higher in
the hierarchy of the DBpedia ontology (e.g. owl:Thing). Furthermore, there might be
synonym Universities in different places (e.g. Newcastle University3 in the UK, Uni-
versity of Newcastle4 in Australia) or there might be University mergers or splits along
history, whose names still appear for historical reasons in Wikipedia and DBpedia (e.g.
University of Paris5 which split in 1970 into 13 Universities named very similarly some
times as “University of Paris I, II, …”).

In order to resolve all the above issues, general purpose entity linking software,
such as DBpedia Spotlight [14] or SILK [23], cannot possibly have a 100 % accuracy,
simply because domain-specific knowledge on University naming, geographical
reasoning and temporal reasoning (to name a few), must be used additionally to dis-
ambiguate University entities in DBpedia. Even using domain-specific knowledge,
sometimes the official DBpedia dataset does not contain up-to-date information because
Wikipedia articles are constantly being revised, so when some pieces of information
cannot be found at DBPedia, DBpedia Live6 is used. Finally, when neither DBpedia

1 http://www3.imperial.ac.uk/
2 http://dbpedia.org/
3 http://www.ncl.ac.uk/
4 http://www.newcastle.edu.au/
5 http://en.wikipedia.org/wiki/University_of_Paris
6 http://wiki.dbpedia.org/DBpediaLive

Collecting University Rankings for Comparison 25

http://www3.imperial.ac.uk/
http://dbpedia.org/
http://www.ncl.ac.uk/
http://www.newcastle.edu.au/
http://en.wikipedia.org/wiki/University_of_Paris
http://wiki.dbpedia.org/DBpediaLive


nor DBpedia Live can provide a satisfactory disambiguation for an entity, URank uses
Wikipedia text search (which proved to be better than DBpedia’s text search) and web
extraction techniques to find better candidate entities.

In the rest of the paper, we present the architecture and functionality of the URank
system in Sect. 2, we report on the extensive evaluations we have performed on
URank, and finally we conclude with a critical discussion on the ability to extend
URank to become a general purpose tool, some thought for future work and a small
comparison to relevant systems.

2 URank Architecture and Functionality

The architecture of the URank application is shown in Fig. 1. The main components of
our system are: (a) the Web data extractor or Entity Extractor, that extracts the Uni-
versity entities from the ranking sites, (b) the Entity Linker, that links the extracted
University entities with DBpedia entities, and (c) the Entity Merger, that generates a
single entity for each University by merging the different datasets, using the DBpedia
entity URI as a primary key. In the following subsections we present in detail each of
these components.

2.1 Entity Extractor

The Entity Extractor is the component of URank that acquires needed data from
University ranking sites. The Entity Extractor is driven by users who use the DeiXTo
GUI in order to define site-specific extraction rules for each ranking list web site.
Figure 2 shows an example of using DeiXTo for defining an extraction rule for the

URank

Entity
Extractor 

Site-specific 
transformations 

Extraction 
Rules 

Extracted
Data

Ranking 
sites

Entity 
Linker

Ranking 
datasets

Merged 
dataset

Entity 
Merger

Domain-
specific 
filtering

Ranking 
ontology 

Fig. 1. URank architecture

26 N. Bassiliades



ARWU site. More details about using DeiXTo are beyond the scope of this paper and
can be found at DeiXTo site7 and at reference [12]. What is important to notice is that
the extraction rule (or pattern) defined using DeiXTo is exported in an XML file
(Fig. 3). The contents of this file are fed to the Web data extractor component of URank
which uses the XML, XPath and http libraries of SWI-Prolog to extract the data from
the ranking sites. Although the interpretation of the XML DeiXTo extraction rules by
our wrapper component involves a rather sophisticated algorithm, its detailed presen-
tation is beyond the scope of this paper. For each site the name of the University, its
global rank and its country is collected. Notice that countries are needed for name
disambiguation purposes later, as already discussed in the introduction. Furthermore,
the URL that contains details about the specific University is also extracted, in case the
data transformation component needs to access it for disambiguation purposes.

The extraction rules differ a lot, depending on the site. In the simplest case, such as
ARWU (Table 1), all data are found in a single page. However, there are cases where
data are found in several linked pages, such as Webometrics; therefore, web extraction
must load and scrape several consecutive pages, navigating through a “next”-type link.
In the case of THE list there is no “next” link, so the pages of all the ranges of ranking
must be manually collected and fed to the extractor.

After the extractor completes the task of retrieving every piece of raw data that can
be retrieved from the ranking web sites, site-specific transformations clear and
homogenize the data in order to create the site-specific datasets in RDF. These trans-
formations mostly deal with converting the retrieved country-related data into a proper

Fig. 2. DeiXTo GUI screenshot for defining extraction rule for the ARWU site

7 http://deixto.com/

Collecting University Rankings for Comparison 27

http://deixto.com/


country name, common across the different ranking sites. For example, in ARWU the
country information is retrieved as a URL that contains all the Universities of this
specific country contained in the ARWU list.8 In this case, specific string processing
rules retrieve the name of the country. Other sites, such as Webometrics, do not have a
link to country pages/profiles, but they just show the flag of the country, using a short
country code in the image URL.9 In this case, string processing isolates the country
code and a transformation table derived from the ISO 3166 Country Codes standard10

transforms it into a proper country name.
The rest of the site-specific transformations deal with clearance of the University

names, such as removing extra spaces, transforming names from URL to ASCII
encoding, removing trailing numbers from Webometrics entries when Universities
maintain multiple web domains,11 etc. Finally, in the case of Leiden the main ranking
page used to contain abbreviated University names only, while full names could be
found in the detailed pages of the Universities. Therefore, data transformation included
additional web data extraction activities. In the current version of the Leiden ranking
site full University names are included in the main ranking page as tooltips.

After extracted data are cleared and transformed the individual datasets for each
ranking site can be constructed. These datasets are in RDF and can be published in the

Fig. 3. DeiXTo extraction rule for the ARWU site

8 E.g. http://www.shanghairanking.com/World-University-Rankings-2012/USA.html
9 E.g. http://www.webometrics.info/sites/default/files/logos/us.png
10 http://www.iso.org/iso/country_codes.htm
11 http://www.webometrics.info/en/node/36

28 N. Bassiliades

http://www.shanghairanking.com/World-University-Rankings-2012/USA.html
http://www.webometrics.info/sites/default/files/logos/us.png
http://www.iso.org/iso/country_codes.htm
http://www.webometrics.info/en/node/36


LOD cloud. In order to have a common schema for all sites, we have developed a
lightweight University ranking ontology which consists of two classes (Fig. 4): Ran-
kingOrganization and RankedInstitution. The former has six instances, representing the
six ranking list/sites of Table 1 included in this study. The latter will have as many
instances as per University entities extracted from each ranking site. Table 2 presents
the properties for the two classes, while Fig. 5 shows the instance of the RankingIn-
stitution class for the ARWU list. Notice the use of the dc:title property for the name of
the ranking institution and owl:sameAs property for linking our datasets to the LOD
cloud, i.e. the DBpedia entry for the ranking list. Instances for the RankedInstitution
class will be shown later, after the entity linking with DBpedia entries is discussed.

Fig. 4. The University Ranking Ontology and the 6 ranking list instances

Table 2. Properties of the University Ranking Ontology

Property Domain Range

hasURL RankingOrganization xs:anyURI
rankingOrganization RankedInstitution RankingOrganization
rankURL RankedInstitution xs:anyURI
institutionRegion RankedInstitution xs:string
rank RankedInstitution xs:int

Fig. 5. The ARWU instance of RankingOrganization class

Collecting University Rankings for Comparison 29



2.2 Entity Linker

Linking our dataset entities to DBpedia is performed as indicated by Algorithm 1,
which is a non-formal high-level description of the main DBpedia matching algorithm.
The algorithm consists of two main loops, for each ranking list and for each University
entry retrieved from each list. Inside the second loop, there are a number of steps to
retrieve matching DBpedia entries using 3 different approaches, explained later.
At each step, if a satisfactory match is found the algorithm terminates immediately and
returns that match for each University. Otherwise, candidate DBpedia matching entries
are collected into a candidate set, scored according to our own scoring function and
then the best scored candidate is returned as a match.

30 N. Bassiliades



The “satisfactory match” (CheckMatchFound function in Algorithm 1) for a
DBpedia entry depends on the string distance between the name of the University
extracted from the ranking list and the name of the matching DBpedia University entry.
The distance threshold depends on the step of the algorithm. More specifically, in order
to measure string distance we use the isub/4 built-in function of SWI-Prolog, which is
based on a string metric for ontology alignment [20]. This metric is more appropriate in
our case than the Levenshtein distance metric, since it mainly concerns substring
matching, which is appropriate for matching names of Universities. For example, recall
the case for “Imperial College” from the introductory section. Table 3 shows these
thresholds, which have been experimentally found and are very high to ensure ter-
mination only for almost absolutely certain matches.

The two main methods for retrieving DBpedia entities by matching extracted
University names is (a) DBpedia lookup service12 and (b) OpenLink Virtuoso built-in
SPARQL endpoint, on the DBpedia host instance,13 using a template query derived
from the Faceted Browser, and Search & Find Service.14 For the DBpedia lookup
service the query template is:

Notice that the above query returns results in an XML file, which is parsed using
the same SWI-Prolog libraries as for extracting Universities from HTML files, above.

The query template for DBpedia SPARQL endpoint is as follows:

In the above query, ?u is the URI of the matched DBpedia entry and ?n its name.
The query retrieves the values ?v of all properties ?p of the University and searches

Table 3. Thresholds for satisfactory maching.

Steps Threshold

4, 6 0.98
14 (EducationalInstitution instances) 0.97
14 (owl:Thing instances) 0.99
14 (search Wikipedia via Google) 1.00

12 http://wiki.dbpedia.org/lookup/
13 http://dbpedia.org/sparql
14 http://dbpedia.org/fct/

Collecting University Rankings for Comparison 31

http://wiki.dbpedia.org/lookup/
http://dbpedia.org/sparql
http://dbpedia.org/fct/


them for words contained within the extracted University name (<U.Name.Words>)
using Virtuoso’s built-in bif:contains predicate.

In the above searches, the query class <Class> is EducationalInstitution for steps 4,
6 and owl:Thing for the relaxed search in step 12. Furthermore, the maximum number
of hits <Top-N1> and <Top-N2> are 2 for steps 4, 6 and 4 for the relaxed search in step
12 and they have been established experimentally. Furthermore, in the case of step 12,
at line 3 in the SPARQL query template property ?p becomes rdfs:label; therefore,
search concentrates only on the property that contains the name of the University.
Notice that in step 12, DBpedia is searched using as a keyword the name of a
Wikipedia-retrieved University, not the name of the originally-retrieved University.

During all DBpedia searches (steps 4, 6, 12), the retrieved instances are filtered
according to spatiotemporal domain-specific constraints. Namely, the retrieved
DBpedia University must be located in the same country as the University extracted
from the site and it must also be still operating. The check for the latter is performed by
checking if the property dbpprop:closed exists. Of course, this is not always the case
for all closed/suspended Universities, such as the dbpedia:University_of_Paris, for
example. When such information does not exist, then URank is susceptible to errors,
unless a better match is found.

The check for location/country compatibility is not always easy, since DBpedia
entries stem from Wikipedia articles and sometimes the infoboxes of these articles are
not complete. For example, University DBpedia entries may not have a country-related
property, but only City- or State-related information (USA and Spanish Universities,
mainly). Therefore, spatial inclusion reasoning must be employed in this case, with
additional SPARQL queries to find out in which country a city or State is located, etc.
Furthermore, sometimes there are multiple entries for the same entity in DBpedia,
similarly to Wikipedia. In this case, the original DBpedia search may not retrieve the
entry with the country-related information. In this case redirection links are followed
and the country-related search is repeated. Table 4 summarizes the properties used for
retrieving the country of the University DBpedia entry.

To make things even more difficult, the retrieved country information may not be
exactly the same as the country data extracted from the raking site. For example, the
country information associated with dbpedia:Harvard_University is “U.S.”, while
the country data for this University from the ARWU list is “USA”. So, there is a need

Table 4. DBpedia properties related to Location.

Location Information DBpedia properties

Country dbpedia-owl:country,
dbpprop:country

State dbpedia-owl:state, dbpprop:state
City dbpedia-owl:city, dbpprop:city
Location dbpedia-owl:location,

dbpprop:location
{Redirection to another
instance}

owl:sameAs, dbpedia-owl:
wikiPageRedirects

32 N. Bassiliades



to create a compatibility matrix for country names. This can be done only empirically/
experimentally by collecting compatible names for some countries. The majority of
country names though do not have such a synonymy problem. We do not include this
matrix in the paper because some synonyms we came up with are not “politically
correct” and may raise conflicts.

There are a few more subtle domain-dependent filtering criteria that must be taken
into account, such as using Roman or Arabic numbers in University names (e.g.
“University of Montpellier II” vs. “Montpellier 2 University”) or using synonyms for
the word University in other languages (e.g. “University of Freiburg” vs. “Universität
Freiburg”). These are also crucial for achieving a 100 % precision and recall, but are
too detailed heuristics to be presented here.

In case steps 4 and 6 of Algorithm 1 do not retrieve a high match, step 8 uses the
keyword search engine of Wikipedia to retrieve Wikipedia articles as candidates for
alternative (and possibly better) names for the retrieved Universities. For example, the
ARWU list contains the entry “University of Paris Sud (Paris 11)”. This does not return
any result at DBpedia lookup service. Even if the string in parenthesis is stripped,
because for the ARWU list it is considered a synonym (therefore, redundant), the
DBpedia lookup service returns the entry dbpedia:Paris-Sud_11_University, with label
“Paris-Sud 11 University”. The string distance between the two names is 0.93, which is
lower than the thresholds in Table 3. A query to Wikipedia returns as the best result the
page with title “University of Paris-Sud”15, which corresponds to the DBpedia entry
dbpedia:University_of_Paris-Sud, with rdfs:label “University of Paris-Sud”. The string
distance now between the Wikipedia article title and the DBpedia entry label is exactly
1, therefore above the threshold of Table 3.

Of course, things are not simple here either. Wikipedia is asked to return <Top-
N3> articles with Top-N3 found experimentally to be 3 with the following query:

Sometimes Wikipedia just returns the most probable result, when its score exceeds
some threshold. When this happens, the returned page is scraped to extract the article
title and to check whether it involves indeed a University, located in the same country
as the University extracted from the ranking site and still operational, namely using the
same domain-dependent filters as in steps 4, 6. However, in the case of Wikipedia this
is done by scraping the HTML of the returned page, and most specifically, the infobox
and the categories box. For example, see Fig. 6 for an active public University located
in Australia, the University of Sydney16, and Fig. 7 for a suspended University.
Furthermore, general pages such as “Template:…”, “List of Universities in …”,
“Higher education in …”, and similar ones, must be excluded, along with disambig-
uation pages. When a single result page does not exist, Wikipedia returns a list of
results and the above checks are performed for the Top-N3 results.

15 http://en.wikipedia.org/wiki/University_of_Paris-Sud
16 http://sydney.edu.au/

Collecting University Rankings for Comparison 33

http://en.wikipedia.org/wiki/University_of_Paris-Sud
http://sydney.edu.au/


Finally, if the Wikipedia keyword search does not generate any alternative names
due to all the above restrictions, Google search restricted in the Wikipedia domain is
used as a last resort, using the query below and concentrating on the first result:

After step 8, list Top-N3 contains alternative names/entries for the original Uni-
versity retrieved from the ranking site. These Wikipedia entries should lead to DBpedia
entries, possibly giving better results than the original University name. This is the task
of the loop in steps 10–13. There are 2 ways to map Wikipedia entries to DBpedia
entries. The first one is direct and rewrites the Wikipedia URL to a DBpedia URI:

However, before the DBpedia URI is considered a final match it must be verified
for the same domain-specific restrictions already discussed above for steps 4 and 6.
If the verification step succeeds then this DBpedia entry is added to list Top-N3’ which
contains candidate matching DBpedia entries. If the verification fails, then at step 12,
which is the second way to map a Wikipedia entry to a DBpedia entry, the Wikipedia
article titles are used as alternative University names that lead to new DBpedia searches
with these alternative names, as in steps 4, 6. From this search, new candidate matching
DBpedia entries are retrieved, which are added to list Top-N3’.

Notice that actually step 12 performs two searches (using both search methods):
one strict with EducationalInstitution as the target class and one relaxed with owl:Thing

Fig. 6. Infobox and categories box for the University of Sydney Wikipedia entry (http://en.
wikipedia.org/wiki/University_of_Sydney)

Fig. 7. Infobox for the University of Paris Wikipedia entry (http://en.wikipedia.org/wiki/
University_of_Paris)

34 N. Bassiliades

http://en.wikipedia.org/wiki/University_of_Sydney
http://en.wikipedia.org/wiki/University_of_Sydney
http://en.wikipedia.org/wiki/University_of_Paris
http://en.wikipedia.org/wiki/University_of_Paris


as the target class. The results for the two searches are scored differently, giving higher
score to the stricter search, as it will be discussed later. The reason for this is that step
12 is the last chance of the algorithm to discover a match, so in case the strict match
does not retrieve any DBpedia instances, the result of the relaxed search will cover for
it. Outside the loop, at step 14, list Top-N3’ is checked for immediate results, i.e. results
that give a string distance above the threshold of Table 3.

The last important step of the matching algorithm is the scoring function for the
candidate DBpedia entities collected into set Cand. Recall that entities in this list have
string distances less than the thresholds of Table 3; otherwise, the algorithm would
have stopped and returned a confirmed match. So, the purpose of step 15 is to score
each candidate match using the string distance between the University name of
the DBpedia entry and the name of the University exported from the ranking site or the
alternative name retrieved from Wikipedia articles (in step 8). Furthermore, the scoring
function takes into account (a) the source of the candidate match (original or alternative
name from Wikipedia), (b) the method that the candidate match was obtained (DBpedia
lookup service, SPARQL endpoint, and direct transformation of Wikipedia URL to
DBpedia URI), and (c) if the search was strict or relaxed, concerning the target class.
Table 5 summarizes the score additions that each of the above dimensions adds to the
string distance metric, which is in the range between 0 and 1. For example, when a
candidate match was obtained from the original University name retrieved from the
ranking site using a strict search at the DBpedia lookup service (step 4) and the string
distance of the candidate match from the University name is 0.92, the total score is
1000 + 200 + 10 + 0.92 = 1210.92. On the other hand, if a candidate match is coming
from step 11 (Wikipedia search, direct URL/URI transformation) with a 0.95 string
distance, the total score is 2000 + 200 + 20 + 0.95 = 2220.95. Notice that direct
searches of step 11 and DBpedia searches in steps 4 and 6 are always strict.

From Table 5 it is obvious that when steps 4, 6 fail to produce a confirmed match,
then priority is given to candidate matches coming from Wikipedia retrieved alternative
University names, since Wikipedia keyword search engine is better than DBpedia’s
free text search engine. Furthermore, strict searches are preferred to relaxed searches,
for obvious reasons. Finally, direct URL/URI transformations (valid only in step 11)
are preferred to DBpedia searches (step 13), since the latter may introduce more noise

Table 5. Score additions along various dimensions.

Dimension Value Score addition

Source Original (ranking site) 1000
Wikipedia/Google search 2000

Target class Strict 200
Relaxed 100

Query method DBpedia lookup service 10
SPARQL endpoint 10
Direct URL/URI transformation 20

Collecting University Rankings for Comparison 35



due to free text search. Notice that all these preferences have been experimentally
established and evaluated.

Finally, after Algorithm 1 terminates, the RDF datasets for each ranking site are
generated and saved permanently. Figure 8 shows the RDF code for the “Imperial
College London” entry of the Leiden ranking site dataset. In the future, these datasets
will be uploaded into an RDF triplestore with a public SPARQL endpoint.

2.3 Entity Linker

The Entity Merger component of URank takes as input the datasets of the 6 ranking
sites and produces a single dataset that contains all the Universities with all the
rankings from every ranking site contained in a single entity. For example, the merged
dataset entry for the “Imperial College London” is shown in Fig. 9. The properties for
the merged dataset are slightly different from the individual datasets. Specifically, there
is no country-related information, since the purpose of the merged dataset is to sta-
tistically compare rank positions, and there is no direct link to the RankingOrganization
instance, since each entry is ranked by multiple ranking organizations. Furthermore,
there are 6 new properties, which hold the ranks of the individual ranking sites. All
these are sub-properties of the urank:rank property and are added to the ontology. For
example, in Fig. 9 the Imperial College entity has a urank:rankTHE property for the
THE ranking list, a urank:rankQS property for the QS list, etc. The following piece of
OWL code shows how the urank:rankeTHE property is defined:

The merge of the datasets into a single one is performed with Algorithm 2. For each
RDF graph R that holds the corresponding ranking dataset (step 1) and for each
University instance in this dataset (step 2), a new University instance is created in the
merged dataset graph M and the appropriate property values are copied (step 5). From
the second iteration of the outer loop and onwards, it might be the case that the

Fig. 8. Leiden dataset RDF entry for the “Imperial College London”

36 N. Bassiliades



University instance already exists in the merged dataset from previous iterations (step
3). In that case, only the corresponding rank property is copied (step 4).

Notice that the existence check is based on the value of the owl:sameAs property
which is a link to the DBpedia entry for the University, discovered by Algorithm 1. So,
it is important to ensure that all DBpedia URIs for the same University are exactly the
same. Although this seems expected, it is not always the case. Sometimes there exist
many Wikipedia articles for the same topic, which are redirected to a single Wikipedia
page. This is also reflected to the corresponding DBpedia instances. For the same real-
world entity there might be several DBpedia instances that re-direct to (possibly) a
single DBpedia entry through the dbpedia-owl:wikiPageRedirects property. Thus, the
entity linking process (of the previous sub-section) ensures that when a DBpedia URI is
matched to a University name, a pointer-chasing algorithm ends up to the instance at
the end of the chain of the re-direction links.

Sometimes there are more-than-one instances with the above property, i.e. they are
at the end of different paths of the re-direction link sub-graph for the same real-world

Fig. 9. Merged dataset RDF entry for the “Imperial College London”

Collecting University Rankings for Comparison 37



entity. This is checked by a transitive algorithm that follows the re-direction links until
it finds instances that do not re-direct to another instance. In this case, URank selects
the most “informative” one, namely the one with the most triples. Another problematic
case is when this re-direction sub-graph is not acyclic, something that happens rarely
and usually it is temporary until the next DBpedia update. Nevertheless, we catered for
this case as well using a closed set search.

3 Evaluation

In order to evaluate URank, we have performed several experiments. First of all, we
clarify that we have the correct answers (namely the correct DBpedia entries) for all the
ranking sites, so we are able to evaluate and compare the effectiveness of each of the
search mechanisms of Algorithm 1. These correct answers have been obtained man-
ually by first running URank and then checking manually only the entries that did not
have an absolute match (string distance 1.0). Then, we have conducted for each ranking
site experiments turning on and off the following features/mechanisms of URank, in
many combinations:

• DBpedia lookup service
• SPARQL endpoint query
• Domain-specific restrictions
• Wikipedia keyword search

For each experiment we count the correct answers CA (i.e. those entries that the
retrieved URIs coincide with the correct URIs), the incorrect answers IA (i.e. those
entries that the retrieved URIs do not coincide with the correct URIs), and the unan-
swered entriesUA (i.e. the ones that the experiment did not manage to retrieve any URI).
Notice that we assume (and it is true for the experiments we have conducted) that all
Universities do have a Wikipedia /DBpedia entry. From the above measurements we
calculate the precision, recall and F-measure metrics for the queries, using Eqs. (1) – (3),
respectively.

precision ¼ CA
CAþ IA

ð1Þ

recall ¼ CA
CAþ UA

ð2Þ

F ¼ 2 � precision � recall
precisionþ recall

ð3Þ

Our first experiment measures the effectiveness of each query method, namely its
purpose is to compare the DBpedia lookup service against the SPARQL endpoint query
method using the template derived from the Faceted Browser, and Search & Find
Service (see Footnote 14). Notice that the domain-specific restrictions and the Wiki-
pedia keyword search are turned off. Results are shown in Table 6 for the DBpedia
lookup service and Table 7 for the SPARQL endpoint query. Results clearly indicate

38 N. Bassiliades



the superiority of the DBpedia lookup service in terms of Precision, for all ranking
sites, and the superiority of the SPARQL endpoint query in terms of recall, for almost
all ranking sites, with the sole exception of URAP. This is due to the fact that the
DBpedia lookup service is stricter than the SPARQL query; therefore, it returns less
results but with a better chance of being correct. The F-measure value is superior for the
DBpedia lookup service, with the exception of QS list.

The same conclusion is evident from Figs. 10, 11 and 12, where a graphical
comparison between the two query methods is presented for the three metrics. Fur-
thermore, in these figures we compare the performance of each of these query methods
alone with their combination, namely we have conducted another set of measurements
where both query methods are used in combination. Results show that precision
is slightly worse, whereas recall and F-measure are better when the two query methods
are combined. This happens because the DBpedia lookup service is stricter concerning
its answers, whereas the SPARQL endpoint query method more relaxed, therefore it
tends to return more answers with lower accuracy, so their combination exhibits the
advantages of both worlds.

Our second experiment measures the effectiveness of the domain-specific restric-
tions. Figure 13 shows results for all the metrics and both query methods, with and
without the domain-specific restrictions. As expected, restrictions increase the preci-
sion, since more restrictions mean more accurate results. The effect is evident for the
SPARQL endpoint query, because there was a lot of room for improvement, while it is
negligible for the DBpedia lookup service, since its precision was already high. The
exact opposite behavior is observed for recall, which is slightly worst for the lookup

Table 6. Measurements for the DBPedia lookup service.

Ranking site CA UA IA Precision Recall F

ARWU 433 60 7 98,41 % 87,83 % 92,82 %
Leiden 472 24 4 99,16 % 95,16 % 97,12 %
QS 512 80 8 98,46 % 86,49 % 92,09 %
THE 382 12 6 98,45 % 96,95 % 97,70 %
URAP 627 112 11 98,28 % 84,84 % 91,07 %
Webometrics 521 65 14 97,38 % 88,91 % 92,95 %
Total/Average 2947 353 50 98,33 % 89,30 % 93,60 %

Table 7. Measurements for the SPARQL endpoint query.

Ranking site CA UA IA Precision Recall F

ARWU 398 25 77 83,79 % 94,09 % 88,64 %
Leiden 429 6 65 86,84 % 98,62 % 92,36 %
QS 520 23 57 90,12 % 95,76 % 92,86 %
THE 356 4 40 89,90 % 98,89 % 94,18 %
URAP 541 123 86 86,28 % 81,48 % 83,81 %
Webometrics 511 20 69 88,10 % 96,23 % 91,99 %
Total/Average 2755 201 394 87,49 % 93,20 % 90,25 %

Collecting University Rankings for Comparison 39



Fig. 10. Precision comparison for query methods

Fig. 11. Recall comparison for query methods

Fig. 12. F-measure comparison for query methods

40 N. Bassiliades



service, but evidently worse for SPARQL query. This was expected, because more
restricted queries mean fewer results. Overall, F-measure is slightly worse for both
methods. The same behavior is observed for combining the two query methods.

Our last experiment measures the contribution of each of the query methods in
retrieving the correct results. Table 8 shows how many correct results are due to which
query method in the complete URank system. It is evident that the majority of the
correct results are returned by the DBpedia lookup service (step 4), which is queried
first. This choice was justified by the fact that the DBpedia lookup service has better
performance (f-measure) than the SPARQL endpoint query method. The second best
source of correct results is the direct URL/URI transformation (step 11) of the Wiki-
pedia results returned after step 8. Notice that there are very few (actually 4) results that
were returned after with Google search on Wikipedia. Also very few (only 2) are the
correct results returned from step 12, making evident that the use of Wikipedia search

Fig. 13. Effectiveness of the domain-specific restrictions

Table 8. Contribution of each query method to the result.

Ranking site DBpedia
Lookup

SPARQL
endpoint

Wikipedia/Google
Direct URL/URI
transformation

DBpedia
Lookup/
SPARQL

ARWU 418 20 61 1
Leiden 468 9 23 0
QS 485 37 78 0
THE 375 11 14 0
URAP 611 21 118 0
Webometrics 505 33 61 1
TOTAL 2862 131 355 2

Collecting University Rankings for Comparison 41



is a very competent complement of the DBpedia lookup service method. Finally, there
are also correct results due to SPARQL endpoint query, but their overall contribution is
very small (< 4 %). Figure 14 visualizes this comparison among methods.

Finally, Fig. 15 shows the contribution of each query method to the result of each of
the experiments reported in this section. In this figure we can also compare the total correct
results found by each of the tested stripped-down versions of URank, compared to the
complete system. It can be concluded that the effect of usingWikipedia keyword search on
top of either DBpedia lookup service or SPARQL endpoint query has almost the same
result as having both of them (combined with Wikipedia). The actual results show a very
small difference (1–5 less correct results, namely* 0.1 %). This finding could be used to
remove one of the steps 4 or 6, to increase the execution speed of URank.

Fig. 14. Contribution of each query method to the result for the complete system

Fig. 15. Contribution of each query method to the result for each experiment

42 N. Bassiliades



4 Concluding Discussion and Future Work

In this paper we have presented our effort to extract, link and merge University ranking
datasets as Linked Open Data in the Semantic Web. This is a part of a larger project [2]
that aims to statistically compare different University rankings in order to draw safe
conclusions about their reliability. In order to collect the data found at different Uni-
versity ranking sites, we have developed, presented and evaluated a Prolog application,
called URank, that (a) extracts data (University entities) from the various ranking list
web sites, using the DeiXTo web extraction tool [12], (b) uniquely identifies the
University entities within the above lists, by linking them to the corresponding
DBpedia entities, and (c) constructs a combined data set that can be fed to the statistical
comparison test, by merging the individual ranking datasets based on the discovered
DBpedia link, as a unique primary key.

In order to develop the URank system several challenges had to be met. The first
one has to do with the heterogeneity of the data formats and schemata of the ranking
sites, as well as the different naming schemata for the Universities and the countries
they are located. These challenges were met by (a) customized data extraction rules that
were easily developed using the GUI of the DeiXTo system, (b) site-specific data
transformations that were developed in Prolog, and (c) an ontology we developed for
the individual ranking datasets.

The challenges concerning the unique identification of Universities using DBpedia
required: (a) to use the appropriate querying method with the appropriate list of words
in order to search for matching entities, and (b) to recognize when a correct match has
been found. There are two main querying methods, the DBpedia lookup service and the
SPARQL endpoint that uses a query template derived from the Openlink Virtuoso’s
Search & Find Service of DBpedia. Both have their own advantages and disadvantages
and we decided to use them both complementary. In order to recognize if a correct
match has been found we have used the SWI-Prolog’s built-in string difference metric,
which is tailored to ontology alignment [20] and worked well in our case.

The main problems encountered during the development and testing of URank had
mainly to do with the domain-specific nature of our search and the fact that DBpedia is
a crowd-sourced knowledge base; therefore, neither correct nor complete. In order to
overcome these problems we have developed a few domain-specific filters/restrictions
that the retrieved entities should obey in order to be considered correct matches, on top
of the string distance metric. This increased the precision of the retrieved instances, as
the evaluation phase has shown. However, domain-specific restrictions lowered the
recall rate, namely less correct results were retrieved because the required information
was simply not present in DBpedia entries.

A major boost to recall was given by a second phase that involved searching for the
University name into Wikipedia using either the Wikipedia’s search engine or even
Google. This was needed because the way University names are found and retrieved
from the ranking sites, usually differ a lot from their formal or usual names. This search
provided Wikipedia articles for the Universities where a more suitable University name
(the title of the Wikipedia article) could be found. Wikipedia entries directly correspond
to DBpedia entries through a trivial URL/URI transformation, so in this way better

Collecting University Rankings for Comparison 43



matches can be found in the vast majority of cases. Of course, extracting information
from Wikipedia pages involves heuristic (thus error prone) web extraction techniques,
because pages are edited by humans. However, the use of Wikipedia, along with the
other querying methods and restrictions, increased our precision and recall to 100 %.

Finally, a very crucial part of the entity linker is the scoring mechanism for the
various DBpedia entries retrieved using all the above methods. Our scoring mechanism
gives priority to (a) candidate entries retrieved through either the DBpedia lookup
service or a SPARQL endpoint query, with a name that is very close (≥ 98 %) to the
original University name, then to (b) candidate entries retrieved from direct URL/URI
transformations of Wikipedia retrieved entries, and finally to (c) candidate entries
retrieved by the combination of (b) and (a). The results of our evaluation show that
89.3 % of the correct answers are given by method (a), 10.5 % are given by method
(b), and only 0.2 % by method (c).

The outcome of the entity linker is the individual RDF datasets for each ranking
site, linked to the DBpedia LOD dataset through the owl:sameAs property. In order to
generate a single merged dataset so that each university includes its rank at every
ranking site, a unique primary key for each University must exist across the individual
datasets. However, due to the different naming schemes of the ranking sites and due to
the multiple DBpedia/Wikipedia entries for the same University, the query methods of
the entity linker might end up to different DBpedia entries, for the same University.
Usually these DBpedia entries re-direct to a single one (following Wikipedia redirec-
tions), so following this re-direction graph gives to URank a stable primary key
mechanism. The outcome of the entity merger is an RDF dataset that can be used to
compare the rankings of the Universities across the different ranking sites/lists.

Looking critically at URank, we can draw the conclusion that the system has
achieved its purpose, namely to correctly collect and merge the University rankings for
further statistical processing. However, one may consider the possibility of making the
system independent from the domain of University rankings in the future, thus being
able to collect and merge into a single table various lists of similar nature found in
the Web. This needs a lot of improvements, mainly in the code itself, but also to the
architecture of the system. Currently, domain-independent and domain-dependent
features of the system are not so well separated in the code, despite their clear dis-
tinction in Fig. 1. This is because there are various heuristics (domain-dependent
features) used in the code that need to be tightly integrated with the domain-dependent
features, such as querying DBpedia and/or Wikipedia. However, this separation needs
further exploration in order to develop a re-usable across domains system.

Other improvements for the system would be (a) a GUI (currently the text-based
interface of Prolog is used), including a tighter integration with the DeiXTo GUI, (b) a
more efficient and general purpose web data extractor, exploiting the full range
capabilities of DeiXTo extraction rules, and (c) integration with an RDF triplestore,
such as Openlink Virtuoso17 or Sesame18 [11], so that the generated datasets to persist
and be shared on the LOD cloud.

17 http://virtuoso.openlinksw.com/
18 http://www.openrdf.org/

44 N. Bassiliades

http://virtuoso.openlinksw.com/
http://www.openrdf.org/


Compared to general purpose tools for entity extraction, such as [5, 13, 16, 17],
URank does neither have to detect names, since the user does that using DeiXTo
through its extraction rules, nor to classify the names by the type of entity (class) they
refer to, since it is a domain-dependent application and extracted names are known to
be University names. Therefore, URank cannot be characterized as an entity extraction
application, nor it can be compared to such software.

On the other hand, URank can be considered as an entity linking software, since its
purpose is to determine the identity of entities mentioned in a list of named entities,
which is distinct from entity extraction/recognition in that it identifies not the occur-
rence of names (nor classifies them), but their reference. There are plenty of general-
purpose entity-linking tools, such as [6, 14, 15, 18, 25], which usually use one
knowledge base target to link entities, such as DBpedia, Wikipedia, or YAGO2 [8]
using various techniques for matching (e.g. lexical) and context disambiguation
(relatedness, similarity, coherence). URank instead is a domain-specific tool that
focuses on a specific target type of the linked entity and takes advantage of domain-
specific knowledge in order to improve precision and recall of the system. One of our
main future aims is to compare the performance of URank to one or more of the above
general purpose tools for entity linking. Initial experimentations with DBpedia Spot-
light [14] have resulted in *86 % F-measure, which is not as good as 100 % that
URank achieved due to its domain-specific tweaking.

References

1. Aguillo, I.F., Bar-llan, J., Levene, M.: Priego, J.L.O: Comparing University Rankings.
Scientometrics 85(1), 243–256 (2010)

2. Angelis, L., Bassiliades, N., Manolopoulos, Y.: Evaluation of University International
Rankings (in Greek). In: Proceedings of the Conference on Quality Assurance and Quality
Management: Governance and Good Practices, Thessaloniki (2012)

3. Buela-Casal, G., Gutiérrez-Martínez, O., Bermúdez-Sánchez, M.P., Vadillo-Muñoz, O.:
Comparative study of international academic rankings of universities. Scientometrics 71,
349–365 (2007)

4. Cheng, Y., Liu, N.C.: Examining major rankings according to the Berlin principles. High.
Educ. Europe 33(2–3), 201–208 (2008)

5. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: a framework and graphical
development environment for robust NLP tools and applications. In: 40th Anniversary
Meeting of the Association for Computational Linguistics (2002)

6. Ferragina, P., Scaiella, U.: TAGME: On-the-fly annotation of short text fragments (by
wikipedia entities). In: 19th ACM International Conference on Information and Knowledge
Management (CIKM ‘10), pp. 1625–1628. ACM (2010)

7. Ferrara, E., de Meo, P., Fiumara, G., Baumgartner, R.: Web Data Extraction, Applications
and Techniques: A Survey. CoRR. arXiv:1207.0246 [cs.IR] (2012)

8. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: a spatially and temporally
enhanced knowledge base from wikipedia. Artif. Intell. 194, 28–61 (2013)

9. Huang, M.-H.: A comparison of three major academic rankings for world universities: from
a research evaluation perspective. J. Libr. Inf. Stud. 9(1), 1–25 (2011)

Collecting University Rankings for Comparison 45



10. Ioannidis, J., Patsopoulos, N., Kavvoura, F., Tatsioni, A., Evangelou, E., Kouri, I.,
Contopoulos-Ioannidis, D., Liberopoulos, G.: International ranking systems for universities
and institutions: a critical appraisal. BMC Med. 5(1), 30 (2007)

11. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: a generic architecture for storing
and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, pp. 54–68. Springer, Heidelberg (2002)

12. Kokkoras, F., Ntonas, K., Bassiliades, N.: DEiXTo: a web data extraction suite. In: 6th
Balkan Conference in Informatics (BCI-2013), pp. 9–12. ACM, Thessaloniki (2013)

13. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The
stanford CoreNLP natural language processing toolkit. In: 52nd Annual Meeting of the
Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)

14. Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia spotlight: shedding light on
the web of documents. In: 7th International Conference on Semantic Systems (I-Semantics
2011), pp. 1–8. ACM, Graz (2011)

15. Milne, D., Witten, I.H.: Learning to link with wikipedia. In: 17th ACM Conference on
Information and Knowledge Management (CIKM ‘08), pp. 509–518. ACM (2008)

16. Nothman, J., Ringland, N., Radford, W., Murphy, T., Curran, J.R.: Learning multilingual
named entity recognition from wikipedia. Artif. Intell. 194, 151–175 (2013)

17. Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity recognition.
In: 13th Conference on Computational Natural Language Learning (CoNLL ‘09),
pp. 147–155. Association for Computational Linguistics, Stroudsburg (2009)

18. Ratinov, L., Roth, D., Downey, D., Anderson, M.: Local and global algorithms for
disambiguation to wikipedia. In: 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies (HLT ‘11), vol. 1, pp. 1375–1384. Association
for Computational Linguistics, Stroudsburg (2011)

19. Rauhvargers, A.: EUA Report on Rankings 2011. Global University Rankings and their
Impact. European University Association, Brussels (2011)

20. Stoilos, G., Stamou, G., Kollias, S.D.: A String Metric for Ontology Alignment. In: Gil, Y.,
Motta, E., Benjamins, V., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 624–637.
Springer, Heidelberg (2005)

21. Stolz, I., Hendel, D.D., Horn, A.S.: Ranking of rankings: benchmarking twenty-five higher
education ranking Systems in Europe. High. Educ. 60(5), 507–528 (2010)

22. Taylor, P., Braddock, R.: International university ranking systems and the idea of university
excellence. J. High. Educ. Policy Manage. 29(3), 245–260 (2007)

23. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and Maintaining Links on the
Web of Data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D.,
Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 650–665. Springer,
Heidelberg (2009)

24. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory Pract. Logic
Program. – Prolog Syst. 12(1-2), 67–96 (2012)

25. Yosef, M.A., Hoffart, J., Bordino, I., Spaniol, M., Weikum, G.: AIDA: an online tool for
accurate disambiguation of named entities in text and tables. In: Proceedings of the VLDB
Endowment, vol. 4(12), pp. 1450–1453 (2011)

46 N. Bassiliades



http://www.springer.com/978-3-319-13205-1


	Collecting University Rankings for Comparison Using Web Extraction and Entity Linking Techniques
	Abstract
	1 Introduction and Problem Definition
	2 URank Architecture and Functionality
	2.1 Entity Extractor
	2.2 Entity Linker
	2.3 Entity Linker

	3 Evaluation
	4 Concluding Discussion and Future Work
	References


