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1. From Æther Theory to Special Relativity

Rafael Ferraro

At the end of the 19th century light was regarded
as an electromagnetic wave propagating in a ma-
terial medium called ether. The speed c appearing
in Maxwell’s wave equations was the speed of
light with respect to the ether. Therefore, ac-
cording to the Galilean addition of velocities,
the speed of light in the laboratory would dif-
fer from c. The measure of such difference would
reveal the motion of the laboratory (the Earth)
relative to the ether (a sort of absolute motion).
However the Earth’s absolute motion was never
evidenced.

Galilean addition of velocities is based on the
assumption that lengths and time intervals are in-
variant (independent of the state of motion). This
way of thinking the spacetime emanates from our
daily experience and lies at the heart of Newton’s
Classical Mechanics. Nevertheless, in 1905 Einstein
defied Galilean addition of velocities by postulat-
ing that light travels at the same speed c in any
inertial frame. In doing so, Einstein extended the
principle of relativity to the electromagnetic phe-
nomena described by Maxwell’s laws. In Einstein’s
Special Relativity the ether does not exist and the
absolute motion is devoid of meaning. The invari-
ance of the speed of light forced the replacement
of Galilean transformations with Lorentz transfor-
mations. Thus, relativistic length contractions and
time dilations entered our understanding of the
spacetime. Newtonian mechanics had to be refor-
mulated, which led to the discovery of the mass-
energy equivalence.
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1.1 Space and Time in Classical Mechanics
Until 1915, when Einstein’s General Relativity radi-
cally changed our way of thinking, the spacetime was
regarded as the immutable scenery where the physical
phenomena take place. The laws of Mechanics, which
describe the motion of a particle subject to interactions,
were written to work in this immutable scenery. The
form of these laws strongly depends on the properties
attributed to the spacetime. Classical Mechanics relies
on the assumption that distances and time intervals are
invariant. This assumption, which seems to be in agree-
ment with our daily experience, leads to the Galilean
addition of velocities which prevents invariant veloci-
ties in Classical Mechanics.

1.1.1 Invariance of Distances
and Time Intervals

Classical Mechanics – the science of mechanics
founded by Newton – considered that the space is prop-
erly described by Euclid’s plane geometry. Then there
exist Cartesian coordinates (x, y, z), so the distance d
between two points placed at (x1,y1,z1) and (x2,y2,z2)
can be computed by means of the Pythagorean formula

d2 D .x2 � x1/
2 C .y2 � y1/

2 C .z2 � z1/
2 : (1.1)

In addition, Classical Mechanics regards distances and
time intervals as invariant quantities. Let us explain
the meaning of this property with an example of our
daily life concerning the invariance of time intervals.
Mario frequently flies from Buenos Aires to Madrid;
he knows that the journey lasts 12 h as measured by
his watch. This time, Mario wants his friend Manuel
to pick him up at Madrid airport. When the fly is near
to depart, Mario calls Manuel who tells him that it is
9 a.m. in Madrid. Then Mario asks Manuel to wait for
him at 9 p.m. in Madrid airport, just when the plane
will be landing. This way of arranging a meeting as-
sumes that the time elapses in the same way both in the
plane and at earth. Of course, it seems to be a good as-
sumption because it effectively works in our daily life.
We call invariant a magnitude having the same value
in different frames in relative motion (as the plane and
the earth in the previous example). Classical Mechan-
ics considers that not only time intervals are invariant
but the distances too. In particular, the length of a body
is assumed to be independent of its state of motion.
We can verify this assumption in our daily life. For
instance, we can measure a train by spreading a tape

measure on the train. The so obtained length will seem
to agree with a measure performed along the rail while
the train is traveling. Notice that measuring the length
of a moving body requires some care; the length is the
distance between simultaneous positions of the ends of
the body. In the case of the train, we can imagine that
the rail is provided with sensors detecting the stretch
of rail the train takes up at each instant. We can then
determine the length of such stretch of rail by means
of a tape measure identical to the one used on the
train.

The invariance of distances and time intervals are
properties supported by our daily experience. It could
be said that space and time look to us as separated con-
cepts, and this separation seems not to be affected by the
choice of frame. This somehow naive way of regarding
the space and the time is a key piece in the construction
of Classical Mechanics. However, to what extent should
we be confident of our daily experience? Does our daily
experience cover the entire range of phenomena, or it is
rather limited? Let us use a familiar example to explain
what we are trying to mean: we could well believe that
the earth surface is flat if just a little portion of it were
accessible to us. However, we realize that the earth sur-
face is nearly spherical by considering it at larger scales.
In this example, the scale should be comparable to the
globe radius. In the case of the behavior of distances
and time intervals under changes of frame, the scale in
question is the relative velocity V between the frames.
How could we be sure that the invariance of distances
and time intervals is nothing but an appearance caused
by the narrow range of relative velocities V covered by
our daily experience? As we will explain in Sect. 1.4,
Einstein’s Special Relativity of 1905 abolished the in-
variance of distances and time intervals on the basis of
new physics developed in the second half of the 19th
century.

1.1.2 Addition of Velocities

Velocities are not invariant in Classical Mechanics. Let
us consider the motion of a passenger along a train trav-
eling the rail at 100 m s�1. The train and the earth are
two possible frames to describe the motion of the pas-
senger; they are in relative motion at V D 100 m s�1.
It is evident that the velocity of the passenger is dif-
ferent in each frame. For instance, the passenger could
be at rest on the train, and thus moving at 100 m s�1

with respect to the earth. If the passenger walks for-
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ward at a velocity of u0 D 1 m s�1, then it advances 1 m
on the train (as measured by a tape measure fixed to
the train) each 1 s (as measured by a clock fixed to the
train). Now, how fast does he/she move with respect
to the earth? The answer to this simple question de-
pends on the properties of distances and time intervals
under change of frame. Since Classical Mechanics as-
sumes that distances and time intervals are invariant,
then we can state that the passenger advances 1 m on
the train each 1 s as measured by a clock and a tape
measure fixed to the earth (but otherwise identical to
those fixed to the train). Besides, in this frame also
the train advances at the rate of 100 m each 1 s. Then,
the passenger displaces 101 m s�1. Thus his/her veloc-
ity in the frame fixed to the earth is u D 101 m s�1 D
u0 C V. This addition of velocities is a direct conse-
quence of the classical invariance of distances and time
intervals. It means that velocities are not invariant in
Classical Mechanics; they always change by the addi-
tion of V. On the contrary, Einstein’s Special Relativity
will rebuild our way of regarding the space and the
time by postulating an invariant velocity: the speed of
light c (c D 299 792 458 m s�1). The postulate of in-
variance of the speed of light implies the abandonment
of our belief in the invariance of distances and time
intervals so strongly rooted in our daily experience.
Therefore, deep theoretical and experimental reasons
should be alleged to propose such a drastic change of
mind. In fact, the idea of invariance of the speed of light
is theoretically linked to Maxwell’s electromagnetism
and the principle of relativity, as will be analyzed in
Sect. 1.3. Besides, at the end of the 19th century there
was enough experimental evidence about the invari-
ance of c. However those experimental results were not
correctly interpreted until Special Relativity came on
stage.

The existence of an invariant speed provides us
with a scale of reference to understand why distances
and time intervals seem to be invariant in our daily
life: according to Special Relativity, distances and time
intervals behave as if they were invariant when the com-
pared frames (the train, the plane, the earth, etc.) move
with a relative velocity V � c. So, it is just an appear-
ance; like the earth surface, that seems to be flat if it is
only explored in distances much smaller than the globe
radius.

1.1.3 Coordinate Transformations

An event is a point in the spacetime. It represents a place
in the space and an instant of time; it is a here and now.

P
x'

V
O'

x
O

Fig. 1.1 Frames S and S0 moving at the relative velocity V

An event is characterized by 4 coordinates; we will use
3 Cartesian coordinates x, y, z, to localize the place
of the event plus its corresponding time coordinate t.
Cartesian coordinates are distances measured with rules
along the Cartesian axes of the frame. The coordinate t
is measured by clocks counting the time from an instant
conventionally chosen as the time origin.

Figure 1.1 shows two frames S and S0 in relative mo-
tion; the x and x0 axes have the direction of the relative
velocity V. By comparing distances in the frame S, we
can state

dOPjS D dOO0 jS C dO0PjS : (1.2)

In the frame S, the distance between O – the coordinate
origin of S – and the place P is the x coordinate of P:
dOPjS D x. On the other hand, the distance between the
origins O and O0 increases with time; if V is constant
and the time t in S is chosen to be zero when both ori-
gins coincide, then dOO0 jS D Vt. Thus

dO0PjS D x � Vt : (1.3)

We are not allowed to replace the left member with
x0, since x0 D dO0PjS0 . Classical Mechanics, however,
assumes that distances have the same value in all
the frames. Thus, we obtain the Galilean transforma-
tions.

Galilean Transformations

x0 D x � Vt ; (1.4a)

y0 D y; (1.4b)

z0 D z: (1.4c)

We have added the transformations of the Cartesian co-
ordinates y, z transversal to the relative motion of the
frames. These are distances between a given place and
the straight line shared by the x and x0 axes; according
to the classical invariance of distances, they are equal
in S and S0.

The classical transformations of the coordinates of
an event is completed by considering the invariance of
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time intervals; so we state that t0 D t (we are choos-
ing a common time origin for S and S0). Remarkably,
the relation t0 D t also results from the transformation
(1.4a) with the help of a simple physical argument: as
frames S and S0 are on an equal footing, then the re-
spective inverse transformation should look like (1.4a)
except for the sign of V (if S0 moves towards increasing
values of x in S, then S moves towards decreasing val-
ues of x0 in S0; thus the relative velocity changes sign).
Therefore

x D x0 C Vt0 : (1.5)

Then, by adding (1.4a) and (1.5) one obtains

t0 D t : (1.6)

Galilean Addition of Velocities
A moving particle traces a succession of events in the
spacetime. This world-line can be described by equa-
tions x.t/, y.t/, z.t/, which are summarized in a sole
vector equation for the position vector r.t/. According
to Galilean transformations (1.4), the position vector

transforms as

r0.t/D r.t/� Vt ; (1.7)

where the invariance of time, t0 D t, has also been used.
By differentiating (1.7), it results the Galilean addition
of velocities, i. e. the relation between the velocities of
the particle in two different frames due to the movement
composition with the relative translation between both
frames

u0.t/D u.t/� V : (1.8)

Velocities are not invariant under Galilean transfor-
mations. However, the relative velocity between two
particles is invariant

u0

2.t/� u0

1.t/D u2.t/� u1.t/ : (1.9)

Galilean Invariance of the Acceleration
Since V is uniform, the differentiation of (1.8) yields
the Galilean invariance of the acceleration

a0.t/D a.t/ : (1.10)

1.2 Relativity in Classical Mechanics

Mechanics describes the motion of interacting par-
ticles by means of equations governing the particle
world-lines. These equations of motion, together with
the initial conditions, yield the coordinates of parti-
cles as functions of time: x.t/, y.t/, z.t/. To write
the equations of motion we combine the laws of dy-
namics with the laws of the interactions. Both types
of laws must have the same form in all the inertial
frames. This is the principle of relativity in Mechan-
ics, which expresses that all the inertial frames are on
an equal footing. However, whether a given law con-
summates or not the principle of relativity is a matter
depending on the properties attributed to the space and
time.

1.2.1 Newton’s Laws of Dynamics

Newton constructed the dynamics on the basis of three
laws [1.1]:

� First law (principle of inertia): free particles move
with constant velocity (they describe straight world-
lines in spacetime).

� Second law: a particle acted by a force acquires an
acceleration that is proportional to the force

F D ma : (1.11)

The proportionality constant m is a property of the
particle called mass. In terms of the momentum p �
mu, the law reads F D dp=dt.� Third law (action-reaction principle): two particles
interact by simultaneously exerting each other equal
and opposite forces.

First law is a particular case of the second law (the
case F D 0); it establishes the tendency to perdurability
as the main feature of motion (as it was envisaged by
Galileo [1.2], Gassendi [1.3] and Descartes [1.4], in op-
position to the Aristotelian thought). On the other hand,
the second law becomes the particle equation of motion,
once the force is given as a function of r, u, t, etc. Then,
a law for the involved interaction is also required (which
can be gravitational, electromagnetic, etc.). The third
law implies the conservation of the total momentum of
an isolated system of interacting particles. In fact, the
reciprocal forces F12 and F21 between two particles m1
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and m2 satisfies F12 CF21 D 0, since they are equal and
opposite. If these are the only forces on each particle,
we can use the second law to obtain d.p1 Cp2/=dt D 0.
Thus p1 Cp2 is a conserved quantity. This argument can
be extended to prove the conservation of the total mo-
mentum of any isolated system of particles.

Classical Mechanics allows for interacting forces at
a distance. They are derived from potential energies
depending on the distances between particles, which
automatically provide interaction forces accomplishing
Newton’s third law.

1.2.2 Newton’s Absolute Space

Newton’s fundamental laws of dynamics are not for-
mulated to be used in any frame. In fact, it is evident
that the first law cannot be valid in any frame, since
a constant velocity u in a frame S does not imply a con-
stant velocity u0 in another frame S0. This can be easily
understood by considering cases where S0 rotates or
accelerates with respect to S. However if S0 translates
uniformly with respect to S, either the particle has con-
stant velocities u, u0 in both frames or in none of them.
Galilean addition of velocities (1.8) is a particular ex-
ample of this general statement. In fact, Galilean trans-
formations (1.4) were obtained for two equally oriented
moving frames; thus, they are in relative translation (ab-
sence of relative rotation). Besides the translation is
uniform, since the velocity V is constant. Thus u0 is
constant in (1.8) if and only if u is constant.

Although the principle of inertia cannot be valid
in any frame, at least it is true that if it is valid in
a frame S, then it will be valid in any other frame S0

uniformly translating with respect to S. Can we extent
this statement to the second law? Second law involves
the particle acceleration. In Galilean transformations,
the acceleration is invariant. Besides, the forces in Clas-
sical Mechanics depend on distances (like gravitational
and elastic forces) or relative velocities (like the viscous
force on a particle moving in a fluid, which depends on
the velocity of the particle relative to the fluid). Both the
distances and the relative velocities are invariant under
Galilean transformations. In this way, each side of sec-
ond law (1.11) is invariant under changes of frames in
relative uniform translation. Therefore, the invariance
of distances and time intervals, which leads to Galilean
transformations, is a key piece in the Newtonian con-
struction because it allows the second law to be valid in
a family of frames in relative uniform translation. This
is the family of inertial frames, and this is the content
of the principle of relativity.

Principle of Relativity
The fundamental laws of Physics have the same form in
any inertial frame.

For instance, the same physical laws describe a free
falling body both in a plane and at the earth surface. The
principle of relativity in Classical Mechanics tells us that
the state of motion of the frame cannot be revealed by
a mechanical experiment: the result of the experiment
will not depend on the motion of the frame because it is
ruled by the same laws in all the inertial frames.

But how can we recognize whether a frame is iner-
tial or not? We could effectively recognize a particle in
rectilinear uniform motion; if we were sure that the par-
ticle is free of forces, then we would conclude that the
frame is inertial. However, Mechanics allows not only
for contact forces but for forces at a distance. So how
can we be sure that a particle is free of forces? Newton
was aware of this annoying weakness of its formula-
tion; he then considered that the laws of Mechanics
described the particle motion in the absolute space.
Thus, the inertial frames are those fixed or uniformly
translating with respect to Newton’s absolute space.

While the inertial frames are defined by their states
of motion with respect to Newton’s absolute space, this
(absolute) motion is not detectable, since the principle
of relativity puts on an equal footing all the inertial
frames; actually, only relative motions are detectable.
Absolute space in Classical Mechanics plays the es-
sential role of selecting the privileged family of inertial
frames where the fundamental laws of Physics are
valid; but, surprisingly, it is not detectable. In some
sense absolute space acts, because it determines the
inertial trajectories of particles, but it does not receive
any reaction because it is immutable. Leibniz [1.5] crit-
icized this feature of the Newtonian construction, by
demanding that Mechanics were aimed to describe rela-
tions among particles instead of particle motions in the
absolute space. In practice, however, Newton’s mechan-
ics is successful because we can choose frames where
the noninertial effects are weak or can be understood
in terms of inertial forces that result from referring the
frame motion to another more inertial frame.

As advanced in Sect. 1.1.2, Special Relativity will
abandon the invariance of distances and time intervals.
Then, Galilean transformations will be abandoned too.
This means that Newton’s second law (1.11) and the
character of fundamental forces will suffer a relativistic
reformulation. However the inertial frames will still
keep their privileged status devoid of a sound physical
basis; this issue will be only re-elaborated in General
Relativity.
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1.3 The Theory of Light and the Absolute Motion
In the second half of the 19th century light was re-
garded as electromagnetic mechanical waves governed
by Maxwell’s laws. These waves were perturbations of
a medium called ether; they propagate at the speed c
relative to the ether. However, the ether could not be
evidenced, nor directly neither indirectly. Several exper-
iments did not succeed in revealing the Earth’s motion
relative to the ether (a sort of absolute motion), and
some forced hypothesis about the interaction between
matter and ether were introduced to give account of
these null results.

1.3.1 The Finiteness of the Speed of Light

As mentioned in Sect. 1.1.2, velocities are not invariant
in Classical Mechanics. Actually, only an infinite ve-
locity would remain invariant under Galilean addition
of velocities (1.8). Are there infinite speeds in nature?
Many philosophers (Aristotle among them) thought that
the speed of light was infinite. The issue of whether the
speed of light was finite or infinite has been the object
of debate from the ancient times. In the 17th century,
the question was still open. While Kepler and Descartes
argued in favor of an infinite speed of light, Galilean
proposed a terrestrial test that, however, was not suit-
able to determine such a large speed. But at the end of
17th century, contemporarily to Newton’s development
of Mechanics, an answer came from the Astronomy
side.

In 1676 Rømer [1.6] noted that the time elapsed be-
tween the observations of successive eclipses of Io –
the innermost of Jupiter’s great moons – was larger
when the Earth traveled its solar orbit moving away
from Jupiter and shorter when the Earth moved towards
Jupiter. Rømer realized that such deviations in this oth-
erwise periodical phenomenon were the sign of a finite
speed of light. In fact, if the Earth were at rest, then
we would observe one eclipse each 42:5 h (the orbital
period of Io). However, if the Earth moves away from
Jupiter, the time between two successive observations
of the emersions of Io from the shadow cone will be en-
larged; this happens because the light coming from the
second emersion travels a longer distance at a finite ve-
locity to reach the Earth. This delay, together with the
length traveled by the Earth in 42:5 h, led to the first
determination of the speed of light. By recording the
accumulative delay of many successive eclipses, Rømer
found that the light traveled the diameter of the Earth’s
orbit in 22 min (the actual value is 16 min) [1.7].

Fifty years later, Bradley [1.8] discovered the aber-
ration of starlight. Bradley observed that the light com-
ing from a star suffers annual changes of direction in
the frame translating with the Earth. The nature of
these changes highly disturbed Bradley because they
unexpectedly differed from the stellar parallax he was
looking for (a tiny effect only measured one hundred
years after). Eventually, Bradley concluded that the stel-
lar aberration discovered by him was a consequence of
the vector composition (1.8) between the speed of light
and the Earth’s motion around the Sun at 30 km s�1.
By measuring the aberration angle, Bradley obtained
the speed of light within an error of 1% [1.9]. In 1849
Fizeau [1.10] carried out the first terrestrial measure-
ment of the speed of light. Like any finite velocity, the
speed of light is not a Galilean invariant.

1.3.2 The Wave Equation

At the middle of the 19th century the dispute about the
corpuscular or undulatory character of light seemed to
be settled in favor of the wave theory of light. The cor-
puscular model sustained by Newton and many other
scientists could not explain the totality of the lumi-
nous phenomena. In 1821 Fresnel [1.11] completed
his wave theory of light, so giving a finished math-
ematical form to the undulatory model proposed by
Huygens in 1678 [1.12]. This theory included the con-
cepts of amplitude and phase to describe interference
and diffraction; besides, the light was presented as
a transversal wave to explain the phenomena concern-
ing polarization. In 1850 Foucault [1.13] measured the
speed of light in water, and verified the value c=n (n is
the refractive index) as predicted by the wave theory in
opposition to the corpuscular model.

At that time, the light waves were considered matter
waves like sound or the waves on the water surface of
a lake. Physics and Mechanics were synonymous; so,
any phenomenon was regarded as a mechanical phe-
nomenon, and light did not escape the rule. Matter
waves propagate in a material medium; they are but
medium oscillations carrying energy. In the simplest
cases, they are governed by the wave equation

1

c2
w

@2 

@t2
� r2 D 0 ; (1.12)

where  .t, r) represents the perturbation of the medium
(for instance the longitudinal oscillations of density
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and pressure when sound propagates in a gas, or the
transversal displacement of a string in a musical instru-
ment). Any function D  .x˙cwt/ is a solution of the
wave equation (1.12); it represents a perturbation that
travels in the x-direction, without changing its form, at
the constant speed ˙cw. The general solution is a com-
bination of solutions traveling in all directions.

The wave equation (1.12) is not written to be used
in any inertial frame. It only describes the wave propa-
gation in a frame fixed to the medium. In fact, the wave
equation changes form under Galilean transformations.
Let us take the x-sector of the Laplacian r2 and write

1

c2
w

@2

@t2
� @2

@x2
D

�
1

cw

@

@t
� @

@x

� �
1

cw

@

@t
C @

@x

�

D 4
@

@�

@

@�
;

(1.13)

where � � cwt�x, �� cwtCx (or cwt D .�C�/=2, x D
.�� �/=2). This shows that the wave equation would
keep its form in different inertial frames moving along
the x-axis if cwt ˙ x were proportional to cwt0 ˙ x0; but
this is not true in Galilean transformations (1.4), (1.6).
The fact that the equation governing mechanical waves
is fulfilled just in the frame where the medium is at
rest does not imply the violation of the principle of
relativity. The medium is a physical reason for priv-
ileging an inertial frame; furthermore, (1.12) will be
accomplished whatever be the inertial frame where the
medium is at rest. Actually, the wave equation for me-
chanical waves can be obtained from the fundamental
laws of mechanics – which certainly accomplish the
principle of relativity – under some assumptions valid
in the frame fixed to the medium. In this derivation, the
propagation velocity cw results from the properties of
the propagating media.

1.3.3 The Æther Theory

In Fresnel’s theory, light was a mechanical wave that
propagates in a medium called the ether luminiferous,
and  was the velocity of the ethereal molecules. The
speed of light c was a property of the ether. To be the
seat of transversal waves, the ether should be an elastic
material; it was strange that no longitudinal waves ex-
isted in this elastic medium. Besides, to produce such
enormous propagation velocity, the ether should be ex-
tremely rigid. The ether should fill the universe, because
light propagates everywhere. It was logical to think the
ether as at rest in Newton’s absolute space; the ether

became a sort of materialization of Newton’s absolute
space.

But such omnipresent substance should produce
other mechanical effects, apart from the luminous phe-
nomena. How can planets move through the ether with-
out losing energy? Would the ether penetrate through
the moving bodies without disturbing them or it would
be dragged by them? If air is pumped out of a bottle,
then the sound will cease to propagate inside the bottle;
however, the light will still propagate, meaning that the
ether was not evacuated together with the air (why?).
The ether looked like an elusive intangible substance
without any other effect than being the seat of the lumi-
nous phenomena.

1.3.4 Maxwell’s Electromagnetism

In 1873 Maxwell [1.14] published his Treatise on Elec-
tricity and Magnetism, where electricity and magnetism
appeared as two parts of a sole entity: the electro-
magnetic field. Maxwell’s laws for the electromagnetic
field contained as particular cases the well known
electrostatic interactions between charges and magne-
tostatic interactions between steady currents. But the
very Maxwell’s achievement was to discover that vari-
able electric and magnetic fields – E and B – create
each other. This mutual feedback between electricity
and magnetism generates electromagnetic waves. In
fact, Maxwell’s equations in the absence of charges
lead to wave equations (1.12), with the Cartesian com-
ponents of E and B playing the role of  . In the
electromagnetic wave equations the propagation ve-
locity is c D .�o"o/

�1=2. In SI units, �o is chosen to
define the unit of electric current, and "o is experimen-
tally determined through electrostatic interactions; their
values are �o D 4��10�7 N A�2, "o D 8:854187817�
10�12 N�1 A2 m�2s2. To Maxwell’s surprise, the value
of c coincided with the already measured speed of light;
so Maxwell concluded that light was an electromag-
netic wave.

Maxwell conceived the electromagnetic waves as
a mechanical phenomenon in a propagating medium.
Therefore, he believed that his equations were valid in
a frame fixed to the medium. The recognition of light as
an electromagnetic wave then identified the electromag-
netic medium with the luminiferous ether. On another
hand, the action of the field on a charge q – the Lorentz
force F D q.ECu�B/ – depended on the velocity u of
the charge. This velocity was regarded as the velocity of
the charge with respect to the ether (the charge absolute
velocity).
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Differing from Classical Mechanics, Maxwell’s
electromagnetism will fit the Special Relativity without
changes. Einstein will defy the classical viewpoint by
considering that Maxwell’s equations should be valid in
any inertial frame. If so, the speed of light would be in-
variant (i. e., it would have the same value in any inertial
frame). To sustain this idea, Galilean transformations
should be replaced with transformations leaving invari-
ant the speed of light; this implies the abandonment of
the classical invariance of distances and time intervals.
In Special Relativity, Maxwell’s electromagnetism will
become a paradigmatic theory.

1.3.5 The Search for the Absolute Motion

Although the ether resisted a direct detection, at least
it could be indirectly tested. In the second half of the
19th century, several experiments were aimed to test the
Earth’s motion with respect to the ether (the Earth’s ab-
solute motion). While c was considered the speed of
light in the frame fixed to the ether, the speed of light in
the Earth’s frame should result from composing c with
the Earth’s absolute motion V, according to the Galilean
addition of velocities (1.8). Therefore, some of these
experiments were based on the time the light takes to
travel a round-trip along a straight path (the light comes
back after being reflected by a mirror). To exemplify the
idea, we will choose the path to be parallel to the (un-
known) Earth’s absolute motion. According to Galilean
addition of velocities, the speed of light in the Earth’s
frame is c � V when light goes, and c C V when light
comes back. If l is the length the light covers in each
journey, then the total time of the round-trip is

t D l

c � V
C l

c C V
D 2l=c

1 � V2

c2

: (1.14)

As can be seen, the Earth’s absolute motion V enters
the result as a correction of the second order in V=c.
A correction of even order was expectable because the
traveling time of a round trip (1.14) should not change
if the Earth’s motion were reversed. To be conclusive,
the experiments should be able to detect at least a value
V=c � 10�4. This is because the Earth orbits the Sun
at 30 km s�1 Š 10�4c; then, even if the Earth were at
rest in the ether when the experiment is performed,
it would move at 60 km s�1 six months later. There-
fore, any experimental array based on the traveling time
(1.14) should reach a sensitivity of 10�8. Such strong
constraint could be circumvented by experimental ar-
rays sensitive to the change V ! �V; if so, the result

could be of the first order in V=c. This the case of the
experiment performed by Hoek [1.15] in 1868, where
the symmetry V $ �V is broken because one of the
stretches of the round-trip was not in air but in water;
in this stretch, the speed c=n replaces c in (1.14). How-
ever, Hoek’s interferometric device was not effective for
determining the Earth’s absolute motion.

There were also two experiments, sensitive to the
first order in V=c, that involved Snell’s law. In 1871
Airy [1.16] measured Bradley’s stellar aberration with
a vertical telescope filled with water. Bradley had
measured the annual variation of the aberration angle
produced by the Earth’s orbit around the Sun. This vari-
ation did not reveal the Earth’s absolute motion V but
just the changes of V. Airy’s experiment, instead, took
into account that the aberration implied that the tele-
scope was not oriented along the direction the light ray
had in the ether’s frame. If Snell’s law were valid in
the ether frame, then an additional refraction would take
place when the light entered the water in the telescope.
This additional refraction would change the view angle
to the star by a quantity of the first order in V=c. Nev-
ertheless, Airy’s experiment did not reveal the Earth’s
absolute motion. Much earlier, in 1810, Arago [1.17]
covered a half of the objective of his telescope with
a prism, to obtain a second image of the stars. To see
the image through the prism, the telescope direction had
to be corrected in an angle equal to the deviation angle
of the prism. Arago believed that the light refraction in
the prism could depend on the velocity of light relative
to the prism, which results from the vector composi-
tion (1.8) of the speed of light with the absolute motion
of the prism (i. e., the Earth’s absolute motion). This
effect could be revealed by observing stars in several di-
rections to get different vector compositions. However,
Arago did not notice any change of the deviation angle.

Fresnel [1.18] searched reasons for Arago’s null re-
sult. In the context of the ether theory, he found that
the null result could be explained, at the first order in
V=c, by advancing a curious hypothesis: an (absolute)
moving transparent substance partially drags the ether
contained in its interior. The partial dragging is such
that the phase velocity of light – the displacement per
unit of time of the wave fronts –, as measured in the
frame fixed to the universal ether (rather than the ether
inside the substance) is not c=n but

u D c

n
C .1 � n�2/V � On ; (1.15)

where On is the propagation direction, V is the absolute
motion of the transparent substance and n is its refrac-
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tive index. In practice, Fresnel’s dragging coefficient
f D 1 � n�2 caused the fulfillment of Snell’s law in the
frame fixed to the transparent substance (at the first or-
der in V=c). Fresnel’s hypothesis explained why Arago
did not succeed in his endeavor: the deviation angle
of the prism was always the one predicted by Snell’s
law, irrespective of the absolute motion of the prism.
Besides, it also explained the null result in Airy’s exper-
iment because no additional refraction will be produced
if Snell’s law is valid in the frame fixed to the tele-
scope (in this frame the ray of light and the telescope are
equally oriented). Moreover, the partial dragging (1.15)
cancels out the first order effects in the time (1.14) when
one of the stretches is not in air but in another transpar-
ent substance; so, it also explained Hoek’s null result
(Hoek’s device was not sensitive enough to test second
order effects).

Fresnel’s partial dragging of ether was measured by
Fizeau [1.19] in 1851. Since Special Relativity will re-
ject the existence of the ether, Fizeau’s measurement
will require a relativistic interpretation. On the other
hand, the fulfillment of Snell’s law in the frame fixed
to the transparent substance is completely satisfactory
in Special Relativity, because that is the only physically
privileged frame. For a detailed analysis of the experi-
ments pursuing the absolute motion in connection with
Fresnel’s hypothesis, see [1.20, 21].

1.3.6 Michelson–Morley Experiment

In 1881 Michelson designed an interferometer aimed
to detect the Earth’s absolute motion. In Michelson’s
interferometer the light traveled round-trips completely
in air. So, the challenge was to achieve a sensitivity of

Ray 2L

l

Ray 1

Telescope

Half-silvered glass

Mirror

Mirror
Light beam

Fig. 1.2 Scheme of Michelson’s interferometer

10�8. Figure 1.2 shows the scheme of Michelson’s in-
terferometer. The beam of light emitted by an extensive
source is split into two parts by a half-silvered glass
plate. After travelling mutually perpendicular round-
trips, both parts join again to be collected by a tele-
scope where interference fringes are observed (Fizeau’s
fringes [1.22]). The fringes are caused by a slight mis-
alignment of the mirrors; this implies that the images of
the mirrors at the telescope form a wedge. The wedge
causes that rays 1 and 2 arrive at the telescope with
a phase-shift that changes according to the thickness
of the wedge at the place where the rays bounced. So,
the phase-shift will be different for each one of the rays
in the beam; therefore, bright and dark fringes will be
observed at the telescope. Notice that l and L do not
need to be equal, but 2.l�L/ should be smaller than the
coherence length of light to preserve the interference
pattern.

For each ray in the beam, the phase-shift between
parts 1 and 2 determines whether they produce a bright
or a dark fringe. This phase-shift results from the times
t1, t2 the rays 1 and 2 employ to cover their respective
round-trips; these times depend on the distances l, L and
the velocities u0

1, u0

2 of the rays in the laboratory. u0

1, u0

2
are the result of the vector composition (1.8) between
the speed c in the ether frame and the Earth’s absolute
motion V; u0

1, u0

2 are clearly different, since the vec-
tor composition depends on the direction of each ray.
Moreover, if the interferometer were gradually rotated
then the velocities u0

1, u0

2 would gradually change. In
this way, the rotation of the interferometer would af-
fect the fringes: the position of the bright fringes would
gradually displace. Instead, if the interferometer were
at rest in the ether, then the fringes would not displace
because rays 1 and 2 would travel at the speed c irre-
spective of the orientation of the interferometer. Thus,
the displacement of the fringes would be the indication
of the Earth’s absolute motion.

Let us compute the times t1, t2 when the arm l is
oriented along the still unknown absolute motion V. In
such case, the ray 1 has speeds c � V, c C V, and the
time t1 is given by (1.14). On the other hand, the ray 2
is orthogonal to V in the laboratory frame; so the vector
composition to obtain the value of u0

2 is the one shown
in Fig. 1.3. As can be seen, the ray 2 goes to the mirror
and comes back with a speed u0

2 D p
c2 � V2. Then, the

round-trip along the arm L takes a time

t2 D 2L=cq
1 � V2

c2

: (1.16)
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V

u'2c

V

u'2 c

Fig. 1.3 Galilean composition of velocities for ray 2

The phase-shift is ruled by the time difference

�t0ı D t1 � t2 D 2l=c

1 � V2

c2

� 2L=cq
1 � V2

c2

: (1.17)

If the interferometer is rotated 90ı, then the arm L cor-
responding to the ray 2, will be aligned with V; so the
result will be

�t90ı D t1 � t2 D 2l=cq
1 � V2

c2

� 2L=c

1 � V2

c2

: (1.18)

Although the Earth’s absolute motion V is unknown,
a gradual rotation will make the interferometer to pass
through these two extreme values separated by a right
angle. Thus a displacement of the fringes will be ob-
served, in connection with the change of t1 � t2 given
by

�t90ı ��t0ı D 2

c
.l C L/

2
64 1q

1 � V2

c2

� 1

1 � V2

c2

3
75

D � l C L

c

V2

c2
C O.V4c�4/ :

(1.19)

This change is equivalent to the displacement of N D
cj�t90ı ��t0ı j=�D .lCL/=��V2=c2 fringes (� is the
light wavelength).

After a failed attempt in 1881, Michelson joined
Morley to improve the experimental sensitivity. In 1887
they possessed an interferometer whose arms were 11 m
long (this was achieved by means of multiple reflections
in a set of mirrors). Then, it was expected at least a re-
sult of N Š 0:4. However, no displacement of fringes

was observed [1.23–25]. Michelson was convinced that
the null result meant that the Earth carried a layer of
ether stuck to its surface. If so, the experiment would
have been performed at rest in the local ether, which
would explain the null result. Lodge [1.26] tried to
confirm this hypothesis by unsuccessfully looking for
effects due to the ether stuck to a fast rotating wheel.
In a revival of the corpuscular model, Ritz [1.27] then
proposed that light propagates with speed c relative to
the source. This hypothesis, combined with other as-
sumptions about the behavior of light when reflected by
a mirror (emission theories), would explain the null re-
sult of Michelson–Morley’s experiment with a source at
rest in the laboratory, but is refuted by a varied body of
experimental evidence [1.28–30].

1.3.7 FitzGerald–Lorentz Length Contraction

Lorentz thought that Michelson–Morley’s null result
could be understood in a very different way. He consid-
ered that a body moving in the ether suffered a length
contraction due to its interaction with the ether. The in-
teraction would contract the body along the direction
of its absolute motion V, but the transversal dimensions
would not undergo any change. In fact, if the contrac-
tion factor

p
1 � V2c�2 is applied to l in (1.17) and L in

(1.18) (i. e., the dimensions along the absolute motion
direction in each case), then both time differences will
result to be equal, and the expression (1.19) will vanish.
This Lorentz’s proposal of 1892 [1.31] had been inde-
pendently advanced by FitzGerald [1.32] three years
before. This proposal did not mean the abandonment
of the belief in the invariance of lengths. The contrac-
tion was a dynamical effect; it depended on an objective
phenomena: the interaction between two material sub-
stances. The contraction should be observed in any
frame, and all the frames should agree about the value
of the contracted length.

The idea that light was a material wave (i. e., the
idea that Maxwell’s laws were written to be used only in
the ether frame) and the belief in the invariance of dis-
tances and time intervals lead Physics to a blind alley.
While complicated dynamical explanations were elab-
orated to interpret experimental results, like Fresnel’s
partial dragging of ether and FitzGerald–Lorentz length
contraction caused by the ether, the experimental re-
sults were not so complicated; they just said that the
absolute motion cannot be detected. However, unless
Physics get rid of some classical misconception, such
a reasonable conclusion will not fit with its theoretical
body.
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1.4 Einstein’s Special Relativity
In 1905 Einstein postulated that [1.33]

the same laws of electrodynamics and optics will
be valid for all frames of reference for which the
equations of mechanics hold good.

In this way, Einstein proclaimed that Maxwell’s elec-
tromagnetism does not possess a privileged system;
Maxwell’s laws can be used in any inertial frame. Thus,
Einstein raised Maxwell’s laws to the status of fun-
damental laws satisfying the principle of relativity (as
stated in Sect. 1.2.2). In doing so, Einstein closes the
possibility of detecting the state of motion of an inertial
frame by electromagnetic means. The ether does not ex-
ist; the electromagnetic waves are not material waves.
The inertial frames are not endowed with a property V
(its absolute motion or the ether wind); only the velocity
describing the relative motion between inertial frames
makes physical sense. Besides, the Snell’s law is valid
in the frame where the refracting substance is at rest,
whatever this frame is.

An immediate consequence of the use of Maxwell’s
laws in any inertial frame is that light in vacuum prop-
agates at the speed c in any inertial frame; c is an
invariant velocity (light is always propagated in empty
space with a definite velocity c which is independent
of the state of motion of the emitting body [1.33]). The
existence of an invariant velocity implies that Galilean
addition of velocities is a classical misconception to be
got rid of; such step entails the revision of the classical
belief in the invariance of distances and time intervals.

1.4.1 Relativistic Length Contractions
and Time Dilations

We will re-elaborate the transformations of spacetime
coordinates without prejudging about the behavior of
distances and time intervals, but subordinating them to
the invariance of the speed of light. Figure 1.4 shows
a particle traveling between the ends of a bar, as seen
in the frame where the bar is fixed and the frame where
the particle is fixed. The relative motion bar-particle is
characterized by the sole velocity V. It is useful to call
proper length Lo the length of the bar at rest. Notice
that, since all inertial frames are on an equal footing, the
length of the bar will be Lo in any inertial frame where
the bar is at rest. Instead, we could expect a different
length L.V/ in a frame where the bar moves lengthways
at a relative velocity V. For this reason, in Fig. 1.4 the
bar is represented with different lengths in each frame.

In the frame fixed to the bar (proper frame of the bar)
the particle takes a time�t to cover the length Lo; then,
it is V D Lo=�t. On the other hand, in the frame fixed
to the particle, the ends of the bar take a time�� to pass
in front of the particle; then V D L=�� . We should not
prejudge about the nature of time; then, we are opening
the possibility that the time interval between the same
pair of events be different in each frame. It is also useful
to call proper time �� the time between events as mea-
sured in the frame where the events occur at the same
place (if such a frame exists). In our case, the events are
the passing of each end of the bar in front of the parti-
cle; they occur at the same place in the frame where the
particle is fixed. So, we have computed the same value
of V with lengths and times measured in two frames that
relatively moves at a velocity V. Thus, we conclude that

Lo

L
D �t

��
: (1.20)

Each side in (1.20) could only depend on the relative
velocity between the considered frames. Then, (1.20)
says that each side is the same function of V

Lo

L
D 	.V/ ;

�t

��
D 	.V/ : (1.21)

In Classical Physics 	.V/ is assumed to be 1. On the
contrary, in Special Relativity the value of 	.V/ will be
subordinated to the invariance of the speed of light. It
should be remarked that (1.21) is not deprived of as-
sumptions about the nature of spacetime. In fact, the
quotients Lo=L and �t=�� could also depend on the
event of the spacetime where the measurements take
place and the orientation of the bar. Equation (1.21) ac-
tually assumes that the spacetime is homogeneous and
isotropic; these assumptions will be revised in General
Relativity.

On one hand, (1.21) expresses the relation between
the length L of a bar moving at a velocity V and its
proper length Lo. On the other hand, (1.21) expresses
the relation between the times elapsed between two

Lo L

V

–V

Fig. 1.4 Relative motion bar-particle in the proper frames of the bar
(left) and the particle (right)
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LV Δtgoing

V

Mirror

Pulse of light

Fig. 1.5 A light pulse traveling a round trip between the
ends of a bar, as regarded in the frame where the bar moves
with velocity V

events as measured in the frame where they occur at
the same place (proper time ��) and other frame mov-
ing at a velocity V relative to the former one (�t). As
(1.21) shows, both ratios are strongly interconnected.

The relations (1.21) are independent of the particu-
lar case examined in Fig. 1.4. To obtain 	.V/ we will
now study a case involving the speed of light, where
the relations (1.21) will enter into play too. Figure 1.5
shows a bar of proper length Lo supporting at its ends
a source of light and a mirror. Let us consider the time
elapsed between the emission of a pulse of light from
the source and its return to the source. Both events oc-
cur at the same place in the proper frame of the bar;
then, the proper time �� is the time the light takes to
cover the distance 2Lo at the speed c

c�� D 2Lo : (1.22)

In another frame where the bar moves at a velocity V
(but light still propagates at the speed c), we will de-
compose the time between events as �t D�tgoing C
�treturning. When light goes towards the mirror at the
speed c it covers the distance L plus the displacement
of the mirror V�tgoing. Instead, when light returns to
the source it covers the distance L � V�treturning due to
the displacement of the source. Therefore,

c�tgoing D L C V�tgoing ;

c�treturning D L � V�treturning :
(1.23)

Solving these equations for c�tgoing, c�treturning one
gets

c�t D c�tgoing C c�treturning D cL

c � V
C cL

c C V

D 2L

1 � V2

c2

:

(1.24)

We divide (1.22) and (1.24) and use (1.21) for obtaining
the function 	.V/

	.V/D 1q
1 � V2

c2

: (1.25)

Then, replacing in (1.21) we get the expressions for the
relativistic length contraction and time dilation

L.V/D Lo

s
1 � V2

c2
;

�tV D ��q
1 � V2

c2

:

(1.26)

Noticeably, the relativistic length contraction has the
same form proposed by FitzGerald and Lorentz to ex-
plain the null result of Michelson–Morley experiment.
However, its meaning is completely different. Lorentz
considered that the contraction was a dynamical effect
produced by the interaction between a body and the
ether. For Lorentz, V in (1.26) was the velocity of the
body with respect to the ether, and the contraction was
measured in all the frames. In Relativity, instead, the
length contraction is a kinematical effect. The bar looks
contracted whatever be the frame where it moves at the
velocity V; besides, it has its proper length Lo whatever
be the frame where the bar is at rest.

Length contractions and time dilations are not per-
ceptible in our daily life because we compare frames
moving at relative velocities V � c. One of the first
direct evidences of this phenomenon came from mea-
suring the length traveled by decaying particles moving
at a speed close to c, as compared to their half-life mea-
sured at rest [1.34].

1.4.2 Lengths Transversal
to the Relative Motion

The device of Fig. 1.5 is also useful to explore the
behavior of the dimensions transversal to the relative
motion. Figure 1.6 shows the device put in a direc-
tion orthogonal to the relative motion. Equation (1.22)
is still valid in the proper frame of the bar. In a frame
where the bar transversally displaces at the velocity V,
the ray of light will travel along an oblique direction
(this is nothing but the aberration due to the composi-
tion of motions). When the pulse of light goes towards
the mirror, it covers in a time �tgoing the hypotenuse
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Fig. 1.6 The round trip of light between the ends of a bar,
as regarded in a frame where the bar displaces transversally
at the velocity V

of a right triangle whose legs are V�tgoing and L0.
Since the light travels at the speed c in any frame, we
get

.c�tgoing/
2 D L02 C .V�tgoing/

2 : (1.27)

We remark the use of Pythagoras’ theorem in this
expression. This means that we assume the space is en-
dowed with a flat geometry; this assumption will be
revised in General Relativity. Due to the symmetry of
the path traveled by the light, it is �t D 2�tgoing, then

c�t D 2L0q
1 � V2

c2

D 	.V/2L0 : (1.28)

We divide (1.22) and (1.28), and use (1.21) to get that
transversal lengths are invariant

L0 D Lo : (1.29)

1.4.3 Lorentz Transformations

We are now in position of reanalyzing the transfor-
mation of the Cartesian coordinates of an event. Let
us come back to the (1.3) where the relation between
dO0PjS and x0 is pending. By definition, the coordi-
nate x0 is the distance measured by a rule fixed to
the frame S0: x0 D dO0PjS0 . This rule looks contracted
in the frame S; according to (1.26) it is dO0PjS Dp

1 � V2c�2x0. Therefore,

x0 D 	 .x � Vt/ (1.30)

is the transformation that replaces (1.4a). We can now
reproduce the argument of Sect. 1.1.3 to obtain the
transformation of the time coordinate of an event. Since
frames S and S0 are on an equal footing, the inverse
transformations have the same form, except for the
change V ! �V. In particular, the inverse transforma-
tion of (1.30) is

x D 	
�
x0 C Vt0

�
: (1.31)

Equation (1.30) can be replaced in (1.31) to solve t0

as a function of t, x. Besides, due to the relativistic
invariance of the transversal lengths (1.29), the transfor-
mations (1.4b), (1.4c) remain valid. Finally, we obtain
the Lorentz transformations

ct0 D 	 .ct �ˇx/ ; (1.32a)

x0 D 	 .x �ˇct/ ; (1.32b)

y0 D y ; (1.32c)

z0 D z ; (1.32d)

where ˇ � V=c, 	 D �
1 �ˇ2

�
�1=2

. Lorentz transfor-
mations (1.32) express the relativistic transformation of
the coordinates of an event, when the inertial frame S
is changed for an equally oriented inertial frame S0

that moves along the (shared) x-axis at the relative ve-
locity V. Notice that, since the transformation (1.32)
is homogeneous, the same event is the coordinate ori-
gin for S and S0. Figure 1.7 shows the lines t0 D
constant (i. e., ct D ˇx C const) and x0 D constant (i. e.,
ct D x=ˇC const) in the plane ct versus x. Figure 1.7
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Fig. 1.7 Coordinate lines of S0 in the plane ct versus x
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also displays a ray of light passing the coordinate
origin and traveling in the x-direction; its world-line
is a straight line at 45ı because �x D c�t. Galilean
transformations (1.4) are the limit c ! 1 of Lorentz
transformations (1.32).

The transformations (1.32) were independently ob-
tained by Lorentz [1.35, 36] and Larmor [1.37] as the
linear coordinate changes leaving invariant the form of
Maxwell’s wave equations (see also Voigt [1.38]). In
fact, the null coordinates � � ct � x, �� ct C x trans-
form as � 0 D 	.1 Cˇ/� , �0 D 	.1 �ˇ/�, so leaving
invariant the form of the wave equation (1.13) for cw D
c. In other words, the d’Alembertian operator

� � 1

c2

@2

@t2
� r2 (1.33)

is invariant under transformations (1.32). In 1905
Poincaré [1.39] underlined the group properties of re-
lations (1.32) and called them Lorentz transformations.

In 1905 Einstein re-derived the Lorentz transfor-
mations and gave to t0 the rank of real time measured
by clocks at rest in S0. In Einstein’s Special Relativity
the physical equivalence of the inertial frames, which
is the content of the principle of relativity, means that
the fundamental laws of Physics keep their form under
Lorentz transformations rather than Galilean transfor-
mations. Maxwell’s laws accomplish this relativistic
version of the principle of relativity, once the trans-
formations of the fields are properly defined. Actually,
Maxwell’s electromagnetism is the paradigm of a rel-
ativistic theory. The electromagnetic Lorentz force is
a typical relativistic force; its magnetic part depends
on the charge velocity relative to the inertial frame.
But, which part of the field is electric and which one
is magnetic depends on the frame as well; even if the
force is entirely electric in a given frame, it will have
a magnetic part in another frame. On the contrary,
Classical Mechanics fulfilled the principle of relativ-
ity under Galilean transformations; then, the Mechanics
needed a reformulation to accommodate to the relativis-
tic meaning of the principle of relativity.

1.4.4 Relativistic Composition of Motions

The composition of motions that replaces the Galilean
addition of velocities is obtained by differentiating
(1.32) and taking quotients. Notice that

dt0 D 	.dt �ˇc�1 dx/D 	
�
1 �ˇc�1ux

�
dt :

(1.34)

Therefore,

u0

x D dx0

dt0
D 	

�
dx

dt0
� V

dt

dt0

�

D ux � V

1 �ˇc�1ux
;

(1.35a)

u0

y D dy0

dt0
D

p
1 �ˇ2uy

1 �ˇc�1ux
;

u0

z D dz0

dt0
D

p
1 �ˇ2uz

1 �ˇc�1ux
:

(1.35b)

The procedure can be repeated to transform the accel-
erations. Contrasting with Galileo transformations, the
acceleration is far to be invariant under Lorentz trans-
formations.

Equations (1.35a) and (1.35b) can be combined to
get u02 D u02

x C u02
y C u02

z ; it is easy to verify that

1 � u02

c2
D 1 �ˇ2

.1 �ˇc�1ux/2

�
1 � u2

c2

�
: (1.36)

Since ˇ < 1 (otherwise Lorentz transformations should
be ill-defined), then both hand sides of (1.36) have the
same sign. Therefore u and u0 are both lower, equal or
bigger than c; this is an invariant property of the speed.

As an application of transformations (1.35a) and
(1.35b), let us compute the speed of light when light
propagates in a transparent substance that moves at the
velocity V; then, u0

x D c=n, where n is the refractive in-
dex. We will use the inverse transformations to get ux

(i. e., we change V for �V in (1.35a))

ux D c

n

1 C nV
c

1 C V
nc

� c

n

�
1 C nV

c

� �
1 � V

nc

�

� c

n
C .1 � n�2/V : (1.37)

This result has the same form that Fresnel’s partial drag-
ging. However, V in (1.37) is not the velocity of the
transparent substance with respect to the ether; it is the
motion of the transparent substance relative to an arbi-
trary inertial frame. What Fizeau measured in 1851 was
a relativistic composition of motions.

1.4.5 Relativity of Simultaneity. Causality

Two events 1 and 2 (two points in the spacetime) are
simultaneous if they have the same time coordinate:
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Fig. 1.8 (a) In the proper frame of the bar, the pulses of light arrive at the ends of the bar at the same time. (b) In a frame
where the bar is moving, the light arrives at the rear end before than the front end. In both frames the speed of light is c
(the rays of light are lines at 45ı)

t1 D t2. In Classical Physics the time is invariant; so the
simultaneity of events possesses an absolute meaning.
However, in Special Relativity t1 D t2 does not imply
t01 D t02. Then the simultaneity acquires a relative mean-
ing; it is frame-depending. In fact, the pairs of events
that are simultaneous in the frame S lie on horizontal
lines (t D constant) in Fig. 1.7; these lines cross the
t0 D constant lines. Therefore the events simultaneous
in S have different time coordinate t0 in S0.

To understand why the simultaneity is relative in
Special Relativity, let us consider a bar of proper length
Lo which is equipped with a source of light at its cen-
ter. In the proper frame of the bar, a pulse of light will
arrive simultaneously at both ends of the bar, because
it covers the same distance Lo=2 at the same speed c
in both directions. In another frame the bar is moving
but light still propagates at the speed c in any direc-
tion. Thus, the pulse will arrive before at the rear end
of the bar because this end moves towards the pulse
of light. Then, the same pair of events (the arrivals of
the light to the ends of the bar) is not simultaneous
in a frame where the bar is moving. Moreover, since
which end is at rear depends on the direction of the mo-
tion (i. e., it depends on the frame), the temporal order
of this kind of events can be inverted by changing the
frame.

Figure 1.8 shows the world-lines of the ends of the
bar and the pulses of light both in the bar proper frame S
and a frame S0 where the bar moves to the left (then
S0 moves to the right relative to S, so it is ˇ > 0). In
Fig. 1.8a the ends of the bar are described by verti-

cal world-lines because the positions x are fixed. In
Fig. 1.8b the world-lines have the slope correspond-
ing to the velocity �V the bar has in the frame S0. In
both frames the light travels at the speed c. Events R
and F are simultaneous in the proper frame of the bar
(Fig. 1.8a), and they occur at a distance Lo. Then, �t D
0, �x D �Lo (�t D tF � tR, etc.). The time elapsed be-
tween R and F in the frame S0 can be obtained by means
of Lorentz transformations. Since Lorentz transforma-
tions are linear, they are equally valid for the differences
of coordinates of a pair of events. So, (1.32a) also
means

c�t0 D 	.c�t �ˇ�x/ : (1.38)

Then it is c�t0 D 	ˇLo in Fig. 1.8b. This result could
be also achieved by applying elementary kinemat-
ics in the frame S0, and using the length contraction
L D 	�1Lo.

In any case, (1.38) says that �t and �t0 cannot
be both zero (apart from the case where the events
are coincident). Moreover, �t and �t0 in (1.38) could
even have opposite signs, which would amount to the
inversion of the temporal order of the events. This
alteration of the temporal order in Lorentz transfor-
mations would be acceptable only for pairs of events
without causal relation; otherwise it would constitute
a violation of causality. Remarkably, the violation of
causality is prevented because the speed of light can-
not be exceeded in Special Relativity. As it will be
shown in Sect. 1.5, c is an unreachable limit veloc-
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ity for massive particles. Consistently, it is V=c D
ˇ < 1 in Lorentz transformations. Therefore, those
pairs of events such that j�rj> cj�tj cannot be in
causal relation because neither particles nor rays of
light can connect them. For instance, in Fig. 1.8 the
events R and F cannot be in causal relation because
their spatial separation is larger than their temporal
separation. This property does not depend on the cho-
sen frame, as can be checked in the transformations
(1.32) or inferred from (1.36). On the contrary, the
pairs of events having j�rj 	 cj�tj can be causally
connected. But in this case, it results that jˇ�xj<
j�xj 	 c�t. Thus jˇ�xj is not large enough to in-
vert the temporal order in (1.38); so causality is
preserved.

The relativity of simultaneity usually is the expla-
nation to some paradoxes in Special Relativity. For
instance, let us consider two bars having the same
length if compared at relative rest. Then, if they are in
relative motion, each one will appear shorter when re-
garded from the proper frame of the other one. How
could this make sense? It makes sense because the
length of a bar results from comparing the simultane-
ous positions of its ends. Since the simultaneity is not
absolute in Special Relativity, then a length measure-
ment performed in S is not consistent in S0.

1.4.6 Proper Time of the Particle

While those events having j�rj> cj�tj admit a frame
where they occur at the same time (or, moreover, frames
where their temporal order is inverted), those events
having j�rj < c�t admit a frame where they occur at
the same place. This is a consequence of the symmet-
ric form of (1.32a) and (1.32b). From a more physical
standpoint, the events having j�rj< c�t can be joined
by a uniformly moving particle. The proper frame of
the particle effectively realizes the inertial frame where
both events occur at the same place: the events occur
at the (fixed) position of the particle. These observa-
tions show that the concept of proper time, as defined
in Sect. 1.4.1, applies to pairs of events whose spatial
separation is smaller than the temporal separation.

In general, any moving particle causally connects
events. Figure 1.9 shows the world-line of a particle that
moves nonuniformly. Since the world-line cannot ex-
ceed the angle of 45ı characterizing the speed of light,
any pair of events on the world-line of the particle will
satisfy j�rj 	 c�t. Let us consider two infinitesimally
closed events, like those shown in Fig. 1.9 correspond-
ing to the times t and t C dt. The frame where these two

y

ct

dr

x

ct + c dt
ct

Fig. 1.9 Two infinitesimally closed events belonging to
the world-line of non-uniformly moving particle. They are
causally connected: jdrj< cdt

events occur at the same place is the proper frame of
the particle moving at the speed u.t/. Let us rewrite the
(1.36) with the help of (1.34) to get

s
1 � u02

c2
dt0 D

s
1 � u2

c2
dt : (1.39)

As is seen, this is a combination of speed and time
of travel which has the same value in any frame: it
is invariant. By comparing with (1.26) one realizes
that the invariant (1.39) is nothing but the proper time
elapsed between the infinitesimally closed events. In
other words, (1.39) is the time measured by a clock
fixed to the particle; it is the proper time of the particle

d� D
s

1 � u2

c2
dt D 	.u/�1 dt : (1.40)

This expression can be integrated along the world-line
to get the total time measured by a clock that moves
between a given pair of causally-connectable events.
Clearly, the integral depends on the world-line the
clock uses to join the initial and final events (it depends
on the function u.t/). It is easy to prove that the total
proper time is maximized along an inertial world-line.
This result is related to the so called twin paradox.
The paradox refers to twin brothers who separate be-
cause one of them has a space voyage. When they meet
again, the inertial brother who remained at the Earth



From Æther Theory to Special Relativity 1.5 Relativistic Mechanics 19
Part

A
|1.5

is older than the astronaut. Actually this result is not
paradoxical; the brothers are not on an equal footing
because Special Relativity confers a privileged status to
the inertial frames.

1.4.7 Transformations of Rays of Light

Let us consider a monochromatic plane solution of
(1.12) for waves traveling at the speed of light

 / exp

�
i
2�


c
.ct � On � r/

�
; (1.41)

where the unitary vector On is the propagation direction,
and 
 is the frequency. Let us use the inverse Lorentz
transformations to rewrite the phase of the wave in
terms of coordinates in S0


.ct � On � r/D 

�
	.ct0 Cˇx0/

� nx	.x
0 Cˇct0/

� nyy
0 � nzz

0

�
D 	.1 � On � Vc�1/
ct0

� 
 �
	.nx �ˇ/x0

C nyy0 C nzz
0

�
: (1.42)

Since the d’Alembertian operator (1.33) keeps the same
form if rewritten in coordinates of S0, the result (1.42)
should be reinterpreted as 
0.ct0 � On0 �r0/. Therefore, one
obtains:

Doppler Effect for Light
The frequency in the frame S0 is


0 D 	.1 � On � Vc�1/
 : (1.43)

Factor 	 is absent in classical Doppler effect. It implies
that the frequency shift exists even if the propaga-
tion direction is orthogonal to V (transversal Doppler
effect) due to time dilation. The first verification of
the relativistic Doppler frequency shift was made in
1938 [1.40].

Light Aberration
Besides, it is n0

x D .
=
0/	.nx �ˇ/D .nx �ˇ/=.1 �
ˇnx/. If � is the angle between the ray of light and
the x-axis, then it is nx D cos � . Thus, the propagation
direction transforms as

cos � 0 D cos � �ˇ
1 �ˇ cos �

: (1.44)

The aberration angle is ˛ � � 0 � � ; ˛ is very small
whenever it is ˇ � 1. So, we can approach cos � 0 D
cos.� C˛/� cos � � ˛ sin � . Besides, the right-hand
side of (1.44) can be approached by cos � �ˇ sin2 � .
Therefore,

˛ � ˇ sin � ; (1.45)

which is the Galilean approach Bradley used to ob-
tain the speed of light from the annual variation of the
starlight aberration.

1.5 Relativistic Mechanics

While the principle of inertia remains valid in Special
Relativity, instead Newton’s second law has to be re-
formulated because it does not satisfy the principle of
relativity under Lorentz transformations (forces behave
differently than accelerations under Lorentz transfor-
mations). The relativistic Mechanics can be constructed
from a Lorentz-invariant variational principle whose
functional action reproduces the Newtonian behavior
at low velocities. In Special Relativity, energy and
momentum are strongly related. The momentum is
conserved in any frame if and only if the energy is
conserved too. When particles collide, the conservation
of the relativistic energy takes the role of the classical
mass conservation. However, the relativistic energy is
a combination of mass and kinetic energy; so, mass can
be converted in kinetic energy (or other energies, like

the electromagnetic energy associated with photons)
and vice versa. Classical interactions at a distance are
excluded because the relativity of simultaneity prevents
nonlocal conservations of energy-momentum. Instead,
the interactions at a distance are realized through me-
diating fields carrying energy-momentum that locally
interact with the particles.

1.5.1 Momentum and Energy of the Particle

Variational principles are an outstanding tool to build
dynamical theories in Physics. They rest on the sta-
tionarity of a functional action. The resulting Lagrange
dynamical equations will fulfill the principle of relativ-
ity under Lorentz transformations whenever the action
is Lorentz-invariant. This feature guarantees that differ-
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ent inertial frames will agree about the stationarity of
the action. Thus, the same set of equations of motion
will be valid in all the inertial frames.

Let us start by building the action of a free parti-
cle. This action not only has to be Lorentz invariant but
must be equivalent to the classical action when juj � c.
The (invariant) proper time along the particle world-line
(1.40) is the right choice for the functional action of the
free particle

SfreeŒr.t/�D �mc2
Z

d�

D �mc2
Z s

1 � juj2

c2
dt

D �mc2
Z
	.u/�1 dt :

(1.46)

When juj � c the Lagrangian L D �mc2.1 � u2=c2/1=2

goes to L � �mc2 C .1=2/mu2. By differentiating the
Lagrangian L with respect to u one gets the conjugate
momentum m	.u/u of a free particle. One then defines
the momentum of the particle as

p � m	.u/u D m	.u/
dr
dt

D m
dr
d�

(1.47)

(the last step results from (1.40)), which goes to the
classical momentum mu when juj � c.

Since d� is invariant (1.39), the change of p under
Lorentz transformations emanates from the behavior of
dr. A Lorentz transformation mixes dr with cdt. Then
p will be mixed with mcdt=d� , which is a quantity in-
timately related to the energy. In fact, the Hamiltonian
of the free particle is

H D u � p � L D m	.u/u2 C mc2	.u/�1

D mc2	.u/

�
u2

c2
C 	.u/�2

�
D mc2	.u/ :

(1.48)

Then, we define the energy of the particle as

E � m	.u/c2 : (1.49)

The energy E is a combination of energy at rest mc2 and
kinetic energy. In fact, by Taylor expanding (1.49) we
obtain

E D mc2 C 1

2
mu2 C � � � � mc2 C T ; (1.50)

where T is the kinetic energy of the particle in Spe-
cial Relativity (at low velocities, it coincides with the

classical kinetic energy). Notice that the combination
of (1.47) and (1.49) yields

p D c�2Eu ; (1.51)

which says that the momentum is a flux of energy (as
in electromagnetism, where the density of momentum
is proportional to the Poynting vector).

Equation (1.40) can be used to replace 	.u/ in the
energy (1.49); it yields

E

c
D mc

dt

d�
: (1.52)

Then E is proportional to the ratio of the time dt mea-
sured by frame clocks to the respective proper time of
the particle. As stated above, the invariance of d� in
(1.47) and (1.52) implies that (E=c, p) transforms like
(cdt, dr) under Lorentz transformations, i. e.

E0 D 	.V/.E � cˇpx/

D 	.V/.E � V � p/;
(1.53a)

p0

x D 	.V/.px �ˇc�1E/ ; (1.53b)

p0

y D py; (1.53c)

p0

z D pz: (1.53d)

E2 and c2jpj2 combine to yield the square particle
mass, an invariant result called the energy-momentum
invariant

E2 � c2jpj2 D m2c4	.u/2 � m2c2u2	.u/2

D m2c4

�
1 � u2

c2

�
	.u/2 D m2c4 :

(1.54)

Let us differentiate (1.54) to obtain

E dE D c2p � dp ; (1.55)

or, replacing p with (1.51)

dE D u � dp D dr � dp
dt
; (1.56)

which suggests that the force is associated with dp=dt.
If so, (1.56) would express the equality between the
work of the force and the variation of the energy. Notice
that F D dp=dt implies that the force is not parallel to
the acceleration in general, due to the term containing
the derivative of 	.u/. Remarkably, if the work goes to
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infinity, then the energy diverges and the velocity u in
(1.49) goes to c. In this way, the speed of light is an
unreachable limit for the particle.

In electromagnetism, the interaction of a charge
with a given external field is described by adding the ac-
tion (1.46) with the term Sint D �q

R
.'�u �A/dt, where

' and A are the scalar and vector potentials evaluated at
the position of the charge. It can be proven that the in-
teraction action Sint is Lorentz-invariant, as required in
Special Relativity. The variation of the action Sfree CSint

leads to the equation of motion

q.E C u � B/D d

dt
.m	.u/u/ ; (1.57)

where E D �r' � @A=@t and B D r � A. In (1.57) we
recognize the Lorentz force on the left-hand side, and
the derivative of the relativistic momentum (1.47) on
the right-hand side. In 1908 Bucherer [1.41] observed
the movement of an electron in an electrostatic field,
and obtained an incontestable evidence of the validity
of the relativistic dynamics expressed in (1.57). If the
charge is initially at rest in a uniform static field E, then
we integrate (1.57) to get (q=m) Et D 	.u/u. So, u goes
to c when t goes to infinity.

1.5.2 Photons

In 1905 Einstein [1.42] stated that the photoelectric
effect could be better understood by proposing that
light interacts with individual electrons by exchanging
packets of energy h
 (h is Planck’s constant and 
 is
the frequency of light). In this way, the understand-
ing of light-matter interactions required a new concept
where light shared characteristics of both wave and
corpuscle. In 1917 Einstein [1.43] convinced himself
that the quantum of light should be also endowed with
directed momentum, like any particle. The reality of
the photon was confirmed by Compton’s experiment
in 1923 [1.44], where the energy-momentum exchange
between a photon and a free electron was measured.
The energy and momentum of photons traveling along
the On direction,

Ephoton D h
 ; pphoton D h


c
On ; (1.58)

are those of a particle having zero mass (1.54) and the
speed of light (1.51). Lorentz transformations (1.53) for
the energy and the momentum (1.58) become the trans-
formations (1.43) and (1.44) for the frequency and the
propagation direction of a ray of light [1.45].

1.5.3 Mass–Energy Equivalence

In Relativity, the conservations of momentum and en-
ergy cannot be dissociated. While the conservation
of momentum comes from the symmetry of the La-
grangian under spatial translations, the conservation of
energy results from the symmetry under time trans-
lation. However space and time are frame-depending
projections of the spacetime. Space and time intermin-
gle under Lorentz transformations. Consequently, the
conservation of momentum in all the inertial frames
requires the conservation of energy and vice versa.
This conclusion is evident in the transformations (1.53)
where energy and momentum mix under a change of
frame; so, the momentum would not be conserved in
frame S0 if the energy were not conserved in S. In sum,
the conserved quantity associated to the symmetry of
the Lagrangian under spacetime translations is the total
energy-momentum.

In Classical Mechanics, instead, the transformation
of the momentum of the particle does not involve its en-
ergy. In fact, if (1.8) is multiplied by the mass, then the
transformation p0 D p � mV is obtained. Thus, an iso-
lated system of interacting particles conserves the total
momenta in all the inertial frames irrespective of what
happens with the classical energy. Noticeably, †p0 is
conserved whenever †p is conserved because the to-
tal mass †m is assumed to be a conserved quantity
(classical principle of conservation of mass). This is
no longer true in Special Relativity. For instance, let
us consider the plastic collision between two isolated
particles of equal mass m. In the center-of-momentum
frame the (conserved) total momentum vanishes; so the
particles have equal and opposite velocities u before the
collision. In the collision, the masses stick together and
remain at rest. If no energy is released, then the conser-
vation of energy implies

2m	.u/c2 D Mc2 ; (1.59)

where M is the mass of the resulting body. Since 	.u/ >
1, then it is M > 2m; in fact, the resulting body contains
the masses of the colliding particles and their kinetic
energies. In Einstein’s words, the mass of a body is
a measure of its energy-content [1.46].

In general, the mass (energy at rest) of a composed
system includes not only the masses of its constituents
but any other internal energy as measured in the center-
of-momentum frame. For instance, a deuteron D is con-
stituted by a proton and a neutron. The deuteron mass
is lower than the addition of the masses of a free proton
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and a free neutron; this evidences a negative binding
energy between the constituents. The mass defect is
(mD �mp �mn/c2 D �2:22 MeV. In general, when light
nuclides merge into a heavier nuclide (nuclear fusion)
some energy has to be released to conserve the total en-
ergy. On the contrary, the mass of a heavy nucleus is
larger than the sum of the masses of its constituents.
Therefore, also there is a released energy in the nu-
clear fission of heavy nuclei. This dissimilar behavior
comes from the fact that the (negative) binding energy
per nucleon increases with the mass number for light
nuclei but decreases for heavy nuclei (the inversion of
the slope happens at a mass number around 60).

The kinetic energy can be used to create parti-
cles. For instance, a neutral pion �0 can be created in
a high energy collision between protons p; the reac-
tion is p C p ! p C p C�0. This reaction can happen
only if a threshold energy is reached to give account of
the created particle. The neutral pion has energy at rest
(mass) of 134:98 MeV; then, in the center-of-momen-
tum frame the pion is created if each colliding proton
reaches the kinetic energy of 67:49 MeV. In such case,
all the kinetic energy is used to create the pion; the prod-
ucts remain at rest, since no kinetic energy is left for the
products, and the total momentum is conserved. There-
fore, the threshold energy of the reaction in the center-
of-momentum frame is equal to the energy at rest of the
products: Ethreshold D 2mpc2 C m0

� c2 D 1876:54 MeV C
134:98 MeV. In this case, the energy balance is (the
particles are approximately free before and after the re-
action)

2mp	.up/c
2 D 2mpc2 C m�0 c2

) 	.up/D 1 C m�0

2mp
D 1 C 134:98

1876:54

D 1:072 ; (1.60)

which means that the velocity of the colliding protons
in the center-of-momentum frame is up D 0:36c. In an-
other frame, the threshold energy is higher because the
products must keep some kinetic energy to conserve
the (non-null) total momentum. We can use (1.53) for
transforming the total energy-momentum of the sys-
tem (since the transformations are linear, they can be
used to transform a sum of energies and momenta). In
the center-of-momentum frame the total momentum is
zero; then (1.53a) says that E0

threshold D 	.V/Ethreshold.
For instance in the laboratory frame where one of the
colliding protons is at rest (i. e., 	.V/D 	.up// it is
E0

threshold D 1:072Ethreshold; deducting the masses of pro-
jectile and target, we obtain that the reaction is feasible

if the projectile reaches the kinetic energy of T 0

threshold D
E0

threshold � 2mpc2 D 279:67 MeV.
The previous example is a case of inelastic collision.

A collision is called elastic if the particles keep their
identities. Thus, the masses (energies at rest) before and
after the collision are the same; so, the conservation of
the energy of the colliding free particles is equivalent to
the conservation of the total kinetic energy.

The interaction among charged particles can re-
sult in the release of electromagnetic radiation. In
such cases the radiation enters the energy-momentum
balance in the form of photons. For instance a pair
electron-positron annihilates to give two photons (the
positron is the anti-particle of the electron; they have
equal mass but opposite charge). In the center-of-mo-
mentum frame, the photons have equal frequency and
opposite directions to conserve the total momentum
(notice that two photons, at least are needed to conserve
the momentum). If ue is the velocity of both particles
in the center-of-momentum frame, then the energy bal-
ance is

2me	.ue/c
2 D 2h
 : (1.61)

Conversely, two photons can create a pair electron-
positron. In this case the threshold energy is equal to
the mass of two electrons. So the minimum frequency
to create the pair in the center-of-momentum frame is
given by

2h
min D 2mec
2

) 
min D mec2

h
D 0:511 MeV

4:14 �10�21 MeV s
D 1:23 �1020 s�1 ;

(1.62)

which is a frequency in the gamma-ray range of the
electromagnetic spectrum.

Compton Effect
In 1923 Compton measured the scattering of x-rays by
electrons in graphite. x-ray photons have energies much
larger than the electron bound energies. So, the phe-
nomenon can be studied as the elastic collision between
a photon and a free electron. In the frame where the
electron is initially at rest, its final momentum and en-
ergy are

Ee D h
i � h
f C mec2 ;

pe D h
ic
�1 Oni � h
fc

�1 Onf ;
(1.63)



From Æther Theory to Special Relativity 1.6 Conclusion 23
Part

A
|1.6

as results from compensating the changes of momen-
tum and energy suffered by photon and electron (in
(1.63) the labels i and f allude to the initial and final
states of the photon). The replacement of these values in
the electron energy-momentum invariant (1.54) yields

m2
ec4 D E2

e � p2
ec2

D m2
ec4 C 2h

�

imec2 � h
i
f � mec2
f

C h
i
f Oni � Onf
�
:

(1.64)

Equation (1.64) contains the relation between the in-
going and outgoing photons. Let us call ' the angle
between the initial and final directions of propagation:
Oni � Onf D cos'. Then

1

h
f
� 1

h
i
D 1

mec2
.1 � cos'/ or �f ��i

D h

mec
.1 � cos'/ :

(1.65)

The quantity �C � h=.mec/D 0:00243 nm is the elec-
tron Compton wavelength. Equation (1.65) says that the
photon suffers a significant change only if its wave-
length is comparable to or smaller than the electron
Compton wavelength (i. e., its energy is comparable to
or larger than mec2/.

1.5.4 Interactions at a Distance

Interactions at a distance are allowed in Classical
Mechanics; they are described by potential energies

depending on the distances between particles, which au-
tomatically give equal and opposite interaction forces
accomplishing Newton’s third law. Thus, although the
interaction forces change the momenta of the parti-
cles, these changes cancel out by pairs at each instant;
so the total momentum of an isolated system of in-
teracting particles is conserved. Noticeably, the state-
ment of Newton’s third law cannot be translated to
Special Relativity, because the simultaneous cancel-
lation at a distance has not an absolute meaning. In
particular, an interaction potential energy depending
on the (non-Lorentz-invariant) distance between par-
ticles makes no sense in Relativity. Remarkably, in
electromagnetism the charges do not interact through
such a potential (apart from the static case). Instead,
the interaction at a distance is substituted for the lo-
cal interaction between a charge and the surrounding
electromagnetic field. This local interaction entails the
exchange of energy and momentum between charge
and field. The electromagnetic field carries momen-
tum and energy, which can be (partially) transferred
to another charge at another place. So, the isolated
system conserving the total momentum and energy
is composed by the charges and the electromagnetic
field. Conservation laws are local in Relativity. The
action governing an isolated system of charges and
electromagnetic field is the sum of the actions Sfree

of the charges, the actions Sint describing the lo-
cal interaction of each charge with the field at the
place of the charge (Sect. 1.5.1), and the invariant ac-
tion of the electromagnetic field Sfield D "o=2

R
.E2 �

c2B2/d3xdt.

1.6 Conclusion

As a theory about the structure of the spacetime, Spe-
cial Relativity is a framework to built theories in
Physics: the laws governing any physical phenomenon
should be derived from Lorentz invariant functional
actions. In this way, the dynamical equations would
accomplish the principle of relativity under Lorentz
transformations.

This requirement is enlighten in the covariant for-
mulation to be developed in the next chapters. Certainly,
Maxwell’s electromagnetism is a theory having the
proper behavior under Lorentz transformations. Also
the field theories describing subatomic interactions are
built under relativistic criterions. What about the theory
of gravity? In Classical Physics, gravity is a universal

force proportional to the mass. The identity between
the gravitational mass – the mass that measures the
strength of the gravitational interaction – and the in-
ertial mass – the mass in (1.11) – causes the motion
of a freely-gravitating particle to be independent of its
mass; it just depends on the initial conditions. Einstein
realized that this fact opened the possibility of con-
sidering gravity not as a force but as the geometry of
the spacetime: the motion of a freely gravitating parti-
cle would be the consequence of the geometry of the
spacetime. Special Relativity had revised the belief in
the invariance of lengths and times, but it still assumed
that the space was endowed with a frozen Euclid’s flat
geometry (which leads to the Pythagoras’ theorem we
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used in (1.27)). Einstein went a big step ahead to think
that geometry could be a dynamical variable determined
by the distribution of matter and energy. Thus, New-
ton’s thought that matter is the origin of gravitational
forces was replaced by Einstein’s idea that the energy-
momentum distribution determines the way of measur-
ing the spacetime. In General Relativity, geometry is
governed by dynamical equations – the Einstein equa-
tions – fed by the energy and momentum located in the
spacetime; Special Relativity’s geometry is just the ge-
ometry of an empty spacetime. In General Relativity,
the freely gravitating test particles describe geodesics
of the spacetime geometry; this is what a planet does
when orbiting a star. Besides, when a photon ascends
a gravitational field, its frequency diminishes because

clocks go faster when the gravitational potential in-
creases ((1.40) is no longer valid). The GPS system
takes into account this effect of gravity on the run-
ning of clocks to reach its highest performance. So, the
photon loses energy while ascending a gravitational po-
tential. This implies that its capacity of creating mass
decreases; but the so created mass is compensated for
a larger potential energy. In General Relativity the
spacetime geometry can evolve; thus we can interpret
the cosmological data in the context of an expanding
universe. In sum, ten years after the birth of Special Rel-
ativity, the concepts of space and time underwent a new
fundamental revision to tackle the relativistic formu-
lation of gravitational phenomena: Einstein’s General
Relativity has been born.
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