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Abstract Machine learning of ECG is a core component in any of the ECG-based
healthcare informatics system. Since the ECG is a nonlinear signal, the subtle
changes in its amplitude and duration are not well manifested in time and fre-
quency domains. Therefore, in this chapter, we introduce a machine-learning
approach to screen arrhythmia from normal sinus rhythm from the ECG. The
methodology consists of R-point detection using the Pan-Tompkins algorithm,
discrete wavelet transform (DWT) decomposition, sub-band principal component
analysis (PCA), statistical validation of features, and subsequent pattern classifi-
cation. The k-fold cross validation is used in order to reduce the bias in choosing
training and testing sets for classification. The average accuracy of classification is
used as a benchmark for comparison. Different classifiers used are Gaussian
mixture model (GMM), error back propagation neural network (EBPNN), and
support vector machine (SVM). The DWT basis functions used are Daubechies-4,
Daubechies-6, Daubechies-8, Symlet-2, Symlet-4, Symlet-6, Symlet-8, Coiflet-2,
and Coiflet-5. An attempt is made to exploit the energy compaction in the wavelet
sub-bands to yield higher classification accuracy. Results indicate that the Symlet-
2 wavelet basis function provides the highest accuracy in classification. Among the
classifiers, SVM yields the highest classification accuracy, whereas EBPNN yields
a higher accuracy than GMM. The use of other time frequency representations
using different time frequency kernels as a future direction is also observed. The
developed machine-learning approach can be used in a web-based telemedicine
system, which can be used in remote monitoring of patients in many healthcare
informatics systems.
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2.1 Introduction

In the modern world cardiovascular disease (CVD) is one of the most common
causes of death, and is responsible for approximately 30 % of deaths worldwide,
and nearly 40 % of deaths in high-income, developed countries [1, 2]. Even
though the CVD rates are declining in high-income countries, the rates are
increasing in every other part of the world [1].

Generally, the sino-atrial (SA) node acts as the pacemaker of the heart, and the
primary source of electrical impulse. Cardiac arrhythmia (also known as dys-
rhythmia) represents a heterogeneous group of conditions in which there is
abnormal electrical activity in the heart. During arrhythmia, other impulse sources
may dominate the sinus node and act as independent sources of impulses.
Arrhythmia is one kind of CVD, which if left untreated may lead to life-threat-
ening medical emergencies that can result in cardiac arrest, hemodynamic col-
lapse, and sudden death. Abnormalities of both impulse formation and impulse
conduction can result in cardiac arrhythmias [3]. The heartbeat interval may be
regular or irregular, and may be too fast or too slow. Early intervention with
appropriate therapy is recommended in many arrhythmias; if left untreated, such
arrhythmias may lead more serious complications. Arrhythmias like ventricular
fibrillations and ventricular flutter are imminently life-threatening.

Increasing incidence of cardiovascular disease and death has drawn attention
worldwide to the research and development of methods for mass screening to
provide prognostic healthcare. One of the greatest challenges for both developed
and under-developed countries is the delivery of high-quality cardiac care to the
entire population. The lack of sufficiently qualified cardiac experts may, however,
limit individual attention for patients and force healthcare professionals to cater to
critical conditions and patients requiring immediate attention. The development of
automated tools to detect cardiac arrhythmias with considerable accuracy is
challenging. Widespread applications of such tools by qualified nurses or para-
medics trained to handle the equipment can greatly strengthen the screening
programs and aid in providing mass cardiac care with scarce resources.

Electrocardiography (ECG) is a noninvasive test for recording the electric
activity of the heart over time and can be captured by surface electrodes. ECG is
the simplest and most specific diagnostic test for many heart abnormalities,
including arrhythmia, and is especially essential in screening for heart problems.
The ECG pattern obtained from a normal subject is known as a normal sinus
rhythm. The assessment of alternations in the heart rhythm using an ECG is
commonly used to diagnose and assess the risk of any given arrhythmia. Different
computational tools and algorithms are being developed for the analysis of the
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ECG signal, and its automated diagnosis. In this chapter, the authors have made an
attempt to use machine-based classification of ECG signals to sort normal sinus
rhythm and arrhythmia signals into their respective classes.

Many methods for the detection of QRS complex (or the R-point) in the ECG
have been proposed [4–6]. The Pan-Tompkins algorithm is commonly used
because of its computational simplicity. The wavelet-based method proposed by
[5], later extended by [6], can also be used for R-point detection in the ECG. The
Pan-Tompkins algorithm has been used in the analysis in this chapter because of
its simplicity and higher detection rate.

Few approaches for the classification of arrhythmia beats have been described
in the literature [7, 8]. Most of these approaches use principal component analysis
(PCA) in the time domain signal [9]. Recently, [10] gave an account of the use of
PCA in DWT sub bands. Here, DWT sub-band features are compressed using
PCA. Since DWT provides compact supported basis space for the signal, the PCA
should provide higher compression than time domain counterparts.

2.2 Materials

In the proposed work, the open source data available at www.physionet.org from
MIT BIH arrhythmia and the MIT BIH normal sinus rhythm database is used. The
database is explained as follows.
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Fig. 2.1 Machine-learning approach of ECG classification into normal sinus rhythm and
arrhythmia
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2.2.1 MIT- BIH Normal Sinus Rhythm Database

The MIT-BIH normal sinus rhythm database consists of 18 long term ECG
recordings of subjects referred to the Arrhythmia Monitoring Laboratory at Bos-
ton’s Beth Israel Deaconess Medical Center. Subjects included in this database
were found to have had no significant arrhythmias; they included five men, aged
26-45 and thirteen women, aged 20-50. The ECG data was digitized at 128 Hz.

2.2.2 MIT BIH Arrhythmia Database

The MIT BIH arrhythmia database consists of 48 half-hour excerpts of two
channel ambulatory ECG data obtained from 47 subjects studied by the BIH
arrhythmia laboratory between 1975 and 1979. Twenty-three recordings were
randomly taken from a set of 4,000 24 h ambulatory ECG data collected from a
mixed population including both inpatients (approximately 60 %) and outpatients
(approximately 40 %) at the medical center. The remaining 25 recordings were
selected from the same set to include less common but clinically significant
arrhythmias. The ECG recordings were sampled at 360 Hz per channel with an 11-
bit resolution over the 10 mV range.

2.3 Methodology

Figure 2.1 depicts the machine learning approach of the proposed ECG classifi-
cation system. The proposed methodology consists of an automated detection of
the R-point using the Pan-Tompkins algorithm, wavelet sub-band decomposition
using multiple DWT basis functions, principal component analysis (PCA) on
DWT sub-bands, statistical significance tests using independent sample t-tests, and
automated classification using three classifiers, Gaussian mixture model (GMM),
error back propagation neural network (EBPNN), and support vector machine
(SVM) classifiers.

Prior to R-point detection, some pre-processing is necessary to remove noise
and artifacts that the signal may contain. Also, the two classes of signals
(arrhythmia and normal sinus rhythm) are sampled at different rates. Therefore, re-
sampling is also required.
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2.3.1 Preprocessing

Since the signals considered for analysis are sampled at different rates, it is nec-
essary to choose a common sampling rate and re-sample the signals. We have
chosen 250 Hz as the common sampling rate, and both signals are re-sampled
using standard re-sampling techniques [11]. Also, the signals chosen are from an
open source database, and might contain noise, artifacts, and power line inter-
ference. It is, therefore, necessary to preprocess the signal. Some basic filters [12]
have been used here for noise and artifact filtering.

2.3.2 R-point Detection

The R-wave in the QRS complex of ECG has a high amplitude and an easily
detectable peak. The R-point is, therefore, chosen as a characteristic point for
registration. A number of algorithms are being reported in the literature for the
detection of R-point. The Pan-Tompkins algorithm (1985) is a popular approach
for QRS detection, which is computationally simple and, hence, takes less time to
run on a computer. In addition to this method, there is a method using the quadratic
spline-based discrete wavelet transform [6] that detects the beats accurately, but
this method is computationally exhaustive. We have chosen the Pan-Tompkins
method due to its computational simplicity and ease in implementation. An
extended version of the Pan-Tompkins algorithm consists of the following steps.

1. Compute the first derivative of ECG, and find its absolute value.
2. Smooth this signal by passing through a moving average filter as follows.

y nð Þ ¼ 1
4

x nð Þ þ 2x n� 1ð Þ þ xðn� 2Þgf ; ð2:1Þ

wherexðnÞand yðnÞ represent the input and output of the smoothing filter.
3. Compute the derivative of the smoothened signal and its absolute value.
4. Smooth the signal obtained from step 3 using the filter in Eq. (2.1).
5. Sum the signal obtained from steps 2 and 4.
6. Threshold the signal obtained from step 5, and obtain square pulses.
7. Compensate for the group delay due to the involved filters by advancing in

time.

The derivative gives the slope information, whereas smoothing removes high-
frequency noise. The above operations are multistage filtering methods with a non-
linear operation in between, which yields the R-point.
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2.3.3 DWT Computation

Though Fourier analysis [12] is a traditional tool for the analysis of global fre-
quencies present in the signal, it lacks in temporal resolution due to the increased
frequency resolution. Some frequency resolution can be exchanged to get better
time resolution. This exchange is performed by defining short duration waves
called mother wavelet functions so that the given signal for analysis is projected on
this basis function. In traditional Fourier transform, the data is projected on
sinusoidal basis functions which extend the span of time domain, i.e., �1 to þ1.
The wavelet basis function [13] is parameterized by the translation ‘b’ and dilation
‘a,’ such basis function is given by,

wa;b tð Þ ¼ 1
ffiffiffi

a
p wðt � b

a
Þ: ð2:2Þ

Equation (2.2) provides a basis for wavelet transformation. The ECG signals
are decomposed for translation and dilation in order to get a multi-resolution
representation. This is the case of continuous wavelet transform. This transform is
made discrete using a dyadic grid scale in order to get a discrete wavelet transform
(DWT) [14]. Such DWT at scale 2�m and time location n is given by

wm;n tð Þ ¼ 2
m
2 � wð2�m

2 � t � nÞ: ð2:3Þ

The dyadic grid sampled DWT are generally orthonormal. Using the basis
function in Eq. (2.3), the DWT can be expressed as the inner product between the
ECG signal xðtÞand the basis function as

Tm;n ¼
Z

1

�1

xðtÞwm;nðtÞdt ð2:4Þ

Tm;n is the wavelet coefficient at scale (or dilation) m and location (or trans-
lation) n, and it provides the detail (fine information) present in the signal.

The dyadic grid sampled orthonormal discrete wavelets are associated with
scaling functions and their dilation equations. The scaling function is associated
with signal smoothing and has the same form as the wavelet. It is given by,

;m;n tð Þ ¼ 2�m=2;ð2�m � t � nÞ; ð2:5Þ

where ;m;n tð Þ has the property R

1

�1
;0;0 tð Þdt ¼ 1.

Often ;0;0 tð Þ is referred to as the father scaling function or father wavelet. The
scaling function is orthogonal to the translations of itself, but not to dilations of
itself. The smoothing of the signal (or the coarse details or the envelope of the
signal) is obtained by convolving the scaling function with the signal, and the
obtained samples are called approximation coefficients and are defined as
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Sm;n ¼
Z

1

�1

xðtÞ;m;n tð Þdt: ð2:6Þ

A continuous approximation of the signal can be obtained at scale m using
following equation,

xm tð Þ ¼
X

1

n¼�1
Sm;n;m;n tð Þ; ð2:7Þ

where xm tð Þ is a smooth, scaling function-dependent version of the signal at scale
m. Using both approximation and wavelet (detail) coefficients, the signal can be
expressed as follows

x tð Þ ¼
X

1

n¼�1
Sm0;n;m0;n tð Þ þ

X

1

m¼�1

X

1

n¼�1
Tm;nwm;n tð Þ: ð2:8Þ

From Eq. (2.8), we can see that the original continuous signal is expressed as a
combination of an approximation of itself at arbitrary index, m0 added to a suc-
cession of signal details from scales m0 to negative infinity. The signal detail at
scale m is given by,

dm tð Þ ¼
X

1

n¼�1
Tm;nwm;n tð Þ: ð2:9Þ

From Eqs. (2.7) and (2.9), we can write

x tð Þ ¼ xm0 tð Þ þ
X

1

m¼�1
dm tð Þ: ð2:10Þ

From Eq. (2.10), it easily follows that

xm�1 tð Þ ¼ xm tð Þ þ dm tð Þ: ð2:11Þ

From Eq. (2.11), we can see that if we add the signal detail at an arbitrary scale
to the signal approximation at the same scale, we get the signal approximation at
an increased resolution. Hence, wavelet transformation provides multi-resolution
analysis (MRA) capability.

In this work, different basis functions are used. They are Daubechies-4,
Daubechies-6, Daubechies-8, Symlet-2, Symlet-4, Symlet-6, Symlet-8, Coiflet-2
and Coiflet-5. All the considered wavelet families are orthogonal.

The frequency components in each of the sub-bands are shown in Fig. 2.2.
Since the sampling frequency of the signal under study is 250 Hz, the maximum
frequency contained by the signal will be 125 Hz. Therefore, in the first level,
approximation will consist of 0–62.5 Hz frequencies, whereas first level detail
consists of 62.5–125 Hz frequencies.
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2.3.4 Sub-band Principal Component Analysis

There will be a large number of DWT coefficients in every sub-band of the ECG. If
all these coefficients are considered, they will create a large computational burden
on the classifier. Therefore, it is wise to represent these coefficients by fewer
components. In this study, we have used PCA [15] to reduce the number of
features in each of the sub-bands of interest. We identified four sub-bands based on
the frequency present in the signal. The four sub-bands are 2nd-level detail, 3rd-
level detail, 4th-level detail, and 4th-level approximation. Each of these sub-band
wavelet coefficients is subjected to PCA, and the components are chosen such that
they will contain 98 % or more of the total energy present in that sub-band.

Mathematically, PCA projects the data from the original coordinate system to a
new coordinate system in which the first coordinate corresponds to the direction of
maximum variance, and successive coordinates correspond to the directions in
decreasing order of variance. Some directions contribute less variability, and those
directions need not be preserved in our representation. In the new coordinate
system, the axes are called principal components (PCs). A bound of 98 % con-
tainment of total variability of segmented ECG is used as a threshold on the total
variance in all the considered PCs. PCA consists of following steps.

Compute data covariance matrix as

C ¼
X

N

i¼1

ðxi � xÞðxi � xÞT ; ð2:12Þ

where xi represents the ith pattern x represents the pattern mean vector, and N is
the number of patterns.

Compute the matrix V of Eigen vectors and diagonal matrix of Eigen values
D as

V�1CV ¼ D: ð2:13Þ

0     7.8125    15.625   31.25     62.5       125

1  d1 

2 d2

a3 d3

a

a

a4 d4

Frequency in HzFig. 2.2 Wavelet
decomposition: Distribution
of frequencies in various sub-
bands
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The Eigen vectors in V are sorted in descending order of Eigen values in D, and
the data is projected on these Eigen vector directions by taking the inner product
between the data matrix and the sorted Eigen vector matrix.

2.3.5 Statistical Test

The DWT features in compact supported basis space provide sparser representa-
tion for ECG in sub-bands. When PCA is applied on sub-bands, it should provide
higher compression, and the method is more meaningful. Therefore, it is expected
for the principal components of DWT features to provide better statistical sig-
nificance than time domain principal components. Both time domain features and
DWT features are compared against the two classes of signals for equality of class
group means using independent sample t test [16].

2.3.6 Classification

The significant DWT features obtained from statistical tests are used for sub-
sequent pattern classification. We have used three classifiers, Gaussian mixture
model (GMM), error back propagation neural network (EBPNN), and support
vector machine (SVM).

2.3.6.1 Gaussian Mixture Model

We have a two-class pattern classification of ECG into normal sinus rhythm and
arrhythmia classes. The GMM assumes that the features are normally distributed,
and each class is characterized by its mean (lk) and covariance matrix (Rk). Since
we have applied an orthogonal transformation in compact supported basis space,
the features are likely to be uncorrelated. The off-diagonal elements in the
covariance matrix are approximately zero. The probability density function of
GMM for every sample belonging to a given class k, is given by

P xnjxkð Þ ¼ 1

ð2pÞd=2jRkj1=2
exp � 1

2
ðxn � xkÞT jRkj�1ðxn � xkÞ

��

; ð2:14Þ

where

xk ¼
1
jXkj

X

xn2xk

xn ð2:15Þ
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and

Rk ¼
1
jXkj

X

ðxn � xkÞðxn � xkÞT ¼ diag r2
ii

� �

; 1� i� d ð2:16Þ

The corresponding posterior probabilities are given by Bayes’s rule as

P xkjxið Þ ¼ P xijxkð Þ
P2

k¼1 PðxkÞP xijxkð Þ
ð2:17Þ

Initially, the mean and covariance matrices are assigned with some random
values. The values are updated using an expectation maximization (EM) algorithm
and a maximum likelihood estimation method. The re-estimation formulae are as
follows.

blj ¼
PN

i¼1 xi � P xjjxi

� �

PN
i¼1 P xjjxi

� � ð2:18Þ

br2
j ¼

PN
i¼1ðxi � bljÞ2P xjjxi

� �

PN
i¼1 P xjjxi

� � ð2:19Þ

p bxj

� �

¼ 1
N

X

N

i¼1

P xjjxi

� �

ð2:20Þ

An initial model having parameters ðlk;RkÞ is assumed from the data. The EM
algorithm has two steps: an E step and an M step. During the E step, the class
conditional density is computed according to Eq. 2.14 and the posterior density is
also computed according to Eq. 2.17. During the M step, the model parameters are
re-estimated according to Eqs. 2.18-2.20. The process is continued until the new
model remains almost identical to the previous model. At this point, the algorithm
is said to be converged. The GMM optimizes the following objective function,

J ¼
Y

n

X

k

pðxkÞpðxnjxkÞ: ð2:21Þ

GMM minimizes the product over all the patterns, the total class conditional
density weighted with the respective prior probability.

2.3.6.2 Error Back Propagation Neural Network

An error back propagation neural network [17] is used in our study. The neural
network is trained on the training set of the data such that the weights get updated
recursively with respect to the patterns. This is also an optimization problem where
following objective function is minimized.
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J xð Þ ¼ 1
2

X

N

n¼1

X

c

k¼1

yk xn;xð Þ � tn
k

�� 2
; ð2:22Þ

where yk xn;xð Þ is the network response for the kth class neuron in the output layer
and tn

k is the target for kth class of nth observation feature vector.
The gradient descent method is used in the analysis to adapt the network

weights. We have used adaptive serial learning from the data using minimum
mean square error criterion. Once the network is trained, the test signal is fed to the
neural network and the data is classified to one of the two predefined classes.

2.3.6.3 Support Vector Machine

SVM [18] is a single layer, highly nonlinear network which optimizes the class
separation boundary such that the distance from the features falling in a given class
to the hyperplane gets simultaneously maximized. SVM is a supervised classifier
that has generalization ability [19] in the sense that it can classify an unseen
pattern correctly. If xi; yið Þ; i ¼ 1 : N is the data set, xi is the ith pattern point, and
yi is the corresponding class label, then let cþ and c� be the centroids for two
classes in binary classification problem. The classifier output will be

yi ¼ sgn x� cð Þ � wð Þ ¼ sgnð x:cþð Þ � x:c�ð Þ þ bÞ ð2:23Þ

where

b ¼ 1
2
ðjjc � jj2 � jjc þ jj2Þ: ð2:24Þ

The optimal hyperplane separating the two classes and satisfying condition
given in Eq. 2.23 is

minimizew;b
1
2

wk k2 ð2:25Þ

such that

yi w:xið Þ þ bð Þ� 1; i ¼ 1; . . .N: ð2:26Þ

The Lagrangian dual of Eq. 2.25 is a quadratic programming problem used to
find the optimal hyperplane separating the two classes.

2.3.7 k-fold Cross Validation

k-fold cross validation [20] is used for k ¼ 3. Here, the total number of samples are
sub-sampled into three ðkÞ sets; one set is used for testing, whereas the other two
sets are used to train the classifier. The process is repeated two more times such
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that every sub-partition is used as a testing set and the rest are used for classifier
training. The three accuracies are averaged to estimate the average classifier
performance. Using k-fold cross validation, the bias in choosing the samples from
the population can be overcome.

2.4 Results and Discussion

In order to apply our proposed methodology, a two-class ECG classification
problem has been formulated based on the MIT BIH arrhythmia and MIT BIH
normal sinus rhythm datasets (described in Sect. 2.2). The Pan-Tompkins algo-
rithm is used to detect the R-point because of its simplicity and accuracy. The
detection of the R-point is shown in Fig. 2.3, where the detected R-point is marked
with a black asterisk. It can be seen from Fig. 2.3 that the Pan-Tompkins method
detects the R-point with good precision. In fact, the Pan-Tompkins algorithm is a
multistage filtering (differentiation, smoothing, etc.) and a nonlinear element
(rectification) between the linear operations in the algorithmic steps.

Once the R-point is detected, a window (or one segment) of 200 samples is
extracted by choosing 99 points on the left of the R-point, and 100 points on the
right of the R-point and used for further classification. The power spectral density
(psd) is computed using an autoregressive method and is plotted for a normal sinus
rhythm and arrhythmia signal in Fig. 2.4. The objective of computing psd. is to
identify the frequencies of interest so that they can descriminate the two kinds of
beats (normal sinus rhythm and arrhythmia) distinctly. We can observe from
Fig. 2.4 that frequencies in the range of 0-50 Hz can be used for that purpose.
Hence, by referring to Fig. 2.2 and the graph in Fig. 2.4, it is observed that the sub-
bands of interest are detail 2, detail 3, detail 4, and approximation 4.
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Fig. 2.3 R-point detection in normal sinus rhythm signal
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The DWT using Daubechies-4 wavelet is shown for normal sinus rhythm signal
in Fig. 2.5. We can see that all the sub-bands of interest contain some signal
component that can be used for performing classification. Figure 2.6 shows the
DWT computed using the Daubechies-4 wavelet for an arrhythmia signal. We can
see that the DWT decompositions of the two signals look different. If these
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Fig. 2.4 The power spectrum of a Normal sinus rhythm, b Arrhythmia signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-5

0

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.5

0

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-2

0

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-2

0

2

time

(a)

(b)

(c)

(d)

(e)

Fig. 2.5 DWT decomposition of normal sinus rhythm signal a Original signal, b Detail-2,
c Detail-3, d Detail-4, e Approximation-4 signals
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coefficients are compressed and represented by fewer components, they can be
used as features for subsequent classification. The reason for compression is that
using fewer components reduces the computational burden on the classifier.

PCA is applied on each sub-band of interest and different wavelet basis func-
tions are used. We use the Daubechies-4, Daubechies-6, Daubechies-8, Symlet-2,
Symlet-4, Symlet-6, Symlet-8, Coiflet-2, and Coiflet-5 wavelet basis functions.
PCA is an orthogonal transformation which maps the data into the directions of
maximum variability. Since DWT is a compact supported basis function, having
sparse representation, PCA on it should provide higher compression. The number
of principal components is chosen so that the components contain 98 % variability
of the respective sub-band. For different basis functions, the number of principal
components chosen from each of the sub-bands and the total variability of the data
contained is shown in Tables 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9.

The Eigen value profile for the Daubechies-4 wavelet is shown in Fig. 2.7.
After PCA, the compressed components are subjected to a statistical signifi-

cance test. Based on the p-value provided by the statistical test, the significance of
components is decided, and the significant features are used for further classifi-
cation. The statistical significance test is performed for every basis function and
the results are tabulated in Table 2.10. It is observed from Table 2.10 that the
DWT domain principal components are more significant than time domain com-
ponents on the basis of the statistical test.

The GMM classification for the Daubechies-6 wavelet basis function features is
shown in Fig. 2.8. We can see that the log likelihood in the graph increases and
becomes steady after convergence of the algorithm.
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Fig. 2.6 DWT decomposition of arrhythmia signal a Original signal, b Detail-2, c Detail-3,
d Detail-4, e Approximation-4 signals
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The classification by EBPNN is shown in Fig. 2.9, which shows that the total
mean-squared error reduces with epochs. We can observe that the EBPNN algo-
rithm converges in 19 epochs for Daubechies-6 wavelet family features. Fig-
ure 2.10 shows SVM classification with linear kernel. Since the data is linearly
separable, we have used only linear kernel SVM.

Table 2.1 DWT decomposition using Daubechies-4

Sub-band Number of PCs Energy in %

Detail 2 5 98.1770
Detail 3 3 99.2262
Detail 4 2 98.5930
Approximation 4 3 98.8920

Table 2.2 DWT decomposition using Daubechies-6

Sub-band Number of PCs Energy in %

Detail 2 3 98.1957
Detail 3 2 99.1075
Detail 4 2 99.4899
Approximation 4 2 98.3697

Table 2.3 DWT decomposition using Daubechies-8

Sub-band Number of PCs Energy in %

Detail 2 7 98.1937
Detail 3 2 99.4728
Detail 4 2 99.0444
Approximation 4 2 98.5753

Table 2.4 DWT decomposition using Symlet-2

Sub-band Number of PCs Energy in %

Detail 2 2 98.2329
Detail 3 3 99.4611
Detail 4 2 99.3243
Approximation 4 2 98.4532

Table 2.5 DWT decomposition using Symlet-4

Sub-band Number of PCs Energy in %

Detail 2 10 98.0661
Detail 3 2 99.0872
Detail 4 2 99.6493
Approximation 4 2 98.6254
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Table 2.11 shows classification accuracies of various schemes using different
wavelet basis functions. It can be observed from Table 2.11 that EBPNN provides
higher accuracy than GMM and SVM leads to the highest accuracy. Amongst
various wavelet families, it can be noted that Symlet-2 consistently performs better
for all the classifiers and has the highest possible accuracy.

Table 2.6 DWT decomposition using Sym-6

Sub-band Number of PCs Energy in %

Detail 2 3 98.1292
Detail 3 2 98.8807
Detail 4 2 99.5307
Approximation 4 2 98.1622

Table 2.7 DWT decomposition using Sym-8

Sub-band Number of PCs Energy in %

Detail 2 10 96.6749
Detail 3 2 98.8332
Detail 4 2 99.6216
Approximation 4 3 98.6306

Table 2.8 DWT decomposition using Coiflet-2

Sub-band Number of PCs Energy in %

Detail 2 10 96.9230
Detail 3 2 99.1172
Detail 4 2 96.6110
Approximation 4 3 98.6443

Table 2.9 DWT decomposition using Coiflet-5

Sub-band Number of PCs Energy in %

Detail 2 10 96.0415
Detail 3 2 98.2607
Detail 4 2 99.6023
Approximation 4 2 98.5899
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Fig. 2.7 PCA on DWT sub-bands a Detail 2, b Detail 3, c Detail 4, and d Approximation 4,
decomposition using the db6 wavelet
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Table 2.10 Statistical significance test for time domain and Daubechies-6 based DWT sub-band
features

Time domain PCs Statistical significance DWT domain PCs Statistical significance

t p t p

1 -61.998 0.000 1 -70.9029 0.000
2 -156.68 0.000 2 -52.5739 0.000
3 0.1702 0.8650 3 -3.4508 0.000
4 -1.7762 0.0763 4 -28.7637 0.000
5 0.4157 0.6778 5 37.3751 0.000
6 0.4035 0.6867 6 -27.1491 0.000
7 -0.1840 0.8541 7 22.3390 0.000
8 -0.3165 0.7517 8 10.5710 0.000
9 0.8103 0.4181 9 -93.7320 0.000
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Fig. 2.8 GMM classification, log-likelihood increasing with iterations
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Fig. 2.9 EBPNN classification, network converging in 19 epochs for Daubechies-6 features
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Fig. 2.10 SVM classification using linear kernel for Daubechies-6 wavelet features
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2.5 Conclusion

In this chapter, a systematic approach is developed for screening arrhythmia and
normal sinus rhythm from their ECG profiles. We have extracted time frequency
features using various basis functions, including Daubechies, Symlet, and Coiflet
wavelet families. PCA is applied on time frequency sub-band features and, in this
compact supported basis space, higher compression is expected. Based on our
experiments, we have determined that different basis functions distribute energy in
different sub-bands in a unique way for a given wavelet. Our methodology exploits
this energy distribution so that the features are well represented, thus resulting in
higher accuracy. These time-frequency features are markers of disease, since these
features are able to discriminate the data into two classes. As a future direction,
other time-frequency representations can be used to see how the energy com-
paction is achieved. In addition, various other dimensionality reduction techniques
can be used for performance. The machine-learning methodology given in this
chapter can be used efficiently in telemedicine systems to identify abnormal events
in the ECG signals so that emergency cases can be identified and such patients can
be attended for critical care.
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