
Feature Selection Over Distributed Data Streams

Jacob Kogan

Abstract Monitoring data streams in a distributed system has attracted considerable
interest in recent years. The task of feature selection (e.g., by monitoring the infor-
mation gain of various features) requires a very high communication overhead when
addressed using straightforward centralized algorithms. While most of the exist-
ing algorithms deal with monitoring simple aggregated values such as frequency of
occurrence of stream items, motivated by recent contributions based on geometric
ideas we present an alternative approach. The proposed approach enables monitoring
values of an arbitrary threshold function over distributed data streams through a set
of constraints applied separately on each stream. We report numerical experiments
on a real–world data that detect instances where communication between nodes is
required, and compare the approach and the results to those recently reported in the
literature.

1 Introduction

In many emerging applications one needs to process a continuous stream of data
in real time. Sensor networks [1], network monitoring [2], and real-time analysis
of financial data [3, 4] are examples of such applications. Monitoring queries is a
particular class of queries in the context of data streams. Previous work in this area
deals with monitoring simple aggregates [2], or term frequency occurrence in a set
of distributed streams [5]. This contribution is motivated by results recently reported
in [6] where a more general type of monitoring query is described as follows:

J. Kogan (B)

Department of Mathematics and Statistics, University of Maryland Baltimore County,
Baltimore, MD 21250, USA
e-mail: kogan@umbc.edu

K. Yada (ed.), Data Mining for Service, Studies in Big Data 3, 11
DOI: 10.1007/978-3-642-45252-9_2, © Springer-Verlag Berlin Heidelberg 2014

12 J. Kogan

Let S = {s1, . . . , sm} be a set of data streams collected at m nodes. Let v1(t), . . . ,
vm(t) be n dimensional real time varying vectors derived from the streams. For a
function f : Rn → R we would like to confirm the inequality

f

(
v1(t) + · · · + vm(t)

m

)
> 0 (1)

while minimizing communication between the nodes.
As a simple illustration consider the case of two scalar functions v1(t) and v2(t),

and the identity function f (i.e. f (x) = x).Wewould like to guarantee the inequality

v(t) = v1(t) + v2(t)

2
> 0

while keeping the nodes silent as much as possible. A possible strategy is to check

the initial inequality v(t0) = v1(t0) + v2(t0)

2
> 0 and to keep both nodes silent while

|vi (t) − vi (t0)| < δ = v(t0), t ≥ t0, i = 1, 2.

The first time t1 when one of the functions, say v1(t), hits the boundary of the local
constraint, i.e. |v1(t1) − v1(t0)| = δ the nodes communicate, the new mean v(t1)
is computed, the local constraint δ is updated and made available to the nodes, and
nodes are kept silent as long as the inequalities

|vi (t) − vi (t1)| < δ, t ≥ t1, i = 1, 2

hold. This type ofmonitoringwill work for a generalmodel (1)with a linear threshold
function f (v) = aT v + b. In the next section we provide a Text Mining related
example that leads to a non linear threshold function f .

2 Text Mining Application

We first introduce some preliminaries. For x ∈ Rn we denote

(
n∑

i=1

x2i

) 1
2

by ‖x‖2.
Throughout the text log x = log2 x . Let Y and X be random variable with know
distributions

P(Y = yi), i = 1, . . . , n, and P(X = x j), j = 1, . . . , m.

Feature Selection Over Distributed Data Streams 13

Entropy of Y is given by

H(Y) = −
n∑

i=1

P(Y = yi) log P(Y = yi). (2)

Entropy of Y conditional on X = x is denoted by H(Y |X = x) and defined by

H(Y |X = x) = −
n∑

i=1

P(Y = yi , X = x)

P(X = x)
log

P(Y = yi , X = x)

P(X = x)
. (3)

Conditional Entropy H(Y |X) and Information Gain I G(Y |X) are given by

H(Y |X) =
m∑

j=1

P(X = x j)H(Y |X = x j), and I G(Y |X) = H(Y) − H(Y |X).

(4)
Information Gain is symmetric, i.e.

I G(Y |X) =
∑
i, j

P(Y = yi , X = x j) log
P(Y = yi , X = x j)

P(X = x j)

−
∑

i

P(Y = yi) log P(Y = yi)

=
∑
i, j

P(Y = yi , X = x j) log
P(Y = yi , X = x j)

P(Y = yi)P(X = x j)
= I G(X |Y).

Let T be a finite text collection (or collection of mail items). We denote the size of
the set T by |T|. We will be concerned with two subsets of T:

1. R–the set of “relevant” texts (text not labeled as spam),
2. F–the set of texts that contain a “feature” (word, term).

We denote complements of the sets by R, F respectably (i.e. R∪R = T, F∪F = T),
and consider relative size of the sets F ∩ R, F ∩ R, F ∩ R, F ∩ R,

x11 = x11(T) = |F ∩ R|
|T| , x12 = x12(T) = |F ∩ R|

|T| ,

x21 = x21(T) = |F ∩ R|
|T| , x22 = x21(T) = |F ∩ R|

|T| .

(5)

Note that
0 ≤ xi j ≤ 1, and x11 + x12 + x21 + x22 = 1.

The function f : R4 → R1

14 J. Kogan

f (x11, x12, x21, x22) =
∑
i, j

xi j log

(
xi j

(xi1 + xi2)(x1 j + x2 j)

)
, (6)

defined on the simplex (i.e. xi ≥ 0,
∑

xi = 1), provides information gain for the
“feature”.

As an example we consider k agents installed on k different servers, and a stream
of texts arriving at the servers. Let Th = {th1, . . . , thw} be the last w texts received

at the hth server, with T =
k⋃

h=1

Th . Note that

xi j (T) =
k∑

h=1

|Th |
|T| xi j (Th),

i.e., entries of the global contingency table {xi j (T)} are the average of the local
contingency tables {xi j (Th)}, h = 1, . . . , k.

For the given “feature” and a predefined threshold r we would like to verify the
inequality

f (x11(T), x12(T), x21(T), x22(T)) − r > 0

while minimizing communication between the servers. Note that (6) is a non linear

function. The case of a nonlinear monitoring function is different from that of a
linear one (in fact [7] calls the nonlinear monitoring function case “fundamentally
different”). In Sect. 3 we demonstrate the difference, and describe an efficient way
to handle the nonlinear case.

3 Non Linear Threshold Function: An Example

We start with a slight modification of a simple one dimensional example presented
in [7].

Example 1. Let f (x) = x2 − 9, and vi , i = 1, 2 are scalar values stored at two
distinct nodes. Note that if v1 = −4, and v2 = 4, then

f (v1) = f (v2) = 7 > 0, but f

(
v1 + v2

2

)
= −9 < 0.

If v1 = −2, and v2 = 6, then

f (v1) = −5 < 0, f (v2) = 27 > 0, but f

(
v1 + v2

2

)
= −5 < 0.

Finally, when v1 = 2, and v2 = 6 one has

Feature Selection Over Distributed Data Streams 15

f (v1) = −5 < 0, f (v2) = 27 > 0, but f

(
v1 + v2

2

)
= 7 > 0. (7)

The simple example leads the authors of [7] to conclude that it is impossible to
determine from the values of f at the nodes whether its value at the average is above
the threshold or not. The remedy proposed is to consider the vectors

u j (t) = v(ti) + [v j (t) − v j (ti)], j = 1, . . . , m, t ≥ ti

and to monitor the values of f on the convex hull conv {u1(t), . . . , um(t)} instead
of the value of f at the average (1). This strategy leads to sufficient conditions for
(1), and may be conservative.

The monitoring techniques for values of f on conv {u1(t), . . . , um(t)} with no
communication between the nodes are based on two observations:

1. Convexity property. The mean v(t) = v1(t) + · · · + vm(t)

m
= u1(t) + · · · + um(t)

m
,

i.e., the mean v(t) belongs to the convex hull of {u1(t), . . . , um(t)} and u j (t) is
available to node j without much communication with other nodes.

2. If B2(x, y) is a ball of radius
1

2
‖x − y‖2 centered at

x + y
2

, then

conv {v, u1, . . . , um} ⊆
m⋃

j=1

B2(v, u j). (8)

The second observation allows to break the task of monitoring

conv {v(ti), u1(t), . . . , um(t)}

into separate monitoring of each ball

B2(v(ti), u j (t)), t ≥ ti (9)

executed by node j without communication with other nodes.
In this chapter we propose an alternative strategy that will be briefly explained

next using Example 1, and assignment provided by (7). Let δ be a positive number.
Consider two intervals of radius δ centered at v1 = 2 and v2 = 6, i.e. we are interested
in the intervals

[2 − δ, 2 + δ], and [6 − δ, 6 + δ].

When δ is small, v1(t) ∈ [2 − δ, 2 + δ], and v2(t) ∈ [6 − δ, 6 + δ] the average
v1(t) + v2(t)

2
is not far from

2 + 6

2
, and f

(
v1(t)+v2(t)

2

)
is not far from 7 (hence

positive). In fact the sum of the intervals is the interval [8 − 2δ, 8 + 2δ], and

16 J. Kogan

4 − δ ≤ v1(t) + v2(t)

2
≤ 4 + δ.

The “zero” points Z f of f are −3 and 3. As soon as δ is large enough so that the
interval [4 − δ, 4 + δ] “hits” a point where f vanishes communication between the
nodes is required in order to verify (1). In this particular example the “large enough”
δ = 1, and no communication between the nodes is required as long as

max{|v1(t) − v1|, |v2(t) − v2|} < 1. (10)

The condition presented above is a sufficient condition that guarantees (1). As any
sufficient condition is can be conservative. In fact when the distance is provided by
the l2 norm this sufficient condition is more conservative than the one provided by
“ball monitoring” (9) suggested in [7]. On the other hand only a scalar δ should
be communicated to each node, the value of the updated mean v(ti) should not be
transmitted (hence communication savings are possible), and there is no need to
compute the distance from the center of each ball B2(v(ti), u(ti)) to the zero set Z f .
For detailed comparison of results we refer the reader to Sect. 4.

We conclude the section remarking that when inequality (1) is reversed the same
technique can be used to minimize communication between nodes until f vanishes.
We provide additional details in Sect. 5. In the Sect. 4 we extend the above “moni-
toring with no communication argument” to the general vector setting.

4 Convex Minimization Problem

In this section we show that monitoring problem can be stated as the following
optimization problem.

Problem 1. For a function K : Rn+nm → R concave with respect to the first n
variables λ1, . . . , λn and convex with respect to the last nm variables x1, . . . , xnm

solve
inf

x
sup
λ

K (λ, x). (11)

A solution for Problem 1 with appropriately selected K (λ, x) concludes the section.
The connection between Problem 1, and the monitoring problem is explained

next. Let B be an n × nm matrix made of m blocks, where each block is the n × n

identity matrix multiplied by
1

m
, so that for a set of m vectors {v1, . . . , vm} in Rn

one has
Bw = v1 + · · · + vm

m
, where wT =

(
vT
1 , . . . , vT

m

)
.

Assume that inequality (1) holds for the vector w, i.e. f (Bw) > 0. We are
looking for a vector x “nearest” to w so that f (Bx) = 0, i.e. Bx = z ∈ Z f

Feature Selection Over Distributed Data Streams 17

(where Z f is the zero set of f , i.e. Z f = {z : f (z) = 0}). If the distance r(z)
between such x and w can be identified, than for each y inside the ball of radius r(z)
centered at w one has By
= z. If y belongs to a ball of radius r = inf

z∈Z f
r(z) centered

at w, then the inequality f (By) > 0 holds true.
Let F(x) be a “norm” on Rnm (the exact function we run the numerical exper-

iments with will be described later). The nearest “bad” vector problem described
above is the following.

Problem 2. For z ∈ Z f identify

r(z) = inf
x

F(x − w) subject to Bx = z. (12)

We note that (12) is equivalent to inf
x

[
sup
λ

{
F (x − w) − λT (Bx − z)

}]
. The func-

tion
K (λ, x) = F (x − w) − λT (Bx − z)

is concave (actually linear) in λ, and convex in x. Hence (see e.g. [8])

inf
x

[
sup
λ

{
F (x − w) − λT (Bx − z)

}]
= sup

λ

[
inf

x

{
F (x − w) − λT (Bx − z)

}]
.

The right hand side of the above equality can be conveniently written as follows

sup
λ

[
inf

x

{
F (x − w) − λT (Bx − z)

}]

= sup
λ

[
λT (z − Bw) − sup

x

{(
BT λ

)T
(x − w) − F (x − w)

}]
.

(13)

The conjugate g∗(y) of a function g(x) is defined by g∗(y) = sup
x

{
yT x − g(x)

}
(see e.g. [8]). We note that

sup
x

{(
BT λ

)T
(x − w) − F (x − w)

}
= F∗ (BT λ

)
,

and the right hand side of (13) becomes

sup
λ

[
λT (z − Bw) − F∗ (BT λ

)]
.

Formany functions g the conjugate g∗ can be easily computed.Nextwe list conjugate
functions for the most popular norms

18 J. Kogan

‖u‖∞ = max
i

|ui |, ‖u‖2 =
(

n∑
i=1

u2
i

) 1
2

, and ‖u‖1 =
n∑

i=1

|ui |.

g(u) conjugate g∗(y)

‖u‖∞
+∞ if ‖y‖1 > 1
0 if ‖y‖1 ≤ 1

‖u‖2 +∞ if ‖y‖2 > 1
0 if ‖y‖2 ≤ 1

‖u‖1 +∞ if ‖y‖∞ > 1
0 if ‖y‖∞ ≤ 1

We select F(x) = ‖x‖∞, and show below that

||z − Bw||∞ = r(z) = sup
λ

[
λT (z − Bw) − F∗ (BT λ

)]
.

Note that with the choice F(x) = ‖x‖∞ the problem sup
λ

[
λT (z − Bw) − F∗ (BT λ

)]
becomes

sup
λ

λT (z − Bw) subject to
∣∣∣∣∣∣BT λ

∣∣∣∣∣∣
1

≤ 1.

Since
∣∣∣∣∣∣BT λ

∣∣∣∣∣∣
1

= ||λ||1 the problem reduces to

sup
λ

λT (z − Bw) subject to ||λ||1 ≤ 1.

The solution to this maximization problem is ||z − Bw||∞. Analogously, when
F(x) = max

i
{‖xi‖2} one has

F∗(y) = sup
x

(
m∑

i=1

yT
i xi − max

i
{‖xi‖2}

)

Assuming max
i

{‖xi‖2} = 1 one has to look at

sup
‖xi ‖2≤1

m∑
i=1

yT
i xi − 1 =

m∑
i=1

‖yi‖2 = ‖y‖2.

Feature Selection Over Distributed Data Streams 19

Hence

F∗(y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

+∞ if
m∑

i=1

‖y‖2 > 1

0 if
m∑

i=1

‖y‖2 ≤ 1

and
∣∣∣
∣∣∣BT λ

∣∣∣
∣∣∣
2

= 1

m
m‖λ‖2 = ‖λ‖2 Finally the value for r(z) is given by ||z − Bw||2

When F(x) = max
i

{‖xi‖1} one has r(z) = ||z − Bw||1. For this reason in the

algorithm described below the norm is denoted just by ‖ · ‖.
The monitoring algorithm we propose is the following.

Algorithm 1 Threshold monitoring algorithm.

1. Set i = 0.
2. Until end of stream.
3. Compute Bw(ti) the mean of the vectors v1(ti), . . . , vm(ti).
4. Set v j = v j (ti), j = 1, . . . , m (i.e. remember “initial" values for the vectors).
5. Set δ = inf

z∈Z f
||z − Bw(ti)||.

6. Set i = i + 1.
7. If ‖v j − v j (ti)‖ < δ for each j = 1, . . . , m

go to step 6

else

go to step 3

In what follows we assume that transmission of a double precision real number
amounts to broadcasting one message. Next we consider two possible text arrival
scenarios. In both cases one node is designated as a coordinator, and we assume that
the coordinator can update the mean v(ti) if supplied with vectors v j (ti) by the other
nodes.

1. If only one node is updated at each time ti , then the inequality ‖v j −v j (ti)‖ < δ

in Step 7 should be checked for this node only. Step 3 of the algorithm requires
to compute the mean. Each violation of the inequality in Step 7 triggers Step 3
execution (mean update). Assuming node m is a coordinator and node j
= m
violates the Step 7 inequality a straightforward mean update procedure requires
the following communications:

a. node j sends v j (ti) to the coordinator (n broadcast),
b. the coordinator updates v(ti), updates the local constraint δ, and sends updated

local constraint δ to nodes j = 1, . . . , m − 1 (m − 1 broadcasts).

20 J. Kogan

Overall execution of Step 3 requires broadcasting of

n + m − 1 (14)

messages (here m is the number of nodes, and n is the dimension of the data
vectors). The number of messages reduces to m − 1 if j = m.

2. If all nodes are updated by a new text simultaneously we shall denote by Ik the
number of time instances when k nodes, 1 ≤ k ≤ m report violation of local
constraint in Step 7, and by MU the overall required number of mean updates

over the stream life time, so that
m∑

k=1

Ik = MU. Violation of Step 7 inequality by

k nodes j1, . . . , jk requires the following communication:

a. The k nodes send (j1, v j1(ti), . . . , jk, v jk (ti)) to the coordinator (k(1 + n)

messages).
b. the coordinator updates v(ti), updates the local constraint δ, and sends updated

local constraint δ to nodes j = 1, . . . , m − 1 (m − 1 broadcasts).

The total number of messages to be broadcasted does not exceed

(1 + n)

m∑
k=1

k Ik + MU(m − 1). (15)

We conclude the section with the following remarks.

Remark 1. If the Step 7 inequality holds for each node, then each point of the ball
centered at

v(ti) + v(ti) + [v j (ti) − v j (t)]
2

with radius

∣∣∣∣
∣∣∣∣v j (ti) − v j (t)

2

∣∣∣∣
∣∣∣∣
2

is contained in the l2 ball of radius δ centered at v(ti). Hence the sufficient condition
offered by Algorithm 1 is more conservative than the one suggested in [7].

Remark 2. Let n = m = 2, f (x) = |x1 − 1| + |x2 − 1| = ‖x − e‖1, the distance is
given by the l1 norm, and the aim is to monitor the inequality f (v) − 1 > 0. Let

v1(t0) =
[
1
0

]
, v2(t0) =

[−1
0

]
, v1(t1) =

[
1.9
0

]
, v2(t1) =

[−1
0

]
.

With this data v(t0) = 0 with f (v(t0)) = 2, and v(t1) =
[
0.45

0

]

with f (v(t1)) = 1.55. At the same time u1(t1) = v(t0)+[v1(t1)−v1(t0)] =
[
0.9
0

]
.

It is easy to see that the l2 ball of radius

∣∣∣∣
∣∣∣∣v(t0) − u1(t1)

2

∣∣∣∣
∣∣∣∣
2
centered at

v(t0) + u1(t1)

2

Feature Selection Over Distributed Data Streams 21

intersects the l1 ball of radius 1 centered at

[
1
1

]
. Hence in this particular case the

sufficient condition offered byAlgorithm1 is less conservative than the one suggested
in [7].

Remark 3. It is easy to see that inclusion (8) fails when B(x, y) is a l1 ball of radius
1

2
‖x − y‖1, centered at

x + y
2

.

In Sect. 5 we apply Algorithm 1 to a real life data and report number of required
mean computations.

5 Experimental Results

We apply Algorithm 1 to data streams generated from the Reuters Corpus RCV1–
V2. The data is available from http://leon.bottou.org/projects/sgd and consists of
781, 265 tokenized documentswith did (document ID) ranging from 2651 to 810596.

The methodology described below attempts to follow that presented in [7]. We
simulate n streams by arranging the feature vectors in ascending order with respect
to did, and selecting feature vectors for the stream in the round robin fashion.

In the Reuters Corpus RCV1–V2 each document is labeled as belonging to one
or more categories. We label a vector as “relevant” if it belongs to the “CORPO-
RATE/INDUSTRIAL” (“CCAT”) category, and “spam” otherwise. Following [6]
we focus on three features: “bosnia,” “ipo,” and “febru.” Each experiment was per-
formed with 10 nodes, where each node holds a sliding window containing the last
6700 documents it received.

First we use 67, 000 documents to generate initial slidingwindows. The remaining
714, 265 documents are used to generate datastreams, hence the selected feature
information gain is changing 714, 265 times. Based on all the documents contained
in the sliding window at each one of the 714, 266 time instances we compute and
graph 714, 266 information gain values for the feature “bosnia” (see Fig. 1). At each
one of the experiment the threshold value r is predefined, and the goal is to monitor
the inequality f (v) − r > 0.

Next we assume that new texts arrive simultaneously at each node, and the local
constraint at each node is verified. If at some iteration at least one of the local
constrains is violated the average v(t) is recomputed. Our numerical experiment with
the feature “bosnia”, the l2 norm, and the threshold r = 0.0025 (reported in [7] as
the threshold for feature “bosnia” incurring the highest communication cost), shows
overall 4006 computation of the average vector with the node violation distribution
reported in Table1. An application of (15) yields 65079 messages.

Assuming arrival of a new text at one node only at any given time yields 4890mean
computations (see Table4). An application of formula (14) yields 68460 messages.
In both cases the required number ofmessages is significantly lower than the required
number of messages reported in ([7], Fig. 8).

http://leon.bottou.org/projects/sgd

22 J. Kogan

0 1 2 3 4 5 6 7 8
x 105

0

1

2

3

4

5

6

7

8x 10
−3 bosnia

iterations

IG

Fig. 1 Information gain: “bosnia”

Table 1 Number of local
constraint violations
simultaneously by k nodes for
feature “bosnia” with
threshold r = 0.0025, and l2
norm

k Ik

1 3034
2 620
3 162
4 70
5 38
6 26
7 34
8 17
9 5
10 0

We repeat this experiment with l∞, and l1 norms. The results obtained and col-
lected in Table2 show that the smallest number of the mean updates is required
for the l1 norm. Throughout the iterations the mean v(ti) goes through a sequence
of updates, and the values f (v(ti)) may be larger than, equal to, or less than the
threshold r . We monitor the case f (v) ≤ r the same way as that of f (v) > r . In
addition to the number of mean computations we collect statistics concerning “cross-
ings”, i.e. updates v′ of the mean v such that f (v) and f (v′) are on different sides of
the separating surface f (x) = r . The number of “crossings” is reported in the last
four columns of the table. For example, the number of updates so that f (v) < r and
f (v′) < r is reported in column “LL” of Table2.

Feature Selection Over Distributed Data Streams 23

Table 2 Number of average computations, and crossings for feature “bosnia” with threshold r =
0.0025

Distance Total mean computations LL LG GL GG

l2 4006 959 2 2 3043
l∞ 3801 913 2 2 2884
l1 3053 805 2 2 2244

Table 3 Threshold, average computations, and crossings computed with l1 norm for feature
“bosnia”

Threshold Total mean computations LL LG GL GG

0.00025 2122 207 1 1 1912
0.00125 3739 826 1 1 2910
0.00250 3675 2034 12 12 1616
0.00300 5247 3812 2 2 1430
0.00600 3255 3050 6 7 191

Table 4 Threshold, average computations, and crossings computed with l2 norm for feature
“bosnia”

Threshold Total mean computations LL LG GL GG

0.00025 2694 249 1 1 2442
0.00125 5010 1120 1 1 3887
0.00250 4890 2674 12 12 2191
0.00300 7629 5681 4 4 1939
0.00600 4289 4003 8 9 268

From now on we assume that new texts arrive at the nodes at different times. At

time t0 the four dimensional vectors vi (t0) =

⎡
⎢⎢⎣

x11(Ti)

x12(Ti)

x21(Ti)

x22(Ti)

⎤
⎥⎥⎦, the mean v(t0), and the

local constraint δ = dist
(
v1(t0), Z f −r

)
are computed and made available to all the

nodes (hereZ f −r is the zero set of the function f (v)−r , i.e.Z f −r = {v : f (v) = r}).
The vectors vi = vi (t0) are remembered at each node.

As a new text arrives at node 1 at time t1 the vector v1(t1) is computed (while
vi (t1) = vi (t0), i = 2, . . . , m remain unchanged), and inequality |v1(t1) − v1| < δ

is checked. If the inequality holds true, no updates of the mean v(t0) and the
local constraint δ are required, and the procedure is repeated for the nodes i =
2, . . . (see Algorithm 4.1). If the inequality fails the mean v(t1) is updated by
v1(t1) + v2(t1) + · · · + vm(t1)

m
, the new local constraint δ = dist

(
v(t1), Z f −r

)
is

computed, and made available to each node. Tables3, 4 and 5 present the results
obtained with l1, l2 and l∞ norms respectively. In all three cases the largest number

24 J. Kogan

Table 5 Threshold, average computations, and crossings computed with l∞ norm for feature
“bosnia”

Threshold Total mean computations LL LG GL GG

0.00025 2368 210 1 1 2156
0.00125 4592 957 1 1 3633
0.00250 4737 2563 14 14 2146
0.00300 7415 5517 3 3 1892
0.00600 3954 3679 7 8 260

Table 6 Threshold, average computations, and crossings computed with l1 norm for feature “ipo”

Threshold Total mean computations LL LG GL GG

0.00025 3114 374 6 6 2727
0.00125 5899 1056 6 6 4830
0.00250 15331 4186 26 26 11092
0.00300 13712 8925 43 44 4699
0.00600 2820 2819 0 0 0

Table 7 Threshold, average computations, and crossings computed with l2 norm for feature “ipo”

Threshold Total mean computations LL LG GL GG

0.00025 3987 476 6 6 3498
0.00125 7774 1360 6 6 6401
0.00250 21109 6178 26 26 14878
0.00300 19923 13138 48 49 6687
0.00600 3679 3678 0 0 0

Table 8 Threshold, average computations, and crossings computed with l∞ norm for feature “ipo”

Threshold Total mean computations LL LG GL GG

0.00025 3703 470 6 6 3220
0.00125 7333 1323 6 6 5997
0.00250 19598 5984 25 25 13563
0.00300 19653 13264 49 50 6289
0.00600 3256 3255 0 0 0

of mean updates is required for the threshold value 0.00300. The results show that l2
is probably not the most convenient norm to be used if the number of mean updates
is to be minimized. It appears that computation performed with l1 norm requires
smallest number of mean updates for selected threshold values. The results of the
experiments with items “ipo” are collected in Tables6, 7 and 8. The “febru” relevant
results are presented in Tables9, 10, and 11. For all three features and five selected
threshold values the l1 norm requires the smallest number of mean updates.

Feature Selection Over Distributed Data Streams 25

Table 9 Threshold, average computations, and crossings computedwith l1 norm for feature “febru”

Threshold Total mean computations LL LG GL GG

0.00025 3595 2041 16 16 1521
0.00125 4196 2419 37 37 1702
0.00250 2591 2216 6 6 362
0.00300 1683 1438 5 5 234
0.00600 506 505 0 0 0

Table 10 Threshold, average computations, and crossings computed with l2 norm for feature
“febru”

Threshold Total mean computations LL LG GL GG

0.00025 4649 2803 19 19 1807
0.00125 5360 3164 37 37 2121
0.00250 3140 2698 7 7 427
0.00300 1941 1659 5 5 271
0.00600 547 546 0 0 0

Table 11 Threshold, average computations, and crossings computed with l∞ norm for feature
“febru”

Threshold Total mean computations LL LG GL GG

0.00025 4426 2644 17 17 1747
0.00125 5186 3033 41 41 2070
0.00250 3044 2606 9 9 419
0.00300 1923 1634 5 5 278
0.00600 542 541 0 0 0

6 Conclusion

Monitoring streams over distributed systems is an important and challenging prob-
lem with a wide range of applications. In this short note we propose a new approach
for monitoring an arbitrary threshold functions, and focus on the number of time
instances when the global contingency table should be updated. The obtained pre-
liminary results indicate that experiments with l1 norm require fewer updates than
thosewith l∞ or l2 norm. Identification of norms that aremore appropriate for dealing
with function f given by (6) is a future research direction.

Figure1 inspection reveals that significant fraction of time the mean update may
cause the local constraint δ to grow. A particular possible communication saving
strategy is to keep the coordinator silent if the updated local constraint δ grows.
Investigation of various balancing procedures for the coordinator (see, e.g., [6]) may
lead to a significant reduction in communication cost. This is an additional research
direction that will be pursuit. Realistically verification of inequality f (x) − r > 0

26 J. Kogan

should be conducted with an error margin (i.e., the inequality f (x) − r − ε > 0
should be investigated, see [6]). A possible effect of an error margin on the required
communication load is another direction of future research.

While the preliminary results appears to be promising additional research effort
is needed to investigate effect of sliding window size, threshold and additional para-
meters of proposed algorithm performance.

Acknowledgments The author thanks Danny Keren for bringing the problem to his attention.

References

1. Madden, S., Franklin, M.J.: An architecture for queries over streaming sensor data. In: IEEE
Computer Society, ICDE 02, p. 555. Washington, DC, USA (2002)

2. Dilman, M., Raz, D.: Efficient reactive monitoring. In Proceedings of the Twentieth Annual
Joint Conference of the IEEE Computer and Communication Societies, pp. 1012–1019 (2001)

3. Yi, B.-K., Sidiropoulos, N., Johnson, T., Jagadish, H.V., Faloutsos, C., Biliris, A.: Online
datamining for co-evolving time sequences. In: IEEE Computer Society, ICDE 00, p. 13.
Washington, USA (2000)

4. Zhu, Y., Shasha, D.: Statestream: statistical monitoring of thousands of data streamsin real
time. In: Very Large Data Base Endowment, pp. 358–369. (2002)

5. Manjhi, A., Shkapenyuk, V., Dhamdhere, K., Olston, C.: Finding (recently) frequent items in
distributed data streams. In: IEEE Computer Society, ICDE 05, pp. 767–778. Los Alamitos,
CA, USA (2005)

6. Sharfman, I., Schuster, A., Keren, D.: A geometric approach to monitoring threshold functions
over distributed data streams. In: May, M., Saitta, L. (eds.) Ubiquitous Knowledge Discovery,
pp. 163–186. Springer, New York (2010)

7. Sharfman, I., Schuster, A., Keren, D.: A geometric approach to monitoring threshold functions
over distributed data streams. ACM Trans. Database Syst. 32(4), 23:1–23:29 (2007)

8. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

http://www.springer.com/978-3-642-45251-2

	2 Feature Selection Over Distributed Data Streams
	1 Introduction
	2 Text Mining Application
	3 Non Linear Threshold Function: An Example
	4 Convex Minimization Problem
	5 Experimental Results
	6 Conclusion
	References

