
Chapter 2
Aftershock Cascade of the 3.11 Earthquake
(2011) in Fukushima-Miyagi Area

Yoji Aizawa and Satoru Tsugawa

Abstract Details of the aftershock cascade in [35ı–40ıN, 140ı–145ıE] are
reported from the viewpoint of three empirical laws; the Omori law, the Gutenberg-
Richter law and the Weibull law for the interoccurrence times, and the universal
relationship among those three empirical laws is theoretically derived under the
quasi-stationary condition. The generalization of the Omori law enables us to derive
the extrapolation formula of the GR law, and the multi-fractal relation confirmed
universally in moving ensembles combines the magnitude distribution and the
interoccurrence time distribution. Furthermore, the generalized Omori formula is
interpreted in terms of the quasi-stationary interoccurrence time distribution.

2.1 Introduction

Here we give a brief sketch and comments about the empirical laws in seismic
statistics, which will be used in the latter analysis.

2.1.1 Aftershock Frequency: Omori Law

The rate of aftershocks is first formulated by Omori in 1894, where the aftershock
frequency dN=dt was very well adjusted by,

dN

dt
/ t�p; (2.1)
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Here N stands for the total number of aftershocks and t is the time measured from
the main shock. As the p-value is close to unity, the aftershock frequency leads to a
logarithmic scaling of N in relatively long time behavior,

N.t/ � ln.t C c/; (2.2)

This formula is often called the Omori law [8]. Some generalizations of the Omori
formula were pursued to obtain the better prediction of aftershocks. Enya (1901)
discussed by the following form [3],

dN

dt
/ ln

�
1 C 1

t C c

�
; (2.3)

and another generalization by Utsu [9] is,

dN

dt
/ .c C t/�p; (2.4)

where c means the characteristic time in each formula. In these generalizations, it
should be noted that the stationary activity, which will be realized at t ! 1, is
discarded in practical treatment. In the latter part of this paper, some refined aspects
of aftershocks will be reported based on the generalized form of the Omori law.

Aftershocks are obviously nonstationary phenomena and reveal remarkable
clustering where a huge number of aftershocks are directly induced by the main
shock. Moreover, the aftereffect of the big main shock remains for long time, for
instance, in the case that Omori reported in 1894, the Omori formula is well justified
for very long time more than 80 years since the main shock. From these facts we
are obliged to be skeptic whether we can admit any stationary statistical laws in
the sequence of earthquakes or not. In the present paper, however, we define the
stationary regime from a practical point of view, that is to say, where the seismic
activity is not in high level but is relatively static one. We assume that the ensemble
which describes the stationary regime could be obtained if we consider a very long
time series of shocks happened in the definite area. Indeed, some important laws are
known in the stationary ensembles, which will be briefly introduced in what follows.

2.1.2 Intensity Distribution: Gutenberg-Richter Law

Gutenberg and Richter [4] suggested, by use of the magnitude m introduced by
Richter, that the cumulative number of earthquake n.m/ (for the magnitude larger
than m) obeys the GR formula,

ln n.m/ � a � bm; (2.5)

where a and b are assumed to be constant. As the GR law was approximately
confirmed in many cases of worldwide data, the magnitude became a useful measure
which characterizes the intensity of earthquake in stationary regime.
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Fig. 2.1 The Gutenberg-Richter law (a) and the Weibull law (b) in stationary regime. The fore-
foreshock region for 10 years (2001–2010) in Fukushima-Miyagi area (C) is compared with other
results for worldwide data in South California (4) and in Taiwan (ı)

Figure 2.1 shows the GR law realized clearly. To compare with other worldwide
data from 2001 to 2010, we showed the GR law for the earthquakes in Taiwan
(21ı–26ıN, 119ı–123ıE) and South California (32ı–37ıN, 114ı–122ıE). Though
the mean magnitudes are different, the GR law seems to be well satisfied in each
case.

In the nonstationary regime, the GR formula reveals peculiar deviations from the
exponential one as shown in latter sections, where we give the extrapolation formula
of the GR law in aftershocks.

2.1.3 Interoccurrence Time Distribution: Weibull Law

Interoccurrence times play the most important role in the prediction theory of earth-
quakes. When the cutoff magnitude m increases, the corresponding interoccurrence
time � is prolonged in statistical sense. So the interoccurrence time distribution
is parameterized by the magnitude m, i.e., P.� I m/. If we fix the threshold value
m, the sequence of interoccurrence times defines a renewal process. The purpose
of the interoccurrence time statistics is to determine the functional form of the
cumulative probability P.� I m/ and to find out the universal nature hidden behind
those statistical distributions.

Recently, we have shown that the interoccurrence time distribution P.� I m/

is very well adjusted by the superposition of the Weibull distribution Pw.� I m/

and the log-Weibull one Plw.� I m/ for many natural earthquakes in stationary
regime [2, 5–7].

P.� I m/ D pPw.�/ C .1 � p/Plw.�/ (2.6)
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where p is a parameter (0 � p � 1). Pw and Plw are written by,

Pw.�/ D 1 � exp

�
�

�
�

ˇ1

�˛1
�

; (2.7)

Plw.�/ D 1 � exp

�
�

�
log.�=k/

ˇ2

�˛2
�

: (2.8)

Here ˛i , ˇi , k, and p are parameters depending on the cutoff magnitude m, but
when the magnitude m increases, the contribution of the log-Weibull distribution
sharply decreases. Furthermore, Plw contributes effectively only in the short time
behavior of P.� I m/, and the dominant part of P.� I m/ comes from the Weibull
distribution (Fig. 2.1). In the paper [2], it is shown that the Weibull fittings well
adjust the nonstationary case of aftershocks as well, though the parameters (˛; ˇ)
depend on the time t .

2.1.4 Multifractal Relation in Stationary Regime

The Weibull parameters .˛; ˇ/ given by the function of m,

˛ D f˛.m/; and ˇ D fˇ.m/ (2.9)

are called the multi-fractal relations, which characterize the magnitude scales as
well as the time-scales in the shock sequence under consideration. The multifractal
relations obey the following universal form [1],

ˇme�b.m�m�/�

�
1 C 1

˛m

�
D e�kEQ ; (2.10)

and this is applied for many cases [2, 6, 7]; kEQ is a constant that determines the
mean interval of two successive shocks, and m� the minimum cutoff magnitude
in our analysis (m� D 2). Figure 2.2 shows the multi-fractal diagram (in rescaled
form) in stationary regime, where mc stands for the reference magnitude satisfying
˛ D 1 and ˇc D c at m D mc .

2.2 Data Analysis Toward Aftershock Statistics

Figure 2.3 shows the time series of the shock sequence mt before and after the main
shock (M 9:0) on March 11, 2011. One can see that another big shock (M 7:3) had
occurred on March 9. We clearly recognize that there are three regions; (i) aftershock
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2

3

4

5

6

7

8

9

−4 −2 0 2 4

m
t

t(day)

Fore-foreshock Foreshock

Mainshock(M 9.0)

Aftershock

Foreshock(M 7.3)

Fig. 2.3 Time series of shocks during 10 days before and after the main shock at March 11, 2011
(t D 0) in Fukushima-Miyagi area (JMA database). There are three typical regions; (i) Aftershock
region (light gray), (ii) Foreshock region (dark gray), (iii) Fore-foreshock region (black)

region (light gray), (ii) foreshock region (dark gray), and (iii) fore-foreshock region
(black). In the fore-foreshock region, seismic activity is nearly stationary and the
density of earthquakes is relatively low, but in the foreshock region and aftershock
region the density as well as the intensity of shocks are much enhanced. The number
of earthquakes in the foreshock region is nearly 470, but in the aftershock region
72;636 shocks occurred for 20 months (3.11, 2011–11.11, 2012) and the aftereffect
of the main shock continues still now.
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Fig. 2.4 Time courses of the shock frequency nm.t/

In this section, the detailed structure in the Omori law is elucidated, and the
statistical aspects in the nonstationary shock sequence are mainly studied by using
the moving ensembles, where the interval of each ensemble is defined by the span
Œt � �=2; t C �=2� at � D 100 days (fixed). More details are seen in Ref. [2].

2.2.1 Refined Formula of the Omori Law

Figure 2.4 shows the aftershock frequency (per 1 day) nm.t/.D dNm.t/=dt/, where
Nm.t/ is the cumulative number of aftershocks in Œ0; t � (for the magnitude larger
than m). Each curve is well fitted by the following forms,

nm.t/ D d.1 C t=cm/�qm ; cm D e�Ob.m� Om0/: (2.11)

Nm.t/ is given by the qm-extension; Nm.t/ D dcm.1 � qm/�1..1 C t=cm/1�qm � 1/,
and Om0 and qm are monotonically increasing, but they are almost constant for
m > m0.' 4:0/, qm ' 1 and Om0 ' 3:5.
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Fig. 2.5 Temporal change of the aftershock statistics in moving ensembles; (a) the Gutenberg-
Richter law Pt .m/, (b) the interoccurrence time distribution Pt .�; m/ (t D 150 (4); 250 (�) and
350 (�))

2.2.2 Generalization of Multi-fractal Relation
in Moving Ensembles

Figure 2.5 displays the magnitude distribution Pt .m/ and the interoccurrence time
distribution Pt .� W m/ for three moving ensembles, which enable us to derive the
multi-fractal relation in each time span. One of the remarkable points is that the
Weibull law is well satisfied, and that the GR law is a convex function of which
fitting curves are given in the next section. The universal aspect discussed in the
previous section appears even in the aftershock region, and the rescaled multi-
fractal universality is given in Fig. 2.6. Only difference from the stationary case
is that the earthquake constant kEQ is not a constant, but is a certain function
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Fig. 2.6 Temporal change of rescaled multi-fractal diagrams (a) and the .˛; ˇ/t diagram (b) for
moving ensembles; (i) kEQ D 4:66 at t D 150, (4), (ii) kEQ D 4:07 at t D 250, (�), (iii) kEQ D
3:81 at t D 350, (�). The universal correlation between ˛m.t/ and ˇm.t/ is confirmed

of time kEQ.t/, though kEQ.t/ does not depend on the magnitude m except for
small tolerable errors. Furthermore, the .˛; ˇ/t diagrams suggest that the universal
correlation exists between two multifractal forms

˚
f˛.m; t/; fˇ.m; t/

�
even in the

nonstationary regime of aftershocks.

2.3 Unified Formulae and Cascade in Aftershocks

Aftershocks are non-stationary process, but the results shown in the previous
section demonstrate that the aftershock-sequence obeys some regular statistical rules
in each moving ensemble. Here we theoretically consider the temporal change
of the statistical laws in the aftershock-sequence under the assumption that the
distribution functions are slowly varying in contrast to the characteristic time scale
of shock-intervals. This is the quasi-stationary assumption in aftershock statistics,
and then the real process of natural aftershocks can be understood as the mean
behaviors of the quasi-stationary distributions. Here we theoretically study the
detailed mechanism in the aftershock cascade of the 3.11 EQ.

2.3.1 Extrapolation Formula of the Gutenberg-Richter Law

Denote the magnitude distribution function at the time t by Pt .m/, then the
generalized form of the Omori law (Eq. (2.11)) leads to,
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Pt .m/ D Probability.the magnitude � m/

D e�Ob.m�m�/

�
1 � cm � cm�

t C cm

�
; (2.12)

where m� stands for the minimum cutoff magnitude and qm ' 1 is assumed for the
sake of simplicity. When t goes to large enough, the exponential formula of the GR

law in stationary case is exactly recovered as cm ; e�Ob.m� Om0/.
The same idea is extended to the moving ensemble Œt � �

2
; t C �

2
�, and the

magnitude distribution function Pt;�.m/,

Pt;�.m/ D Nm.t C �=2/ � Nm.t � �=2/

Nm�.t C �=2/ � Nm�.t � �=2/

D cm

cm�

ln
�
1 C �

cmCt��=2

�
ln

�
1 C �

cm� Ct��=2

� ; (2.13)

Here the exponential formula of the GR law is also recovered as t goes to large,
but transient behaviors depend on the interval of the ensemble �. In the case of the
generalization by the qm-extension,

Pm;�.t/ D c
qm
m

c
qm�
m�

1 � qm�

1 � qm

.t C cm C �=2/1�qm � .t C cm � �=2/1�qm

.t C cm� C �=2/1�qm� � .t C cm� � �=2/1�qm�

(2.14)
The GR parameter is modified by qm, though the exponential form is realized when
t goes to large. The GR law in Fig. 2.5 is well explained by Eq. (2.14).

2.3.2 Multi-fractal Relation and the Interoccurrence
Time Distribution

Consider the case for small �(; 1 day), and denote the interoccurrence time
distribution at the time t for the cutoff magnitude m by P W

t;m.�/, where � is the
successive shock-interval. The mean interval < � >m;t is related to the shock
frequency nm.t/ at arbitrary value of m,

< � >m;t nm.t/ D 1 (2.15)

Therefore, if we use the Weibull parameters ˛m.t/ and ˇm.t/, the general form
(Eq. (2.11)) of the Omori law leads us to,

ˇm.t/�

�
1 C 1

˛m.t/

� �
1 C t

cm

��qm

D d �1 (2.16)
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When t goes to large enough, this ensures the previous universal relation in the
stationary ensemble, and that the earthquake constant kEQ.t/ is connected to the

coefficient d and other parameters . Ob; Om0/.
In the case of moving ensembles Œt � �

2
; t C �

2
�, the Weibull parameters .˛m;�.t/

and ˇm;�.t// satisfy the following time-dependent relation (in re-scaled form) for
m > Om0,

�
ˇm;�.t/

ˇmc;�.t/

�
�

�
1 C 1

˛m;�.t/

� ln.1 C �
tCcm��=2

/

ln.1 C �
tCcmc ��=2

/
e�Ob.m�mc/ D 1: (2.17)

In this paper we consider only the Weibull distribution for P W
t;m, but the more

consistent way to derive the interoccurrence time distribution is given by the
quasi-stationary assumption. Here we discuss only the idea toward the theoretical
unification between the Omori law and the generalized interoccurrence time statis-
tics. Consider the interoccurrence time distribution density pt;m.�/.D dPt;m.�/

d�
/, then

the expectation value of the renewal event in Œt; t C �� is determined by using the
convolution of the density pt;m.�/, i.e.,

P1
rD1 P r�

t;m, where P r�
t;m denotes the r-th

convolution. The number of events in Œt; t C �� is surmised to obey the generalized
formula Eq. (2.11) if the aftershock sequence is quasi-stationary,

Nm.t C �/ � Nm.t/ D
X

r

P r�
t;m.�/: (2.18)

This implies that the interoccurrence time distribution can be derived only from
the aftershock statistics Nm.t/. The distribution density is given by the inverse
transformation L�pt;m.�/ D Opt;m.s/, and the interoccurrence time distribution is
subordinate (for small �) to the Omori law,

OPt;m.s/ D 1 � 1

1 C acm Onm.as/
; (2.19)

where Onm.s/ is the Laplace transformation of nm.�/ and a D 1 C t=cm.

2.3.3 Birth and Death Cascade in Aftershocks

We have not yet succeeded to derive the theoretical multi-fractal relation (Fig. 2.6b)
in nonstationary regime, but the data-analysis for the 3.11 EQ (2011) shows that
there exist clear hierarchical time-dependent structures among different magnitude-
scales. Here, the regularity hidden behind the nonstationary aftershock sequence
will be formulated and the birth and death cascade in aftershocks is discussed based
on the generalized Omori law at qm ' 1 for the simplicity sake.
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We define the magnitude density �m.t/ that describes the number of shocks with
the magnitude m,

�m.t/ D
ˇ̌
ˇ̌dnm.t/

dm

ˇ̌
ˇ̌

D d Ob.t=cm/.1 C t=cm/�2; .ln cm D Ob. Om0 � m// (2.20)

By introducing a scaled variable z D t=cm, it is known that the magnitude density
obeys a universal behavior .�m.t/ D �.z//, in all magnitude classes. This indicates
that the magnitude scale controls the time scale of shocks, and vice versa. The
control mechanism is formulated in the following by using new scaled variables,
Qz.D ln z D � C Obm/ and �.D ln t � Obm0/, i.e.,

nm.t/ D d

1 C eQz ; and

�m.t/ D d ObeQz

.1 C Qz/2
D � Ob dnm.t/

d Qz
D � Obnm.1 � nm=d/ (2.21)

One can see that these solutions represent the typical nonlinear wave (kink and
soliton) in m-space, of which traveling velocity is determined by Ob�1.Ddm=d�/.
Figure 2.7 shows the cascade process of �m.t/ in (m; �) space, which corresponds
to the soliton-propagation in m-space.
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It is difficult to derive the nonlinear wave equation uniquely for the aftershock
cascade only from the above special solution, but we can surmise the essential
mechanism leading to the solitary wave mentioned above. From Eq. (2.11), �m.�/

obeys,

@�m

@�
D �m fnm=d � .1 � nm=d/g ; (2.22)

in other words, by using the relations nm D R mM

m
�mdm, and

R mM

m�
�mdm D d ,

@�m

@�
D 1

d
�m

( Z mM

m

�0
mdm0 �

Z m

m�

�0
mdm0

)
; (2.23)

where mM and m� indicate the maximum and the minimum magnitude in practical
analysis respectively, and mM D 1 and m� D �1 are assumed in the present
treatment. The 1st and the 2nd terms of Eq. (2.23) show the growth and decay
effects of �m.�/. One can check easily that Eq. (2.21) is the particular solution of
Eq. (2.23).

The interaction between two shocks is not known clearly, but the interaction
obtained in Eq. (2.23) seems to give us a hint, which may enlighten on the hidden
coupling mechanism among many shocks with different magnitude-scales. As
an approximation, let us consider the birth and death model described by the
generalized transition probability Wm;m0 ,

d�m

d�
D

Z mM

m�

Wm;m0�0
mdm0 �

Z mM

m�

Wm;m0�mdm0: (2.24)

If we assume Wm;m0 / �m.m0 � m/ and Wm;m0 D 0.m0 < m/, Eq. (2.23) is
recovered and the birth and death cascade shown in Fig. 2.7 is obtained again as
a particular solution; as a matter of course, there are many other possible solutions
in Eq. (2.24). The details studied in this section will be reported in the next paper by
using much longer data of the aftershocks.

2.4 Discussions and Prospects

The aftershock cascade reveals a very clear regularity not only in the birth and
death process but also in the statistical aspects. In this paper, some parts of the
regularity are confirmed even in the short time region t ' 10�2 (days). The more
precise studies immediately after the big shock seem to be important to elucidate
the precursive mechanism leading to the main shock. The onset time t D 0 is the
critical point in statistical seismology, but some analytical continuations beyond
the singular point must be pursued to obtain the information in the prestage of big
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shocks (t � 0). The birth and death model may give the hint for this end, where some
latent variables, for instance, the stress accumulated in the plate interface, should be
taken into account. These subjects are still open and in our future challenge.
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