
Chapter 2
The Fundamentals of Compressed Sensing

2.1 Sampling Theorems

Definition 2.1.1 Sampling is a fundamental way to represent and recover the
continuous signals (analog domain) in the field of signal processing.

The Sampling theorem connects continuous signals and discrete signals. Figure.2.1
shows the procedure of the ideal sampling.

Theorem 2.1.1 (Nyquist Sampling Theorem [28]) If a signal xa(t) is confined to be
[0, wmax] cycles per second, the signal can be reconstructed without loss by sampling
it at more than 2wmax cycles per second as

xa(t) =
∞∑

∞
x(n)

sin π(2wmax t − n)

π(2wmax t − n)
(2.1)

where x(n) = xa( n
2wmax

).

For example, if one has a signal which is perfectly band limited to a band of f0 within
a time interval of T seconds, then one can reconstruct all the information in the signal
by sampling it at discrete time as long as their sample rate, namely Nyquist rate, is
greater than two times their bandwidth signal (2 f0), known as Nyquist frequency.
In case the bandlimit is too high or there is no bandlimit at all, the reproducing
will derive imperfect result, named aliasing. Anyway, one can make an assumption
that the signal has bandwidth B cps (cycle per second) with tiny values outside the
interval T .
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Fig. 2.1 The procedure of ideal sampling

Definition 2.1.2 (Compressive Sampling) If a signal xa(t) is compressible (i.e., K-
sparse), we can have

x =
N∑

i=1

Siψi = ψS (2.2)

Thus, we can have compressive measurements via linear random procedure

y = Ax = AψS = ΘS (2.3)

where A or Θ is an X × N measurement matrix, a good measurement matrix can
preserve the information in x , and one can recover x using various sparse recovery
approaches in Chap.3.

Compressive Sampling is to use linear random projection techniques to efficiently
acquiring and reconstructing a compressible signal.

In general, the Nyquist-Shannon Sampling theorem only assumes the signal is
band limited, and one can recover it without loss by sampling at 2wmax. While com-
pressive sampling depends on sparsity prior of the signal. Thus, Nyquist-Shannon
sampling theorem ignores the sparsity prior. As a result, one has to increase Nyquist
rate to guarantee the completion of the signals. This could be extremely worse in
imaging systems (Fig. 2.2).

Fig. 2.2 Dimensionality
reduction from 2D circles to
1D [28]

http://dx.doi.org/10.1007/978-1-4471-6714-3_3
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2.2 Compressive Sampling

As mentioned in previous section that Nyquist-Shannon sampling theorem is one of
the tenet in signal precessing and information theory. It is worthwhile to restate the
theorem here that: in order to perfectly reconstruct a signal, the number of samples
needed is dictated by its bandwidth, i.e., the length of the shortest interval which
contains the support, the spectrum of the signal. However, in the last few years,
the “Compressive Sampling” has been the alternative theory and has emerged in
the field of signal processing as well as information theory. The theory, basically,
follows the concept of neural network in human brain which perceives information
from outside world sparsely. With a small number of representation of the signal,
human can most perfectly reconstruct the signal. Compressive sampling, similarly,
shows that super-resolved signals and images can be reconstructed from far fewer
data or measurements than what is usually considered important.

Compressive sampling has drawn much attention from research community in
different fields ranging from statistics, information theory, coding theory, to theoret-
ical computer science. We are going to summarize a few examples of compressive
sampling in the real applications. JPEG2000 exploits the fact that many signals have
a sparse representation, meaning that one can reconstruct, store, or transmit only a
small numbers of adaptively chosen transform coefficients rather than all the signals
samples. Another example can be illustrated in a digital camera. Instead of storing
millions of imaging sensors, the pixels, it encodes the picture on just a few hundred
kilobytes. In radiology, and biomedical imaging one is typically able to obtain far
fewer data about an image of interest than the number of unknown pixels. Moreover,
in wideband radio frequency signal analysis, a signal to be obtained at a rate which
is much lower than the Nyquist rate because current Analog-to-Digital converter is
limited. It is very obvious that typical signals have some structure; therefore, they
can be compressed efficiently without much perceptual loss.

Mathematically, compressive sampling can be formulated as undersampled mea-
surement problem as follows. Given a signal yk , we aim to reconstruct a vector
x ∈ R

N from linear measurements y as

yk = 〈x, ϕk〉 , k = 1, . . . , K , or y = Φx . (2.4)

We are now trying to acquire information about the unknown signal by sensing x
against K vectors ϕk ∈ R

N . We are interested in the case that K � N (underde-
termined), where we have more unknown signal values than measurements. At first
glance, the problem seems impossible. Sparse recovery techniques, discussed later
in Chap.3, will make the problem feasible.

http://dx.doi.org/10.1007/978-1-4471-6714-3_3
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2.2.1 Random Projection and Measurement Matrix

Johnson-Lindenstrauss lemma [23] has been a classic result of concerning
low-distortion embeddings of points from high-dimensional into low-dimensional
Euclidean space. The lemma is widely used in compressive sensing, manifold learn-
ing, dimensionality reduction, and graph embedding. Suppose we have n points
u1, . . . , un ∈ R

d , where d is large. We are going to map ϕ that Rd −→ R
k , where

k � d, such that for each i, j, 1 ≤ i < j ≤ n, we have (1 − ε)||ui − u j ||2 ≤
||ϕ(ui ) − ϕ(u j )||2 ≤ (1 + ε)||ui − u j ||2. The Johnson-Lindenstrauss lemma gives
a randomized procedure to construct such a mapping with k = O(ε−2 log n). The
embedding is a linear projection into a random k-dimensional subspace.

1. Random Projection

Random Projection is to use a randommatrix A ∈ R
n×m whose rows have unit length

to project data from the high-dimensional data space x ∈ R
m to a low-dimensional

data space v ∈ R
n

v = Ax, (2.5)

where n � m. Ideally, we expect that A will provide a stable embedding that can
preserve the distance between all pairs of original data in high-dimensional space
to the embedded data points in the low-dimensional space. Luckily, the Johnson-
Lindenstrauss lemma asserts that with high probability the distance between the
points in a vector space is approximately preserved if they are projected onto a
randomly selected subspace with suitably high dimension. Refer to [1] for details.

Baraniuk et al. [2] even proved that the random matrix A satisfying the the
Johnson-Lindenstrauss lemma will also satisfy the restricted isometry property in
compressive sensing. Thus, if the randommatrix A in Eq. (2.5) satisfies the Johnson-
Lindenstrauss lemma, we can recover x with minimum error from v with high prob-
ability if x is compressive such as audio or image. In other words, we can guarantee
that v preserves most of the information which x possesses.

2. Random Sparse Measurement Matrix

Traditionally, we always use the random Gaussian matrix A ∈ R
n×m , where ai j ∼

N (0, 1) as the measurement matrix which satisfy the RIP condition. However, the
matrix of this type is dense; so the memory and computational loads are still large
when m is large. Zhang et al. [33] proposed a sparse random measurement matrix
which consumes littlememory is consumed and cangreatly reduce the computation in
data projection. The entries of sparse random measurement matrix can be defined as
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Fig. 2.3 Generating a compressive feature v from high-dimensional

ai j = √
s ×

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 with probability
1

2s

0 with probability 1 − 1

s
.

−1 with probability
1

2s

(2.6)

Li et al. [25] showed that for s = O(m) (x ∈ R
m), then this matrix is asymptotically

normal. Even when s = m/ log(m), the random projections are almost as accurate as
the conventional random projections where ai j ∼ N (0, 1). In [33], they use s = m/4
to compress the data in visual tracking and get very good performance.

The process of data compressing by sparse random measure matrix is intuitively
illustrated in Fig. 2.3, graphical representation of compressing a high-dimensional
vector x to a low-dimensional vector v. In the matrix A, dark, gray, and white rec-
tangles represent negative, positive, and zero entries, respectively. The blue arrows
illustrate that one of nonzero entries of one row of A sensing an element in x is
equivalent to a rectangle filter convolving the intensity at a fixed position of an input
image [33].

2.2.2 Sparsity

Sparsity, simply, means that the original signal is dense in a particular basis, how-
ever, after transformation into other convenient basis ψ , the coefficients under ψ

offers a concise summary. Sparsity or compressibility has played and continue to
play a fundamental and important role in many fields of science. Sparsity provides a
solution in signal efficient estimations; for example, thresholding or shrinkage algo-
rithms depend on sparsity to estimate the signal. Moreover, it leads to dimensionality
reduction and efficient modeling. Sparsity even leads to signal compression where
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the precision of a transform coders depends on the sparsity of the signal one wishes
to decode.

The transformation from one basis to another can be viewed analytically as rota-
tion of coordinate axes from the standard Euclidean basis to a new one. Why does
it make sense to change coordinates in this way? Sparsity can provide the answer
to such question. Take a look at several media types such as imagery, video, and
acoustic, they all can be sparsely represented using transform-domain methods. For
example, the media encoding standard JPEG is based on the notion of transform
encoding, which means the data vector representing the raw pixels samples is trans-
formed. Basically, JPEG relies on the discrete cosine transform (DCT)—a variant
of the Fourier transform, while JPEG2000 based on the discrete wavelet transform
(DWT).

The DCT of media content, technically, has transformed coefficients, which are
quite large at the first several, but the rest are very small. Putting the those small
coefficients to zeros and approximating the large coefficients by quantized represen-
tations will yield an approximate coefficient sequence which can be efficiently used
to reconstruct the signal in a few bits. The approximate coefficient sequence can be
inverse transformed to obtain an approximate representation of the original media
content. On the other hand, the DWT has relatively few large coefficients, which are
not necessarily at the first ones. Letting the small coefficients to zeros, and quantiz-
ing the large ones can obtain a sequence to be efficiently stored, and later inverse
transformed to provide an approximate representation of the original media content.
For many types of image content, JPEG2000 outperforms JPEG, while fewer bits are
needed for a given accuracy or approximation. Thus, the success of DWT in image
coding has close relationship to sparsity image content.

In short, sparsity of representation plays an important role in widely used tech-
niques of transform-baseed image compression. It is also a driving factor for other
important signal and image processing problems, including image denoising and
image deblurring. Remarkably, it has been shown that a better representation is the
one that is more sparse, i.e., less number of nonzero value.

2.2.3 Structured Sparsity

From the sparse representation research community point of view [30], sparsity has
been roughly divided into two types. One is the pure or flat or unstructured sparsity
which can be achieved by �0-norm, or �1-norm regularizer. Another is structured
sparsity which usually can be obtained by different sparsity-inducing norms such as
�2,1-norm, �∞,1-norm, group �1-norm, and so on. In the flat sparsity or simply sparse
representation, when regularizingwith �0-norm, or �1-norm, each variable is selected
individually, regardless of its position in the input feature vector, therefore, that
existing relationships and structures between the variables, e.g., spatial, hierarchical
or related to the physics of the problem at hand, are totally ignored. However, those
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properties are very important or may improve the predictive performance in many
applications.

Taking advantage from the prior knowledge has been shown effective in various
applications. In neuroimaging based on functional magnetic resonance (fMRI) or
magnetoencephalography (MEG), sets of voxels allowing to discriminate between
different brain states are expected to form small localized and connected areas. Sim-
ilarly, in face recognition, robust performance to occlusions can be improved by
considering as features, sets of pixels that form small convex regions of the face
which is beyond the capability of �1 regularization to encode such specific spatial
constrains.

Such problems need the design of sparsity-inducing regularization schemeswhich
are capable of encoding more sophisticated prior knowledge about the expected
sparsity patterns.

2.3 �0, �1 and �2 Norms

In signal processing community, signals as real-valued functions which are divided
into either continuous or discrete, and either infinite or finite.Normsplay an important
role on subspaces, and then we introduce the normed vector spaces. In this section,
we shall consider the �0-norm, �1-norm, and �2-norm, and present the identities about
them. First, we shall give the definition of the �p-norm

Definition 2.3.1 (�p-norm) x is a N -dimension vector, the �p-norm can be defined
by the following formulation:

‖x‖�p =
(

N∑

i=1

|xi |p

) 1
p

. (2.7)

By the definition of the �p-norm, we can easily define the �0-norm, �1-norm and
�2-norm. When p = 1, we can define the �1-norm as follows:

‖x‖�p =
⎧
⎨

⎩

(∑N
i=1 |xi |p

) 1
p
, p ∈ [1,∞)

max(i=1,2,...,N ) |xi |, p = ∞
(2.8)

Note that the standard inner product in RN leads to the �2-norm ‖x‖�2 = √
< x, x >.

But, we should note that the �0-norm is not really a norm because it does not have
some properties of the norm, it is defined as follows:

‖x‖�0 = |supp(x)| = lim
p→0

‖x‖p
p. (2.9)
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Fig. 2.4 The feasible region of ‖x‖�p = 1 with p = 1
2 , 1, 2 and ∞, respectively

That means, the �0 is used to count the nonzero elements number of vector x. The
�p-norm with p = 1

2 , p = 1 and p = 2 can be seen intuitively in Fig. 2.4.
From the Fig. 2.4, we can see that when 0 < p < 1 the �p-norm is not smooth and

the vertex of the �p-norm at the coordinate axis; so it can be used as the regularization
term to get the sparse solution. However it is nonconvex, so, it is not suitable to get
the global optimal solution.When p > 1 the �p-norm is convex and smooth, it can be
used as regularization term to get the global optimal solution. However, it is smooth
and not suitable to get the sparse solution. Only in the situation p = 1, �p-norm
both keep the convex and sparse properties; we would like to point out that not only
the directive �1-norm is used to seek the sparse solution, but also the log-sum of
�1-norm is used [31, 34]. Moreover, the log-sum of �1-norm is same as the �0 in
principal. Shen et al. provided a rigorous justification for its optimization problem
and the iterative reweighted method [31].

We can use norms to measure the residuals in many engineering problems.
For example, we want to approximate x ∈ RN using x̃ ∈ A, a one-dimensional
affine space. Then we can formulate the approximation error suing an �p-norm an
argminx∈A ‖x − x̃‖�p . From the Fig. 2.4. We can see that different norms results in
different residuals. The procedure of seeking the optimal x̃ is equivalent to grow on
�p spark centered on x until it intersects with A. Note that laver p correspondents to
more even residual among the coefficients while smaller p correspondents to more
an evenly distributed of residuals. x̃ is proved to sparse in latter case which has some
amazing properties in high dimensions.
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2.4 Spark and Singleton Bound

As we known from the Chap. 1, the sparse representation problem is used to solve
the underdetermine problem Ax = y. This problem has infinite solutions, so we
need to add a prior to get the unique solution. The prior knowledge that we add
is the assumption that solution is sparse, so we add a ‖x‖�0 regularization term to
constrain the sparsity of solution. In order to study the uniqueness of solution, a key
property we need to know is the spark of matrix A, which is mentioned in [15]. The
rank of a matrix A is defined as the maximal number of columns A that are linearly
independent, and its evaluation is a sequential process required L steps. However,
calculation spark(A) quires a combinational process of 2L steps.

Definition 2.4.1 (Spark) The spark of matrix A is the smallest possible number of
its columns which are linearly dependent as

Spark(A) = min
x �=0

‖x‖�0 , s.t. Ax = 0 (2.10)

Definition 2.4.2 (The Singleton Bound) The highest spark of an matrix A ∈ R
D×N ,

(D < N ) is less than or equal to D + 1 [24].

The spark gives the simple criterion for the sparse solution of the Ax = 0 problem.
The solution must satisfied that ‖x‖�0 ≥ spark(A) to avoid trivial solutions. By the
definition of spark, we can get the Theorem 2.4.1 as follows:

Theorem 2.4.1 (Uniqueness-Spark) If a system of linear equations Ax = y has a
solution x∗ obeying ‖x∗‖�0 < spark(A)/2, this solution is necessarily the sparsest
possible [18].

As we know the definition of spark, computing the spark of a matrix is a NP-hard
problem, so, we need to find a simpler way to guarantee the uniqueness. The simplest
way is to use the mutual-coherence of matrix A, which is defined as follows:

Lemma 2.4.1 (Mutual-Coherence) The mutual-coherence of matrix A is the largest
absolute normalized inner product between different columns from A. The mutual-
coherence is defined as [18]

μ(A) = max
1≤i, j≤N , i �= j

|AT
.i A. j |

‖A.i‖�2 · ‖A. j‖�2

. (2.11)

We can note that the mutual-coherence is used to characterize the dependence of the
matrix columns. The mutual-coherence of the unitary matrix is zero. The D × N
matrix A with D < M , and the mutual-coherence of this matrix is strictly positive,
so we want the smallest value in order to make the matrix A as close as possible to
the unitary matrix. So, we can use the mutual-coherence to find the lower bound of
the spark, which is very hard to get.

http://dx.doi.org/10.1007/978-1-4471-6714-3_1
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Definition 2.4.3 (Spark Lower Bound) For any matrix A ∈ R
D×N , the following

relationship holds [18]:

spark(A) ≥ 1 + 1

μ(A)
(2.12)

By the Theorem 2.4.1, we get the uniqueness about mutual-coherence.

Definition 2.4.4 (Uniqueness-Mutual-Coherence) If a linear system of equations
Ax = y has a solution x∗ obeying ‖x‖�0 < 1

2 (1 + 1/μ(A)), this solution is neces-
sarily the sparsest possible [18].

2.5 Null Space Property

The previous section tells us, if we want to recover a K -sparse signal, what condition
about the spark and mutual-coherence of the sensing matrix we needed. In this
section, we shall talk about the condition of sensing matrix from null space aspect,
if we want to recover a K -sparse signal or approximately sparse signals. First, let us
give the definition of the null space,

Definition 2.5.1 (Null Space) The null space of matrix A is denoted as follows:

N (A) = {z : Az = 0}. (2.13)

From the Theorem 2.4.1, we know Spark(A) ∈ [2, D + 1]. Therefore, it requires
that D ≥ 2K , if we want to recover a k-sparse signal. However, not all the signal
is so sparse as we want. In some situations, we only have to deal with the approx-
imately sparse signals, so we need to consider more restrictive conditions on the
null space of A [11]. Suppose that Λ ⊂ {1, 2, . . . , N } is the subset of indices
and Λc = {1, 2, . . . , N }/Λ, xΛ is the vector x with setting index Λc to be zero,∑

K = xi , ‖x‖0 � k.

Definition 2.5.2 (Null Space property)Amatrix A satisfies theNull Space Property
(NSP) of order k if there exists a constant C > 0 such that [14],

‖hΛ‖�2 ≤ C
‖hΛc‖�1√

K
(2.14)

holds for all h ∈ N (A) and for all Λ such that |Λ| ≤ K .

From the definition of NSP, we can see that vectors in null space of A should not
be concentrated on small subset of indices. By the NSP, we can give the conclusion
about how to measure the performance of sparse recovery algorithm when dealing
with general nonsparse signal x.We defineΔ : RD → R

N as the recovery algorithm,
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ΣK = {x : ‖x‖�0 ≤ K }, and σK (x)p = argminx̂∈ΣK ‖x − x̂‖�p . The algorithm
condition is as follows:

‖Δ(Ax) − x‖�2 ≤ C
σK (x)1√

K
. (2.15)

This algorithm can exactly recover the K -sparse signals, and also have a degree of
robustness to non-sparse signals which depends on how well the signals are approx-
imated by the K -sparse signals [11]. Then we shall give the theorem about NSP and
the recovery algorithm.

Theorem 2.5.1 ([11]) Let A : R
N → R

D denote a sensing matrix and the Δ :
R

D → R
N denote the arbitrary algorithm. If the pair (A,Δ) satisfies Eq. (2.15)

then A satisfies the NSP of order 2K .

2.6 Uniform Uncertainty Principle, Incoherence Condition

In this section, we aim to introduce uncertainty principle proposed by Donoho and
Stark [16, 17]. The UUP is a fundamental law in compressed sensing for signal
representation and �1 uniqueness proof. First of all, the UUP is a fundamental law
of signal resolution for sparse signal representation. In other word, we can represent
a signal in a sparse way but it is strictly limited by this principle. Second, the NP is
used to proof the �1 uniqueness.

From the previous section, NSP is a necessary condition for Eq. (2.15), which
guarantees the algorithm can recover the K -sparse signal and ensures a degree of
robustness to approximate the non-sparse signal. But NSP does not consider about
the noisy situation. If the signals are contaminated, we should consider about other
stronger conditions. Candes and Tao [7] had introduced the uniform uncertainty
principle (UUP). It aims to define the “Restricted Isometry Property (RIP)” of the
sensing matrix A, which plays a very important role in compressed sensing. First,
we need to know what is the Uncertainty Principle which is given as follows:

Theorem 2.6.1 (Uncertainty Principle [16]) The time domain signal y ∈ R
D has

the sparsity Kt under the transformation y = At xt , where At is the identity matrix,
and the Fourier transform y ∈ R

D has the sparsity Kw under the transformation
y = Awxw. Then, the two sparsity parameters should satisfy

Kt Kw ≥ D ≥ 1

μ2 , (2.16)

and

Kt + Kw ≥ 2
√

D ≥ 2

μ
, (2.17)
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where μ is the maximum correlation of the two bases At and Aw which is defined as

μ := max
i, j

{|〈At (.i) Aw(. j)〉|
}

(2.18)

The Uncertainty Principle tell us that any signal cannot be sparsely represented in
both domains simultaneously. If the sparsity in one domain is fixed, i.e., Kt , then, the
sparsity level obtainable in the other domain shall be limited, i.e., Kw ≥ 2

μ
− Kt . By

the uncertainty principle, Candes et al. propose the Uniform Uncertainty Principle
which is the fundamental knowledge of compressed sensing.

Definition 2.6.1 (Uniform Uncertainty Principle (UUP) [8]) We can say a mea-
surement matrix or sensing matrix A satisfy the Uniform Uncertainty Principle with
oversampling factor λ if for every sufficiently small α > 0, the following statement is
true with probability at least 1− O(N−ρ/α) for some fixed positive constant ρ > 0:
for all subsets T such that

|T | ≤ α · K/λ, (2.19)

the sensing matrix A obeys the bounds

1

2
· K

N
‖x‖2�2 ≤ ‖Ax‖2�2 ≤ 3

2

K

N
‖x‖2�2 , (2.20)

holding for all signals x with support size less or equal to αK/λ.

Definition 2.6.2 A matrix A satisfies the Restricted Isometry Property of order K
if there exists a δK ∈ (0, 1) such that

(1 − δK )‖x‖2�2 ≤ ‖Ax‖2�2 ≤ (1 + δK )‖x‖2�2 , (2.21)

holds for all K -sparse vector x, where δK is called K -restricted isometry constants.

The RIP condition provides the basic condition for the compressed sensing theory. If
the matrices satisfies the RIP condition, many good things are guaranteed such as the
�1 recovery is equivalence with �0 recovery. If a matrix A satisfies the RIP of order
2K , then the Eq. (2.21) can be interpreted as the matrix A approximately preserves
the distance between any pair of K -sparse vector, thus we can use this matrix to
recover the K -sparse signal. We can note from the definition of RIP condition that if
matrix A satisfies the RIP of order K with constant δK , then for any order K ′ < K
the matrix A also satisfies the RIP of order K ′ with constant δK ′ . Needell and Tropp
[27] also present that if the sensing matrix A satisfies the RIP with a very small
constant, then the matrix A also satisfies RIP of order γ K for certain γ , with a worse
constant. This property is presented as follows:

Lemma 2.6.1 Suppose that A satisfies the RIP of order K with constant δK . Let γ

be a positive integer. Then A satisfies the RIP of order K ′ = γ � K
2 � with constant

δK ′ < γ · δK , where �·� denotes the floor operator.
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In many cases, the signal is non-sparse but it can be represented as sparse signal
under some specific orthogonal basis; for example, s = Ψ x, where, s is non-sparse
signal and Ψ is the orthogonal basis, Ψ T Ψ = Ψ Ψ T = IN . The D × 1 measurement
vector y can be expressed as

y = Φs = ΦΨ x := Ax, (2.22)

where Φ is D × N sensing matrix.

Definition 2.6.3 (Incoherence Condition)The IncoherenceCondition canbedefined
as the rows of Φ should be incoherent to the columns of Ψ .

We can note that ifΦ andΨ could not satisfy the incoherence condition, for example,
in the extreme case, selecting the first D column ofΨ as the D rows of Phi we can get

ΦΨ =

⎡

⎢⎢⎢⎣

1
1

. . .

1

⎤

⎥⎥⎥⎦ . (2.23)

We can easily find that this matrix ΦΨ can never satisfy the RIP condition. We can
use the i.i.d. Gaussian to construct the sensing matrix which has been proved that it
will be in coherent to any basis.

2.7 �1 and �0 Equivalence

The RIP [7] is used to prove the equivalence between �1 and �0-norm in sparse signal
recovery. It has been proved in [7] that the solution of dual �0 minimization problems

(1) Sparse Error Correction: Given y ∈ R
N , A ∈ R

N×M (N > M),

x∗ = argmin
x

‖ y − Ax‖�0 , (2.24)

(2) Sparse Signal Reconstruction: Given z ∈ R
D , B ∈ R

D×N (D < N ),

w∗ = argmin
w

‖w‖�0 s.t. z = Bw, (2.25)

are the same as the solutions of problems

x∗ = argmin
x

‖ y − Ax‖�1 , (2.26)

w∗ = argmin
w

‖w‖�1 s.t. z = Bw, (2.27)
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if the error e = y − Ax or the solution w is sufficiently sparse. Y. Sharon et al. [29]
verify the equivalence between �1 and �0 minimization problem by the algorithm.
First, they give the definition of “d-skeleton” as follows:

Definition 2.7.1 (d-Skeleton [29]) The “d-skeleton” is defined as the collection of
all the d-dimensional faces of the standard �1-ball B1

.= {v ∈ R
m : ‖v‖�1 ≤ 1}. We

can denote SKd(B1):

SKd(B1)
.= {v ∈ R

N : ‖v‖ = 1, ‖v‖�0 ≤ d + 1}. (2.28)

By the definition of d-skeleton, they can prove the proposition as follows:

Proposition 2.7.1 For every x0 ∈ R
M and y ∈ R

N , the following implication holds

‖ y − Ax0‖�0 ≤ T ⇒ x0 = argmin
x

‖ y − Ax‖�1 (2.29)

if and only if

∀v ∈ SKT −1(B1), ∀z ∈ R
M\0, ‖v + Az‖�1 > 1. (2.30)

We can note that the Eq. (2.29) is what we needed. But this proposition asks us to
check starting from T = 1, 2, . . . until the condition (2.30) eventually fails. Even
more, it asks us to check every point on the d-skeleton. Then, they propose the
proposition which tells us an equivalent condition that does not require search over
v, and only involves checking a finite set of points in span(A).

Proposition 2.7.2 Let A ∈ R
N×M and d ∈ N ∪ 0 be given and assume the rows of

A are in general directions, i.e., any M rows of A are independent. The following
holds:

∀v ∈ SKd(B1), ∀z ∈ R
M\0 ‖v + Az‖�1 > 1 (2.31)

if and only if for all subsets I ⊂ Q
.= {1, . . . , N } containing M − 1 indices, all

subsets J ⊂ Q\I containing T = d + 1 indices, and for some y ∈ R
N such that

y ∈ span(A)\0, ∀i ∈ I yi = 0, (2.32)

the following holds:

∑

j∈J

|y j | <
∑

j∈Q\J

|y j |. (2.33)
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2.8 Stable Recovery Property

In this section, we shall give some conclusions which can present RIP condition’s
necessity for signal x recovery from the measurements Ax, and even more it is
necessary for stable recovery in case of noise [13]. Stable recovery stems from two
issues. First of all, signals are not strictly sparse in practice. The small portion of
the signal has large magnitude while the rest are close to zero but not exactly zero.
Thus, there exits model error in a sparse model. Second, there always exit noise in
the signal measured from sensors.

Definition 2.8.1 Let A : RN → R
D denotes the sensing matrix andΔ : RD → R

N

denotes the recovery algorithm. We say that the pair (A,Δ) is C-stable if ∀x ∈ Σk

and ∀e ∈ R
D , we have that

‖Δ(Ax + e) − x‖�2 ≤ C‖e‖�2 . (2.34)

This definition tells us that if the measurements add some small amount of noise,
the impact on the recovered signal should not be arbitrarily large. Next, we shall
give a theorem which demonstrates that any recovery algorithm can stably recover
the signal from noisy measurements requires that A satisfy the lower bound of RIP
condition with a constant determined by C [13].

Theorem 2.8.1 If the pair (A,Δ) is C-stable, then

1

C
‖x‖�2 ≤ ‖Ax‖�2 (2.35)

for all x ∈ Σ2K .

We can note that when C → 1, the sensing matrix A can satisfy the lower bound
of RIP condition with δK = 1 − 1/C2 → 0. Thus, if we want to reduce the impact
of the noise in the recovery algorithm, we must let sensing matrix A to satisfy the
lower bound of RIP condition with a smaller δK .

Another aspect we need to consider is the dimension of the measures, and how
many measurements are necessary to achieve the RIP. Now, we ignore the impact of
the δ and only focus on the dimensions of the problem (D, N and k) then we can get
a simple lower bound, which is proven in [13].

Theorem 2.8.2 Let A be an D × N matrix that satisfies the RIP of order 2K with
constant δ ∈ (0, 1

2 ]. Then

D ≥ C K log

(
N

K

)
, (2.36)

where C ≈ 0.28.
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1. The Relationship Between the RIP and the NSP

Finally, we shall give the conclusion that when the matrix satisfies the RIP, it also
satisfies the NSP, in other words, the RIP is strictly stronger than the NSP.

Theorem 2.8.3 Suppose that sensing matrix A satisfies the RIP of order 2K with
δ2K <

√
2 − 1. Then A satisfies the NSP of order 2K with constant

C =
√
2δ2K

1 − (1 + √
2)δ2K

. (2.37)

The prove detail of this theorem can be found in [19].

2. Signal Recovery via �0 and �1 Minimization

Let us consider the original problem that wewant to solve the linear underdetermined
problem y = Ax with constraint x as sparse as possible. The problemcanbe naturally
solved by the following optimal equation:

x∗ = argmin
x

‖x‖�0 s.t. y = Ax. (2.38)

The performance of above method can be analyzed in [10, 22] which is under the
appropriate assumptions on A, butwe still do not have a sufficientmethod to solve this
problem, because‖·‖�0 is nonconvex andminimizes‖x‖�0 is aNP-hard problem [26].

One of the tractable method is approximate �0-norm by �1-norm which preserves
the sparsity and convex properties, and the reason can refer to Sect. 2.3.

x∗ = argmin
x

‖x‖�1 s.t. y = Ax. (2.39)

So, this problem is computational tractable and can be treated as a linear programing
problem [9]. The following theorem is very remarkable. It consider about the case
that x ∈ ΣK and if the sensing matrix A satisfies the RIP condition which only need
O(k log(N/K )) measurements, we can recover the K -sparse signal exactly.

If we only consider about the noise free case, we can get the following Lemma
and Theorem.

Lemma 2.8.1 Suppose that A satisfies the RIP of order 2K , and let h ∈ R
N , h �= 0

be arbitrary. Let Λ0 be any subset of {1, 2, . . . , N } such that |Λ0‖ ≤ K . Define Λ1
as the index set corresponding to the K entries of hΛc

0
with largest magnitude, and

set Λ = Λ0
⋃

Λ1. Then

‖hΛ‖�2 ≤ α
‖hΛc

0
‖�1√

K
+ β

|〈AhΛ, Ah〉|
‖hΛ‖�2

, (2.40)
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where

α =
√
2δ2K

1 − δ2K
, β = 1

1 − δ2K
. (2.41)

By the Lemma 2.8.1 we can get the Lemma 2.8.2.

Lemma 2.8.2 Suppose that A satisfies the RIP of order 2K with δ2K <
√
2−1. Let

x, x̂ ∈ R
N be given, and define h = x̂−x. Denote Λ0 as the index set corresponding

to the K entries of x with largest magnitude and Λ1 the index set corresponding to the
K entries of hΛc

0
with largest magnitude. Set Λ = Λ0

⋃
Λ1. If ‖x̂‖�1 ≤ ‖x‖�1 , then

‖h‖�2 ≤ C0
σk(x)1√

k
+ C1

|〈AhΛ, Ah〉|
‖hΛ‖�2

, (2.42)

where

C0 = 2
1 −

(
1 − √

2
)

δ2K

1 −
(
1 + √

2
)

δ2K

, C1 = 2

1 −
(
1 + √

2
)

δ2K

. (2.43)

The Lemma 2.8.2 shows us that if the sensing matrix satisfies the RIP, the error
bound of the general �1 minimization algorithm. If we consider about the problem
of Eq. (2.39), the specific bounds is given by Theorem 2.8.4 as follows:

Theorem 2.8.4 Suppose that sensing matrix A satisfies the RIP of order 2K with
δ2K <

√
2 − 1. Then the solution x∗ of problem of Eq. (2.39) obeys

‖x̂ − x‖�2 ≤ C0
σK (x)1√

K
. (2.44)

Right now, we consider the noisy case, because in the real-world systems the
measurements always contaminated by some form of noise. We consider the worst
situation to uniformly bound the noise [6].

Theorem 2.8.5 ([5])Suppose that A satisfies the RIP of order2K with δ2K <
√
2−1

and let y = Ax + e where ‖e‖�2 ≤ ε. The solution x∗ to Eq. (2.39) obeys

‖x∗ − x‖�2 ≤ C0
σK (x)1√

K
+ C2ε, (2.45)

where

C0 = 2
1 −

(
1 − √

2
)

δ2K

1 −
(
1 + √

2
)

δ2K

, C1 = 4

√
1 + δ2K

1 −
(
1 + √

2
)

δ2K

. (2.46)
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This theorem tells us that even in the noisy case, if the sensing matrix satisfies the
RIP condition, the �1 algorithm also can recover the signal stably.

2.9 Information Theory

Information theory is an interdisciplinary branch of applied mathematics, computer
science, and electrical engineering. The field was remarkably developed by Claude
E. Shannon in his theorem in finding fundamental limits on signal processing oper-
ations, e.g., compressing, storing and communicating data. Since then it has been
emerged in many applications such as natural language processing, cryptography,
biology, statistical inference, information retrieval, and so on. Information theorem,
mathematically, based on statistics and probabilistic theory.

2.9.1 K-sparse Signal Model

Definition 2.9.1 Signal modeling is the process of representing signals, with respect
to an underlying structure of the signal’s fundamental behavior, by some set of
parameters.

Signal modeling is used in many applications including signal compression, predic-
tion, reconstruction, and understanding. In signal compressive applications, rather
than storing original signal, one needs to store a set of parameters, whose sizes are
much smaller than the original signals, and can be used to reconstruct the original
signal or at least as close as possible to the original signal. Usually, to reconstruct the
signal, one needs to design a filter as shown in Fig. 2.5. In other words, the problem
can be simply defined as given observations X [n], n = 0, . . . , N − 1 and filter order
m and n, find the parameters of H(z) such that the modeled output, y[n] = h[n].

In the field of digital signal processing, the input–output relation of a linear time-
invariant (LTI) system is given in the z domain by

Y (z) = B(z)

A(z)
X (z) = H(z)X (z) (2.47)

Fig. 2.5 A basic model for
signal conversion
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where H(z) is filter response, A(z) and B(z) are polynomials. Therefore, H(z) can
be relaxed to

H(z) =
∑n

i=1 bnz−n
∑m

j=1 bm z−m
(2.48)

Various models have been proposed in the literatures, e.g., AutoRegressive (AR),
Moving Average (MA), AutoregRessive-Moving Average (ARMA), and low-rank
or sparse model which is the main topic of the book.

We are now interested in vector x with K nonzero entries, i.e., K -sparse vector.
We denote the indices of those nonzero entries of the vector x by t = (t1, t2, . . . , tK ),
and name it as index profile. Moreover, each entry tk ∈ {1, 2, . . . , N } denotes the
index of a nonzero entry in x . Let St be the set of all feasible index profile. Its size
can be defined as

|St | =
(

N
k

)
(2.49)

We set the values of the K nonzero entries into a vector s = (s1, s2, . . . , sK ),
and name it value profile which can be determined from a distribution. For instance,
we could use Gaussian, Bernoulli, or a hybrid distribution. We use a p.d.f fs(s) to
denote a VP distribution. For an example of complex valued Gaussian multivariate
random vector, the p.d.f is obtained by

fs(s) = 1

π N |Cs | exp
[
−1

2
(s − s̄)∗C−1

s (s − s̄)

]
(2.50)

where s̄ := E{s} is the mean vector of the Gaussian multivariate s and Cs :=
E{(s − s̄)(s − s̄)} is the covariance matrix.

In the case that support set size of vector x is smaller than or equal to K , the
hybrid distribution should be used to overcome such problem. The index profile set
St should include all feasible index profile whose size is smaller than or equal to
K . Therefore, the size of the index profile set is equal to the number of points in a
Hamming sphere of size K as

|St | = V2(N , K ) =
K∑

k=0

(
N
k

)
. (2.51)

Finally, we obtain the number of nonzero entries, k as a random variable with the
following distribution

fK (k) =

(
N
k

)

V2(N , K )
. (2.52)

To obtain a hybrid distribution, one could use the two distribution from Eqs. (2.49)
to (2.51).
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2.9.2 The Entropy of K-sparse Signals

In the field of information theory, entropy is the average amount of information
contained in a message, i.e., events, samples, or characters drawn from a distribution
or data stream. Entropy of a discrete variable X is a measure of the amount of
uncertainty associated with the value of X .

Definition 2.9.2 The entropy H(X) of a discrete random variable X is defined by

H(X) = −
∑

x∈X

px(x) log p(x). (2.53)

The entropy is expressed in bits, therefore, the log is to the base 2. In case the
logarithm is based in p, the entropy is defined as Hb(X). Entropy does not depend
on the value of random variable X , but depends on its probabilities. As entropy is a
measure of unpredictability of information content, let us have a look at an example
to get more intuitive understanding about it.

Now consider a coin-tossing problem. If the coin is fair which means when the
probability of heads is the same as the probability of tails, then the entropy of the
coin toss is as high as it could be. Obviously, there is no way to predict the outcome
of the coin toss ahead of time? the best, thus we can do is to predict that the coin will
come up with heads or tails, and our prediction will be correct with the probability
1/2. Such a coin toss has one bit of entropy since there are two possible outcomes
that occur with equal probability, and learning the actual outcome contains one bit
of information. Contrarily, a coin toss with a coin that has two heads and no tails
has zero entropy since the coin will always come up heads, and the outcome can be
predicted perfectly.

In previous subsection, we have discussed the fundamental concept of entropy.
This subsection will illustrate the information in terms of bits which can be repre-
sented by the K -sparse signal x . In other words, we are interested in determining
how large the entropy of the K -sparse signal x is. In general, K -sparse signal x has K
nonzero entries. For example, given a signal vector yM×1, we have to compute how
much information in terms of bits which yM×1 will represent. In order to answer this
question, we shall divide the case into two exclusive ones. To simplify the answer,
let denote D be an M × N Fourier transform matrix or dictionary of atoms with
prime N . Thus, we obtain yM×1 = DM×N x . If the map is one-to-one correspondent,
which means M ≥ 2K , the entropy of x is the entropy of yM×1.

Lemma 2.9.1 Let D be an M × N Fourier transform matrix with prime N, where
M ≥ 2K . Let x be a K -sparse signal. Then, the entropy of y given D is H(x), i.e.,
H(y|D) = H(Dx |D) = H(x). If M < 2K , then H(y|D) = H(Dx |D) ≤ H(x).

H(x) = H(t = (t1, . . . , tK ), s = (s1, . . . , sK ))

= H(t) + H(s|t)
= H(t) + H(s) (2.54)
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Suppose that the supporting set of size K is uniformly randomly distributed, the
entropy of H(t1, . . . , tK ) can be written as

H(t1, . . . , tK ) = log

(
N
K

)
. (2.55)

Applying the Stirling’s approximation for the factorial function, we can obtain

log2

(
1

N + 1

)
+ N H

(
K

N

)
≤ log2

(
N
k

)
≤ N H

(
N
k

)
. (2.56)

When N is large, one can derive log2

(
N
k

)
∼= N H

( K
N

)
. On the other hand,

when K is small compared to N , the entropy function H
( K

N

) = K
N log2

N
K +

( N−K
N

)
log2

(
N

N−K

)
can be approximated with the first term only, which means

H
( K

N

) ≈ 1
N K log2

N
K . Thus, we can obtain when K � N , that

NH

(
K

N

)
≈ K log2

(
N

K

)
. (2.57)

In conclusion, if M ≥ 2K , any compression map from x to y = Dx is one-to-one
correspondent. Therefore, the entropy of y is also the same as the entropy of x .

2.9.3 Mutual Information

Mutual information of two variables X and Y can be defined as

I (X; Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log
p(x, y)

p(x)p(y)
(2.58)

where p(x, y) is the joint probability distribution function of X and Y , and p(x)

and p(y) are marginal probability distribution functions of X and Y , respectively.
Obviously, the mutual information measures the mutual independence of variables,
i.e., it measures how much information the variables share each other with the most
commonunit of themeasurement bits.Mutual information, in information theory, can
reduce the uncertainty of one variable given knowledge of another. From Eq. (2.58),
one can see that if the two variable X and Y are completely independent, then
p(x, y) = p(x)p(y). Therefore,

log

(
p(x, y)

p(x)p(y)

)
= log 1 = 0 (2.59)
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H(X) H(Y) H(X,Y) H(X|Y) H(Y|X)I(X;Y)

(a) (b) (c)

Fig. 2.6 The relationship between entropy and mutual information a Marginal entropies. b Join
entropy. c Mutual information

which means X and Y do not share any information at all. The mutual information
can be equivalently written as

I (X; Y ) = H(X) − H(X |Y )

= H(Y ) − H(Y |X)

= H(X) + H(Y ) − H(X |Y )

= H(X, Y ) − H(X |Y ) − H(Y |X) (2.60)

where H(X) and H(Y ) are themarginal entropies, and H(X, Y ) is the joint entropies
of X and Y as shown in Fig. 2.6. If H(X) is considered as a measure of uncertainty
of variable, then H(X |Y ) is a measure of what Y does not say about X .

In communication channel, input X getting through transmission medium will
produce output Y . In the perfect transmission, i.e., if the channel is noiseless, the
input is equal the to output, namely X = Y . However, in real-world channels, the
transmission medium is noisy, an input X is converted to an output Y with probabil-
ity P(Y |X).

Given a communication channel, for example, one can transmit any messages s
from a set of M possible messages by performing following three steps.

(1) Assign a string x = (x1, x2, . . . , xn) of length n to each message s. Each x(s)
is called codeword. The processing of generating from a set of message to a set
of codeword is called encoding.

(2) Transmit the corresponding string x(s) over the channel which yield output y
with the same length n.

(3) Use output y to reconstruct the transmitted message x by using a deterministic
function named decoding. The decoding then maps each y to one symbol s′.

Remarkably, first the number of transmitted messages is much less than the number
of possible messages. Then, eachmessage xi is randomly and independently selected
from a distribution, denoted as P(X). Therefore, when one designs a communication
channel, only M and P(X) can be controlled. Thus, in general, one adjusts P(X) to
make the number of message M large, and simultaneously keeps the error, rate, i.e.,
the rate which messages are decoded incorrectly, small. The conditional distribution
P(Y |X) is a physical property of the channel itself, so it is not under the control of
designer.
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Fano’s inequality has been widely used in lowering bounds of probability of
transmission error through a communication channel. It is famous for linking the
transmission error probability of a noisy communication channel to a standard infor-
mation theoretic quantities including entropy and mutual information.

Let X and Y be the random variables representing the input and output, respec-
tively, with the joint probability P(x, y). Let e be the occurrence of error, i.e., that
X �= X̃ , where X̃ = f (X) a noise approximate version of X . Fano’s inequality is
defined as

H(X |Y ) ≤ H(e) + P(e) log(|χ | − 1) (2.61)

where χ is denoted as the support of X ,

H(X |Y ) = −
∑

i, j

P(xi , y j ) log P(xi |y j ) (2.62)

is the conditional entropy,
P(e) = P(X �= X̃) (2.63)

is the probability of the communication error, and

H(e) = −P(e) log P(e) − (1 − P(e)) log(1 − P(e)) (2.64)

is the corresponding binary entropy.
The inequality of Eq. (2.61) can be applied to lower bound the probability of

support set recovery error. Bymaking use of a bound H(e) ≤ 1 and Fano’s inequality,
the decision error probability can be lower bounded as follows:

P(e) ≥ H(X |Y ) − 1

log |χ | − 1
(2.65)

Suppose M ≥ 2K , then the map is one-to-one correspondent from X to Y .
Therefore, H(X |Y ) = 0 for M ≥ 2K .

2.10 Sparse Convex Optimization

2.10.1 Introduction to Convex Optimization

If we want to know what is the convex optimization problem, first we need to know
what is the convex set.
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Fig. 2.7 Some examples about convex/nonconvex sets, where a and b are convex sets, and c is
nonconvex set

Definition 2.10.1 (Convex Set) D is a set of RN . If any two points x1, x2 ∈ D and
λ ∈ [0, 1] have the property as follows:

λx1 + (1 − λ)x2 ∈ D.

We can call that this set D is a convex set, and λx1 + (1 − λ)x2 is the convex
combination of x1 and x2.

There are some examples, which are shown in Fig. 2.7 about the convex set in 2D
space. We can note that if the set D is convex, and any two points x1, x2 ∈ D, we
can get the segment which connect these two points also contained in set D.

After we have known what is the convex set, we need to know another important
property of the convex optimization.

Definition 2.10.2 (Convex Function) The set D ⊂ R
N is a nonempty convex set, if

∀x1, x2 ∈ D and ∀α ∈ (0, 1) the following equation satisfied

f (αx1 + (1 − α)x2) ≤ α f (x1) + (1 − α) f (x2),

we call the function f (x) is the convex function in set D. If ′ ≤′ is replaced by ′ <′
in the above equation, we call the function f (x) is strictly convex function.

From the definition of the convex function, we can see that the linear interpolation
of two points on the convex function is not smaller than the function value. This can
be seen from the Fig. 2.8 which is a scalar convex function.

There are some theorems about the convex function

Fig. 2.8 The scaler convex
function
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Theorem 2.10.1 If f1, f2 are convex functions in convex set D, and λ is a real
number, we can get λ f1 and f1 + f2 are also convex functions.

Theorem 2.10.2 The set D is a convex set in R
N , f is a convex function in set D,

so f is continuous in set D.

Theorem 2.10.3 The set D is a nonempty convex set, f is a convex function in set
D, we can get the following conclusions:

(1) The set Dα = {x|x ∈ D, f (x) ≤ α} is convex.
(2) The local minimal points of f in D is also the global minimal points of f , and

the set of local minimal points is convex.

Theorem 2.10.4 The set D is the nonempty open convex set, f (x) is a differentiable
function in set D. The f (x) is the convex function if and only if ∀x, y ∈ D,

f ( y) ≥ f (x) + ( y − x)T ∇ f (x).

The theorems above tell us how to judge a function is convex function. The following
definition defines the convex optimization problem by the convex function

Definition 2.10.3 (Convex Optimization Problem) For the optimization problem

min f (x) = f (x1, x2, . . . , xN ), x ∈ R
N , s.t. g j (x) ≤ 0, j = 1, 2, . . . , m

(2.66)
if the object function f (x) and the constraint function g j (x) for j = 1, 2, . . . , m are
convex function, we call this optimization problem is a convex optimization problem.

There are some properties about the convex optimization problem, before we present
these properties, we need to know the definition of feasible region.

Definition 2.10.4 (Feasible Region) The feasible region of a optimization problem
is the set of points that satisfy the constraint condition of this optimization problem.

Theorem 2.10.5 The feasible region of the convex optimization problem D =
{x|g j (x) ≤ 0, j = 1, 2, . . . , m} is convex.

Theorem 2.10.6 If give a point xk , then we can get the convex set

S = {x|x ∈ D, f (x) ≤ f (xk)}

By the Theorem 2.10.6, we can imagine that if the object function is a function of
two variables, the contour line of this function is the form of convex nested circles.

Theorem 2.10.7 Any local optimal solution of the convex optimization problem is
the global optimal solution.

Theorem 2.10.8 If the object function of the convex optimization problem f (x) is
the strictly convex function, the global optimal solution must be the only solution.
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2.10.2 Gradient, Subgradient, Accelerated Gradient

1. Gradient Descent

Gradient descent method is the first-order optimization algorithm. It is also called
the steepest descent. The core of the gradient descent method is using the gradient
descent direction iteratively at a fixed step to search for the local minimum of the
object function.

The multivariable object function is differentiable in a neighborhood of a point
a, by the property of the gradient, and then the negative gradient direction −∇F(a)

is the decreasing fastest direction from a. We can get that if

b = a − γ∇F(a) (2.67)

for γ small enough, then F(a) ≥ F(b). Using this property, we start from a point
x0 and have

xn+1 = xn − γn∇F(xn), n ≥ 0. (2.68)

Further more, we can get

F(x0) ≥ F(x1) ≥ F(x2) ≥ . . . , (2.69)

thus the sequence {xn} can converge to the local minimum. The step size γ can be
changed at every iteration. If F satisfy certain assumption, we can particularly choose
the γ . This can guarantee to convergence to a local minimum, which is illustrated
in Fig. 2.9.

Fig. 2.9 Gradient descent
with a constant step size γ

x
x

x1

x0

2

3
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For example, the linear squares problem is used to minimize the following object
function

F(x0) = ‖Ax − y‖2�2 . (2.70)

This object function is smooth at every point, and we can compute its gradient as
follows:

∇F(x) = 2AT (Ax − y). (2.71)

Using Eq.2.71, we can iteratively find the points until the process convergence.

2. Subgradient Methods

In gradient descent or conjugate gradient methods, we need to compute the gradient
of the object function. However, in case the object function is nonsmooth, we cannot
use the gradient methods to solve optimization problem. We can see one model of
the sparse representation problem,

argmin
x

= ‖Ax − y‖2�2 + λ‖x‖�1 . (2.72)

Because the �1-norm regularization term is nonsmooth, we cannot use the gradient
methods. However, we can use the subgradient methods.

The subgradient method is a algorithm which can be used for minimization of the
nondifferentiable convex function. There are some properties of subgradient method
as follows [4]:

(1) The subgradient method applies directly to nondifferentiable F ;
(2) The step lengths are not chosenby the line search as the ordinary gradientmethod.

In the most common cases, the step lengths are fixed in advance;
(3) The subgradient method is not a descent method; the function value can increase.

The subgradient method is the first-order algorithm, and then it is much slower
than the interior-point methods (or Newton’s method in unconstrained case). Thus
its performance depends on the scale and condition of the problem. However, sub-
gradient method has its own advantages over the interior-point method and Newton
methods.

(1) It can be applied to wider range of problems than interior-point methods and
Newton methods;

(2) The memory requirement can be much smaller than interior-point methods and
Newton methods, it can be used in extremely large scale problems;

(3) It can be combined with primal or dual decomposition technique to develop a
distributed algorithm consequently.

Now, We introduce the concept of subgradient.
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Fig. 2.10 The example of subgradient

Definition 2.10.5 (Subgradient) g is a subgradient of f (not necessarily convex) at
point x, if the following inequality is satisfied

f ( y) ≥ f (x) + gT ( y − x),∀ y. (2.73)

One example of subgradient is illustrated in Fig. 2.10.
In the Fig. 2.10, g2, g3 are subgradients at x2, and g1 is a subgradient at x1. Note

that some points have more than one subgradient. There are some further properties
of subgradient:

(1) If f is convex, it has at least one subgradient at every point in domain of definition
of f ;

(2) If f is convex and differentiable, ∇ f (x) is a subgradient of f at x.

After giving the definition of subgradient, we shall give the definition of subdiffer-
ential.

Definition 2.10.6 (Subdifferential) The set of all subgradients of f at x is called the
subdifferential of f at point x, which can be noted as ∂ f (x).

From the definition of subdifferential, we can see that the subdifferential is a set. It
also has some properties as follows:

(1) ∂ f (x) is a closed convex set;
(2) If f is convex and finite near the point x, ∂ f (x) is nonempty;
(3) ∂ f (x) = {∇ f (x)}, if f is differentiable at x;
(4) if ∂ f (x) = {g}, then f is differentiable at point x and g = ∇ f (x).

We need to note that in many applications, we do not need to calculate ∂ f (x), but
only need to find one g ∈ ∂ f (x). We can use concepts subgradient and subdifferen-
tial to solve the �1-norm optimization convex problem [21], which will be used in
Sect. 5.2.1.

http://dx.doi.org/10.1007/978-1-4471-6714-3_5


2.10 Sparse Convex Optimization 49

Now, we shall briefly review how to use gradient and subgradient method to
solve the LASSO problem. By the subgradient method, we can easily get the unique
solution of

argmin
x

1

2
‖x − y‖2�2 + λ‖x‖�1 (2.74)

for any y ∈ R
D , we have

xi = Sλ(yi ), (2.75)

where Sλ(·) is the shrinkage operator which is defined as

Sλ(y) = sgn(y)max{|y| − λ, 0}. (2.76)

But for the LASSO problem Eq. (2.72), all elements of x are related by the matrix
A. So, we cannot use the solution of Eq. (2.74) directly, but we can approximate the
original object function by first-order Taylor expansion of f (x) = ‖Ax − y‖2�2 at
the preceding point xk−1 and alternate the original LASSO problem as

xk = argmin
x

{
f (xk−1) + 〈x − xk−1,∇ f (xk−1)〉

+ 1

2tk
‖x − xk−1‖2�2 + λ‖x1‖�1

}
. (2.77)

After ignoring the constant term, we can write the above equation as

xk = argmin
x

{ 1

2tk
‖x − (xk−1 − tk∇ f (xk−1))‖2�2 + λ‖x1‖�1

}
. (2.78)

Then, we can use the solution of Eq. (2.74) to get the solution as

xk = argmin
x

Sλtk (xk−1 − tk∇ f (xk−1)). (2.79)

This is a fixed-pointway to get the optimal solution, and it has two steps: (1)Using the
gradient descent method to get the intermediate point; (2) Using the shrinkage oper-
ator to get xk . The process above is the Iterative Shrinkage-Thresholding Algorithm
(ISTA) [12].

3. Accelerated Gradient

Even though the ISTA algorithm is very simple and adequate for the large scale
problem, it converges very slowly. Toward this end, A. Beck et al. proposed a Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA) which has a higher conver-
gence rate O(1/k2) by using the Accelerate Gradient Descent (AGD) method as
compared with ISTA is O(1/k).
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Fig. 2.11 The comparison between GD and AGD methods

The core idea of FISTA is using an accelerated gradient descent to replace the
gradient descent step. The comparison of both gradient descent and accelerated
gradient descent methods is illustrated in Fig. 2.11.

From Fig. 2.11, we can see that AGD method is using an intermediate variable sk

to get the final update xk+1. Using the AGD to replace the first step of ISTA, we can
get the FISTA algorithm in sparse representation [3].

2.10.3 Augmented Lagrangian Method

Augmented Lagrangian methods are a certain class of algorithms to solve the con-
straint optimization problems. The core idea of the augmented Lagrangian methods
is using the approximate unconstraint optimization problem to replace the constraint
optimization problem. The difference between penalty methods and augmented
Lagrangian methods is the augmented Lagrangian method that adds an additional
term to the common penalty method’s unconstraint object function. This difference
can be seen from the following example.

We consider the optimization problem as follows:

argmin
x

f (x)

s.t. gi (x) = 0, i = 1, 2, . . . , q. (2.80)

We only consider the equality constraints for simplicity. By the penalty method,
we can approximate the original constraint problem by a unconstraint problem as
follows:
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L(x,λ) = f (x) +
q∑

i=1

λi gi (x). (2.81)

We can also use the augmented Lagrangian method to approximate the original
constraint problem as follows:

Lρ(x,λ) = f (x) +
q∑

i=1

λi gi (x) + ρ

2

q∑

i=1

gi (x)2. (2.82)

From both approximate replacement by penalty method and augmented Lagrangian
methodof the original constraint optimization,we canfind the augmentedLagrangian
method adds an additional term ρ

2

∑q
i=1 gi (x)2, which is used for punishing the

violations of the equality constraints gi (x). It has been proved that when ρ is large
enough, the solution of unconstraint problemof augmentedLagrangian can coincides
with the constrained solution of the original problem. The iterations of the algorithm
end when the gradient ρgi (x)Δgi (x) = 0. The whole algorithm of the augmented
Lagrangian method is alternately updating x and λ.

(1) Find the unconstraint minimum

x(t+1) = argmin
x

Lρ(x,λ). (2.83)

(2) Update the multiplier vector λ

λ
(t+1)
i = λ

(t)
i + ρgi (x(t)), i = 1, . . . , q (2.84)

Using the augmented Lagrangianmethod, we solve the �1-norm convex optimiza-
tion problem [20, 32]. Considering about the Basis Pursuit (BP) problem

Table 2.1 The Augmented Lagrangian algorithm flowchart

Input: sensing matrix A, measurements y, and parameter ρ

Initialization: parameter vector λ with large value

while (!stop criterion)

Update the x as a LASSO problem

x(t+1) = argminx ‖x‖�1 + 〈λ(t), Ax − y〉 + ρ
2 ‖Ax − y‖2�2

Update the parameter vector λ

λ(t+1) = λ(t) + ρ(Ax(t+1) − y)

end while
Output: Coefficients x
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argmin
x

‖x‖�1 ,

s.t. Ax = y (2.85)

The algorithm flow chart of ALM is shown in Table2.1.
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