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    Chapter 2   

 Finding the Epistasis Needles in the Genome-Wide 
Haystack 

           Marylyn     D.     Ritchie    

    Abstract 

   Genome-wide association studies (GWAS) have dominated the fi eld of human genetics for the past 10 
years. This study design allows for an unbiased, dense exploration of the genome and provides researchers 
with a vast array of SNPs to look for association with their trait or disease of interest. GWAS has been 
referred to as fi nding needles in a haystack and while many of these “needles,” or SNPs associating with 
disease, have been identifi ed, there is still a great deal of heritability yet to be explained. The missing or 
phantom heritability is due, at least in part, to epistasis or gene–gene interactions, which have not been 
extensively explored in GWAS. Part of the challenge for epistasis analysis in GWAS is the sheer magnitude 
of the search and the computational complexity associated with it. An exhaustive search for epistasis mod-
els is not computationally feasible; thus, alternate approaches must be considered. In this chapter, these 
approaches will be reviewed briefl y, and the incorporation of biological knowledge to guide this process 
will be further expanded upon. Real biological data examples where this approach has yielded successful 
identifi cation of epistasis will also be provided. Epistasis has been known to be important since the early 
1900s; however, its prevalence in mainstream research has been somewhat overshadowed by molecular 
technology advances. Due to the increasing evidence of epistasis in complex traits, it continues to emerge 
as a likely explanation for missing heritability.  
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1      Introduction 

 The search for the missing heritability [ 1 ,  2 ] in genome-wide 
association studies (GWAS) has become an important focus for the 
human genetics community – especially as larger and larger sam-
ple sizes have resulted in even smaller effect sizes to be identifi ed. 
The National Human Genome Research Institute (NHGRI) 
GWAS catalog was developed to store all of the GWAS results in a 
central database. A few years ago, NHGRI looked at the distribu-
tion of GWAS-associated SNPs and found a majority were associ-
ated with small effects sizes (odds ratios less than 1.4) [ 3 ]. In 
January 2014, we evaluated the GWAS catalog to see if the trend 
had changed, and unfortunately, due to increasing sample sizes, 
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the effect sizes identifi ed have become even smaller. Figure  1  shows 
the distribution of these effects; the majority have odds ratios less 
than 1.2. This leads to much discussion regarding the missing or 
phantom heritability. Lander and colleagues explain that much of 
the missing heritability could be due to genetic interactions [ 4 ]. 
This opinion has been shared and emphasized by others in the lit-
erature for several years [ 5 – 11 ]. As such, it is believed by many that 
epistasis is important and should be explored in the context of 
GWAS; however, specifi c applications of epistasis analysis in GWAS 
have been much fewer than single variant main effects analyses. 
The computational burden of exploring gene–gene interactions in 
the wealth of data generated in GWAS, along with small to moder-
ate sample sizes, has led to epistasis being an afterthought, rather 
than a primary focus of GWAS analyses.  

 In this chapter, we discuss some potential approaches to make 
epistasis analysis more computationally tractable in a GWAS data-
set. A number of alternative approaches are described, but the pri-
mary focus is on the use of prior biological knowledge from 
databases in the public domain to guide the search for epistasis. 
The manner in which prior knowledge is incorporated into a GWAS 
study can be done in several different ways and the knowledge can 
be extracted from a variety of database sources. These approaches 
will be discussed, and some successful applications will be described. 
Incorporating biological knowledge is likely to be fruitful in the 
search for epistasis in large-scale genomic studies of the current 
state-of-the-art and into the future.  

  Fig. 1    Distribution of odds ratios (effect size) from the NHGRI GWAS catalog as of January 2014       
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2    The Scope of the Problem 

 The ultimate goal of any disease gene discovery project is to identify 
as much of the genomic variation as possible that is relevant to the 
phenotype (disease or trait) being studied. As molecular technol-
ogy has advanced, the fi eld has gone from very coarse genomic 
examination embodied in cytogenetic analyses, to higher resolu-
tion linkage analyses, and now to very high-resolution association 
analyses. Methodological advances in the analysis of large-scale 
GWAS studies and the ability to integrate results across experi-
ments have simply not kept pace with this fl ood of genotyping and 
now sequencing data. It is a central fallacy that simply generating 
more data and collecting more samples/individuals will solve the 
problem. Instead, it is this tsunami of data that has made distin-
guishing true scientifi c discoveries from the thousands or millions 
of false discoveries even more challenging. The ultimate success of 
our monumental investment in data generation will depend largely 
on the development and use of innovative analytic approaches and 
intelligent study designs that allow for the detection of gene–gene 
and gene–environment interactions. 

 A major hurdle in discovering epistasis, however, is the variable 
selection problem. Exhaustively evaluating all of the possible com-
binations of SNPs is not computationally feasible. For example, 
testing all two-SNP models in genome-wide data including one 
million SNPs generates 5.00 × 10 11  possible two-SNP models; this 
requires extensive computing resources and produces many statis-
tically signifi cant results. If we consider going beyond pairwise 
models, one million SNPs generate 1.7 × 10 17  three-SNP models, 
4.2 × 10 22  four-SNP models, 8.3 × 10 27  fi ve-SNP models, 1.4 × 10 33  
six-SNP models, and so on (calculated based on ( n / m ), where n is 
the number of SNPs and  m    is the number of variables in the 
model). This creates    an enormous computing challenge as well as 
a multiple testing correction issue. It has been shown that using 
the parallel Multifactor Dimensionality Reduction approach 
(pMDR), it is possible to scan through an exhaustive search of pos-
sible two-SNP models [ 12 ]. Steffens et al. also demonstrate a 
genome-wide interaction analysis (GWIA) and the strategies for 
data compression, specifi c data representations, interleaved data 
organization, and parallelization of the analysis on a multiproces-
sor system [ 13 ]. These strategies, as well as many others that have 
been developed in the past few years, provide capability to perform 
an exhaustive pairwise GWIA [ 14 – 16 ]. However, beyond pairwise 
interactions, exhaustive searching is not tractable.  
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3    Methods for Data Reduction 

 It is clear that while the goal of GWAS is to survey the entire 
genome in an unbiased way, this type of approach simply does not 
work in the search for epistasis, especially beyond pairwise interac-
tions. A number of fi ltering approaches have been suggested to 
reduce the computational burden. First, using statistical evidence 
of single-SNP effects to prioritize SNPs can be promising and has 
been shown to have high power [ 14 ,  17 ]. This approach follows 
from the hierarchical model-building principles of the general lin-
ear model whereby interaction terms are tested only after all main 
effect terms are deemed statistically signifi cant (as some predefi ned 
 p -value threshold). For example, in a 500,000 SNP GWAS analy-
sis, one might use a threshold of  p  < 1 × 10 −5  based on a chi-square 
test. As such, it is expected that there would be approximately fi ve 
SNPs signifi cant by chance alone; presumably additional SNPs will 
be signifi cant because some of those will be true effects for that 
particular dataset. If the SNPs that are important for the epistatic 
model are not among those top hits, the interactions will not be 
tested. If we select or fi lter variables based on their main effects, we 
bias the analysis using statistical information and assume that rele-
vant interactions occur only between markers that independently 
have some effect on the phenotype alone. Filtering SNPs based on 
the strength of independent main effects can identify SNP combi-
nations among loci with small to moderate main effects, such as    
two 2-SNP models identifi ed for Amyotrophic lateral sclerosis 
(ALS)    [ 18 ] or multiple sclerosis (MS) [ 19 ]. If, however, the genetic 
variants that are important for disease risk have effects only 
through their interactions with other genes, this fi ltering by main 
effects approach would potentially miss these types of discoveries. 

 The second approach is to use intrinsic knowledge extracted 
from the dataset to fi lter the list of SNPs to test for interactions. 
Data reduction algorithms that explicitly assess the quality of an 
SNP in its relationship to the clinical outcome are an alternative to 
pure statistical or biological fi lters. A series of Relief algorithms 
have been explored including Relief, ReliefF, Spatially Uniform 
ReliefF (SURF), Tuned ReliefF (TuRF), and SURF and TURF 
[ 20 ,  21 ]. These approaches use a nearest neighbor approach to 
assess SNP quality to detect attributes associated with disease. In 
this case, nearest neighbors are individuals in the dataset who are 
genetically similar at the many SNPs across the genome. Relief uses 
a single neighbor, ReliefF uses multiple nearest neighbors, and the 
SURF and TURF are various extensions to the ReliefF fi ltering. 
Filtering approaches that use intrinsic properties of the data, such 
as these ReliefF methods, look like a promising alternative for 
epistasis in GWAS. According to published studies, they will be 
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 successful in removing nonfunctional SNPs while maintaining the 
SNP–SNP interaction models. This will effectively reduce the 
number of statistical tests that need to be performed, which 
relieves computational complexity issues as well as multiple com-
parisons issues [ 22 ]. 

 Third, the use of extrinsic biological knowledge to fi lter SNPs 
and then evaluate multi-marker combinations based on biological 
criteria has been suggested [ 23 – 24 ]. If we fi lter variables using 
biological information extrinsic to our dataset—i.e., only examine 
interactions between SNPs in a common pathway or with a com-
mon structure or function based on the literature or information in 
databases—we bias the analysis in favor of models with an estab-
lished biological foundation in the literature, and novel interac-
tions between SNPs would be missed. Furthermore, the analysis is 
conditioned on the quality of the biological information used. 
However, the interaction models with detectable statistical epistasis 
will have good evidence for biological epistasis and a high likeli-
hood of being interpretable [ 22 ]. 

 Each of these strategies imposes a specifi c bias into the analysis, 
and no one strategy will be optimal in all cases ( see   Note 1 ). Each of 
these has advantages and disadvantages with known biases and limi-
tations. While all of the proposed approaches for fi ltering have 
clear strengths and limitations, we propose that fi ltering based on 
extrinsic biological knowledge will be a robust approach for the 
detection of epistasis in large-scale genomic analyses including 
GWAS as well as next-generation sequencing. While the available 
biological knowledge is incomplete and always evolving, it provides 
a framework for exploring epistasis in which models are plausible, 
more likely to be interpretable, and reduces the computational and 
statistical burdens. By limiting the search space, we limit the number 
of statistical tests, multiple comparison burden, as well as computa-
tional complexity. The remainder of this chapter will focus on 
approaches being developed for using biological knowledge to pri-
oritize the search for missing heritability in the epistasis domain and 
provide some examples where these strategies have been implemented.  

4    Methods for Incorporating Biological Knowledge 

 The incorporation of prior knowledge into GWAS has been 
proposed and many new tools have been developed to allow for 
this type of analysis ( see   Note 2 ). While most of them have been 
utilized and published based on a single-locus test of association, 
nearly all of them could be used in the search for epistasis. This is 
certainly a rapidly growing area of research; as such it is not possible 
to thoroughly describe all of the recent developments. However, in 
the following sections, a number of approaches will be described 
with  suggestions for how they could guide the search for epistasis 
in large, genome-wide datasets. 

Filtering for Epistasis
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  Protein–protein interactions can be measured using mass spec-
trometry, immunoprecipitation, yeast two-hybrids, and affi nity 
pull down followed by mass spectrometry [ 25 ]. As discussed in 
Ritchie [ 22 ], a number of protein–protein interaction databases 
are publicly available, including the database of interacting pro-
teins (DIPs) [ 26 ], BioGRID (Biological General Repository for 
Interaction Datasets) [ 27 ], and human protein reference database 
(HPRD) [ 28 ]. As described by Pattin and Moore, a couple of dif-
ferent approaches could be used to incorporate protein–protein 
interaction data [ 25 ]. First, the most straightforward approach 
includes fi ltering the full SNP list by the SNPs included in the 
genes encoding the proteins involved in the interactions [ 25 ]. This 
would reduce the number of SNPs explored for epistasis. However, 
it would also prevent the identifi cation of models that include 
novel biology. An alternative and perhaps more promising approach 
involves developing a metric to score the relative importance of the 
SNPs such that the full list could be prioritized or weighted, rather 
than fi ltered in or out of the dataset. This would allow for novel 
biology to be discovered, although it would favor models with a 
priori evidence of support [ 25 ]. Scoring systems like this can then 
be used for fi ltering as well as for Bayesian priors for analysis.  

  As discussed by Ritchie [ 22 ], the use of pathway data to look for 
overrepresentation of genome-wide associated hits has been done 
in many studies. For example, Perry et al. used Kyoto Encyclopedia 
of Genes and Genomes (KEGG), BioCarta, and Gene Ontology 
(GO) to perform a modifi ed gene-set enrichment analysis (GSEA) 
for type II diabetes [ 29 ]. In rheumatoid arthritis (RA), Beyene 
et al. utilized a selection of prior knowledge from c2 curated gene 
sets, which are obtained from online pathway databases, 
citations in PubMed, and domain experts [ 30 ]. For GSEA, their 
fi nal set included 1,900 gene sets collected from canonical path-
ways, chemical and genetic perturbations, BioCarta pathways, 
GeneMAPP, and KEGG [ 30 ]. 

 Another similar gene set enrichment analysis, the SNP-ratio 
test (SRT) [ 31 ], compares the proportion of statistically signifi cant 
genes to all SNPs within genes that are part of a specifi c pathway. 
An empirical  p -value is then calculated based on comparisons in 
datasets where a permutation test has been performed (i.e., the 
assignment of case/control status has been randomized). 
Approaches like this rely largely on single-SNP analysis, but then 
look for enrichment of sets of SNPs to report interesting fi ndings, 
with the idea that sets of interacting SNPs/genes would show up 
in pathway enrichment tests. So while it is not epistasis evidence, 
they are at least considering polygenic models. 

 Baranzini and colleagues [ 18 ] propose a protein interaction 
and network-based analysis (PINBPA   ) for the study of a multiple 
sclerosis (MS) dataset. An alternative approach was explored by 
Askland et al., where they used exploratory visual analysis (EVA) to 

4.1  Protein–Protein 
Interaction 
Approaches

4.2  Pathway 
Approaches
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perform a number of pathway-based analyses of bipolar disorder 
[ 32 ]. Another approach, pathway genetic load (PGL), looks for 
evidence of epistasis between genes confi ned to a single pathway 
[ 33 ]. This approach dramatically reduces the computational 
complexity of an epistasis search in GWAS data. 

 As discussed by Ritchie [ 22 ], assessing the statistical signifi -
cance of pathways is also an important and diffi cult challenge. It is 
not enough to simply look for an overrepresentation of hits in a 
particular pathway or set of pathways. There are reasons unrelated 
to the associations that can lead to this, such as the selection of 
SNPs on the genotyping platforms or the choice of pathway anno-
tation for analysis. Large pathways have a greater chance of being 
statistically signifi cant, and many of the bioinformatics tools used 
for these types of studies are biased toward detecting large, well- 
defi ned pathways [ 34 ]. Methods to perform permutation testing 
in pathway analysis frameworks have been developed to provide 
increased power and effi ciency [ 35 ]. Other approaches index path-
ways using Gene Ontology terms and test for overrepresentation 
of pathways in a list of hits from a genome-wide association study 
(such as ALIGATOR-Association LIst Go AnnoTatOR) and 
successfully identify pathways for complex traits, such as bipolar 
disorder [ 36 ]. It is also important to re-iterate that pathway analy-
sis approaches, in themselves, were not developed for the purpose 
of detecting epistasis. These methods focus on single-SNP analyses 
and explore pathways where accumulated single locus associations 
are detected. However, it is obvious that these pathway approaches 
will develop hypotheses regarding potential “underground net-
works” [ 1 ], which would be particularly interesting to focus efforts 
for detection of epistasis.  

  Perhaps the most lucrative solution involves a comprehensive 
k nowledge-based approach that includes evidence from pathways, 
protein–protein interactions, prior association, gene ontology, link-
age, or gene expression, etc. Because we have a limited number of 
known epistatic models in humans, it is currently a challenge to 
hypothesize what structure models will involve and what relation-
ships between genes we should expect. We can look to the known 
examples of epistasis in model organisms to point us in the right 
direction, but until we have more examples in humans, we are merely 
speculating and may not include all possible types of models. 

 Ritchie [ 22 ] described that one of the major disadvantages of 
the comprehensive approach is the current inability to accurately 
evaluate it compared to other approaches in simulated data 
 experiments. Unfortunately, simulation studies, where biological 
knowledge is concerned, are very diffi cult to perform. There are 
two issues. First, if you do the straightforward type of simulation 
study where you preselect functional SNPs based on biological 
knowledge, embed them into the simulation, and use that same 
knowledge to guide the search, the simulation is overly simplistic 

4.3  Comprehensive 
Knowledge Approach
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and really not very interesting. The second issue is that to do it 
right, we need to have a simulation tool whereby we can simulate 
pathways and networks, and then create disease models including 
some of the loci from these networks. This type of tool does not 
currently exist. So, unfortunately, while a simulation study to com-
pare approaches would be fantastic, it is not currently feasible. 
Once a body of literature is published demonstrating some of the 
pathway and network effects we can expect to observe in natural, 
biological data, we will be able to develop simulation tools to test 
additional novel analytic methods. After that, we may have a better-
detailed critique on the different approaches. 

 Several approaches have been developed that include a more 
thorough extraction of prior information from multiple sources. 
The Biofi lter is one such system [ 37 ,  38 ]. Layers of biological 
machinery exist between genetic variations and the phenotypes 
they manifest, and imposing this extra dimension of known bio-
logical information into statistical analyses may help identify rela-
tionships between genetic variants that contribute to common 
complex disease. The Biofi lter is a database system cataloging bio-
logical information based on data from BioGRID, dbSNP, NCBI 
gene, Gene Otology, MINT, NetPath, OregAnno, Pfam, 
PharmGKB, Reactome, UCSC genome browser, and the NHGRI 
GWAS catalog [ 38 ]. The strategy of Biofi lter steps beyond the 
annotation and grouping of independent SNP effects. The Biofi lter 
uses biological information about gene–gene relationships and 
gene–disease relationships to construct multi-SNP models before 
conducting any statistical analyses. Rather than annotating the 
independent effect of each SNP in a GWAS dataset, the Biofi lter 
allows the explicit detection and modeling of interactions between 
a set of SNPs preselected by the application. In this manner, the 
Biofi lter process provides a tool to discover signifi cant multi-SNP 
models with nonsignifi cant main effects that have established bio-
logical plausibility. This approach has the added benefi t of reduc-
ing both the computational and statistical burden of exhaustively 
evaluating all possible multi-SNP models. The goal of the Biofi lter 
is to take advantage of what we know, recognizing that there is 
much more to be discovered [ 38 ]. 

 Biofi lter uses biological information about gene–gene relation-
ships to construct multi-SNP models that can then be prioritized 
before conducting any statistical analyses. The key idea behind 
Biofi lter model generation is that any pathway, ontological cate-
gory, protein family, experimental interaction, or other grouping 
of genes or proteins implies a relationship between each of those 
genes or proteins. Thus Biofi lter provides a tool to discover signifi -
cant multi-SNP models with nonsignifi cant main effects that have 
established biological plausibility. The Biofi lter model generation 
process thus far has been protein-coding gene-centric, and as such, 
SNPs from GWAS genotyping platforms must fi rst be assigned to 
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protein-coding regions [ 38 ,  39 ]. Relationships between genes 
r epresented by a genotyping platform can then be translated to 
multi- SNP models. If the same two genes appear together in more 
than one grouping, they’re likely to have an important biological 
relationship; if they appear in multiple groups from several inde-
pendent sources, then they’re even more likely to be biologically 
related in some way, and receive a higher implication index. 
Biofi lter has access to thousands of such groupings because of the 
use of multiple domain sources and can analyze all of them to iden-
tify the sets of genes or SNPs appearing together in the greatest 
number of groupings and the widest array of original data sources. 
These pairs can then be tested for signifi cance within a research 
dataset, and, depending on the level of data fi ltering or application 
of an implication index cutoff, Biofi lter can be used to avoid the 
prohibitive computational and multiple-testing burden of an 
exhaustive pairwise analysis. Once multi-SNP models are con-
structed, they can be evaluated using any relevant analytic method 
such as logistic regression, multifactor dimensionality reduction 
(MDR), Bayesian networks, etc. 

 We have developed the Library of Knowledge Integration 
(LOKI) database (Fig.  2 ) and integrated eleven public domain 
data sources. These sources are combined into one central LOKI 
database for use in annotation, fi ltering, and building models of 
gene–gene interactions for analysis. Biofi lter and LOKI are 
described in detail in Pendergrass et al. [ 38 ]. Biofi lter has been 

  Fig. 2    The current Library of Knowledge Integration (LOKI). LOKI contains informa-
tion from multiple database repositories, covering multiple domains. From [ 38 ]       
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applied to a number of natural, biological datasets for the discovery 
of gene–gene interaction models associated with complex traits 
including Multiple Sclerosis [ 40 ], HDL cholesterol [ 41 ], HIV 
Pharmacogenomics [ 42 ], and cataract status [ 43 ].  

 Another approach for comprehensive data integration is 
INTERSNP. INTERSNP is a powerful, fl exible approach that 
implements logistic regression or log-linear models for joint analy-
sis of multiple SNPs [ 16 ]. The fi ltering of SNPs can be done using 
statistical evidence from single locus statistics, genomic evidence 
based on genomic location, or biologic relevance based on path-
way information from KEGG [ 16 ]. Approaches such as these have 
the greatest potential since they rely on multiple sources and types 
of information. This is, of course, as long as the analytic strategy is 
implemented in such a way that the incorporation of incorrect 
knowledge does not impede the ability to detect the correct mod-
els. Using prior knowledge can be an incredibly powerful tool, but 
we should be careful to use it in an effi cient manner ( see   Note 4 ).   

5    Real World Example: HDL Cholesterol 

 Plasma concentrations of low-density lipoprotein (LDL) choles-
terol, high-density lipoprotein (HDL) cholesterol, triglycerides 
(TRI), and total cholesterol are among the most important risk 
factors for coronary artery disease (CAD). Lipid traits have been 
well studied in genome-wide association studies with between 
100,000 [ 44 ] and over 188,000 individuals [ 45 ] included. While 
there have been over 150 loci identifi ed for association with lipid 
traits, the proportion of heritability explained is still modest with 
∼25–30 % of the genetic variance for each lipid trait [ 44 ,  45 ]. Due 
to this missing heritability, several groups have embarked on explo-
rations of epistasis or gene–gene interactions in lipid traits. 

 For example, Turner et al. looked for epistasis associated with 
HDL cholesterol [ 41 ] using a biological knowledge-driven fi lter-
ing method. Here, the Biofi lter [ 37 ,  38 ] was used to decrease the 
number of SNP–SNP models evaluated from genome-wide geno-
type data. Through the application of the Biofi lter, eleven signifi -
cant GxG models were in the discovery Biobank cohort, eight of 
which show evidence of replication in a second biobank cohort 
[ 41 ]. The strongest predictive model included a pairwise interac-
tion between  LPL  (which modulates the incorporation of triglycer-
ide into HDL) and  ABCA1  (which modulates the incorporation of 
free cholesterol into HDL) [ 41 ]. The authors required that any 
GxG interactions in the discovery cohort ( n  = 3,740 participants) 
showed evidence of replication in the de-identifi ed EMRs of a second 
cohort ( n  = 1,858 participants). This resulted in replicated GxG 
interactions associated with variation in HDL-C, all of which have 
potential biological relevance. 
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 A similar approach was taken by Ma et al.; they used prior 
knowledge from established genome-wide association study 
(GWAS) hits, protein–protein interactions, as well as pathway 
information to guide their gene–gene interaction analyses [ 46 ]. 
These results were further followed up through the evaluation of 
gene-based interaction analysis [ 47 ] as well as potential eQTLs 
involved in gene–gene interactions [ 48 ]. These results demon-
strated that gene–gene interactions modulate complex human 
traits, including HDL cholesterol, and the use of prior biological 
knowledge can increase power to identify biologically interesting 
and relevant models ( see   Note 3 ).  

6    Notes 

        1.    The search space for enumerating all possible epistasis models 
in genome-wide datasets is computationally prohibitive; thus 
numerous data reduction or fi ltering strategies have been 
employed to reduce the SNP set for epistasis modeling 
including:

 ●    Statistical fi ltering using single-SNP statistics (such as the 
chi-square test).
 –    Advantage: simple, unbiased with respect to the 

biologist.  
 –   Disadvantage: relies on all important genes having 

independent main effects.     
 ●   Intrinsic fi ltering using statistical or computational data-

driven approaches (such as ReliefF).
 –    Advantage: unbiased with respect to the biologist; uses 

the data.  
 –   Disadvantage: complicated; models may not have bio-

logical relevance.     
 ●   Extrinsic fi ltering using biological knowledge (such as 

Biofi lter or pathway analysis).
 –    Advantage: results are biologically relevant.  
 –   Disadvantage: limited by current state of biology; 

biased toward genes we know something about as a 
fi eld.         

   2.    Biological knowledge-based epistasis methods are emerging as 
powerful strategies for epistasis analyses.   

   3.    Real data applications have been deemed successful fi nding 
 evidence of epistasis replicating across multiple datasets.   

   4.    Many methods for incorporation of biological knowledge into 
epistasis analysis exist and continue to be developed.         
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