Chapter 2

Finding the Epistasis Needles in the Genome-Wide
Haystack

Marylyn D. Ritchie

Abstract

Genome-wide association studies (GWAS) have dominated the field of human genetics for the past 10
years. This study design allows for an unbiased, dense exploration of the genome and provides researchers
with a vast array of SNPs to look for association with their trait or disease of interest. GWAS has been
referred to as finding needles in a haystack and while many of these “needles,” or SNPs associating with
disease, have been identified, there is still a great deal of heritability yet to be explained. The missing or
phantom heritability is due, at least in part, to epistasis or gene—gene interactions, which have not been
extensively explored in GWAS. Part of the challenge for epistasis analysis in GWAS is the sheer magnitude
of the search and the computational complexity associated with it. An exhaustive search for epistasis mod-
els is not computationally feasible; thus, alternate approaches must be considered. In this chapter, these
approaches will be reviewed briefly, and the incorporation of biological knowledge to guide this process
will be further expanded upon. Real biological data examples where this approach has yielded successful
identification of epistasis will also be provided. Epistasis has been known to be important since the early
1900s; however, its prevalence in mainstream research has been somewhat overshadowed by molecular
technology advances. Due to the increasing evidence of epistasis in complex traits, it continues to emerge
as a likely explanation for missing heritability.
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1 Introduction

The search for the missing heritability [1, 2] in genome-wide
association studies (GWAS) has become an important focus for the
human genetics community — especially as larger and larger sam-
ple sizes have resulted in even smaller effect sizes to be identified.
The National Human Genome Research Institute (NHGRI)
GWAS catalog was developed to store all of the GWAS results in a
central database. A few years ago, NHGRI looked at the distribu-
tion of GWAS-associated SNPs and found a majority were associ-
ated with small effects sizes (odds ratios less than 1.4) [3]. In
January 2014, we evaluated the GWAS catalog to see if the trend
had changed, and unfortunately, due to increasing sample sizes,
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Fig. 1 Distribution of odds ratios (effect size) from the NHGRI GWAS catalog as of January 2014

the effect sizes identified have become even smaller. Figure 1 shows
the distribution of these effects; the majority have odds ratios less
than 1.2. This leads to much discussion regarding the missing or
phantom heritability. Lander and colleagues explain that much of
the missing heritability could be due to genetic interactions [4].
This opinion has been shared and emphasized by others in the lit-
erature for several years [5-11]. As such, it is believed by many that
epistasis is important and should be explored in the context of
GWAS; however, specific applications of epistasis analysis in GWAS
have been much fewer than single variant main effects analyses.
The computational burden of exploring gene—gene interactions in
the wealth of data generated in GWAS, along with small to moder-
ate sample sizes, has led to epistasis being an afterthought, rather
than a primary focus of GWAS analyses.

In this chapter, we discuss some potential approaches to make
epistasis analysis more computationally tractable in a GWAS data-
set. A number of alternative approaches are described, but the pri-
mary focus is on the use of prior biological knowledge from
databases in the public domain to guide the search for epistasis.
The manner in which prior knowledge is incorporated into a GWAS
study can be done in several different ways and the knowledge can
be extracted from a variety of database sources. These approaches
will be discussed, and some successful applications will be described.
Incorporating biological knowledge is likely to be fruitful in the
search for epistasis in large-scale genomic studies of the current
state-of-the-art and into the future.
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2 The Scope of the Problem

The ultimate goal of any disease gene discovery project is to identify
as much of the genomic variation as possible that is relevant to the
phenotype (disease or trait) being studied. As molecular technol-
ogy has advanced, the field has gone from very coarse genomic
examination embodied in cytogenetic analyses, to higher resolu-
tion linkage analyses, and now to very high-resolution association
analyses. Methodological advances in the analysis of large-scale
GWAS studies and the ability to integrate results across experi-
ments have simply not kept pace with this flood of genotyping and
now sequencing data. It is a central fallacy that simply generating
more data and collecting more samples/individuals will solve the
problem. Instead, it is this tsunami of data that has made distin-
guishing true scientific discoveries from the thousands or millions
of false discoveries even more challenging. The ultimate success of
our monumental investment in data generation will depend largely
on the development and use of innovative analytic approaches and
intelligent study designs that allow for the detection of gene—gene
and gene—environment interactions.

A major hurdle in discovering epistasis, however, is the variable
selection problem. Exhaustively evaluating all of the possible com-
binations of SNPs is not computationally feasible. For example,
testing all two-SNP models in genome-wide data including one
million SNPs generates 5.00 x 10! possible two-SNP models; this
requires extensive computing resources and produces many statis-
tically significant results. If we consider going beyond pairwise
models, one million SNPs generate 1.7 x 1017 three-SNP models,
4.2 x10% four-SNP models, 8.3 x 10?7 five-SNP models, 1.4 x 1033
six-SNP models, and so on (calculated based on (7/m), where n is
the number of SNPs and m is the number of variables in the
model). This creates an enormous computing challenge as well as
a multiple testing correction issue. It has been shown that using
the parallel Multifactor Dimensionality Reduction approach
(pMDR), it is possible to scan through an exhaustive search of pos-
sible two-SNP models [12]. Steffens et al. also demonstrate a
genome-wide interaction analysis (GWIA) and the strategies for
data compression, specific data representations, interleaved data
organization, and parallelization of the analysis on a multiproces-
sor system [13]. These strategies, as well as many others that have
been developed in the past few years, provide capability to perform
an exhaustive pairwise GWIA [14-16]. However, beyond pairwise
interactions, exhaustive searching is not tractable.
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3 Methods for Data Reduction

It is clear that while the goal of GWAS is to survey the entire
genome in an unbiased way, this type of approach simply does not
work in the search for epistasis, especially beyond pairwise interac-
tions. A number of filtering approaches have been suggested to
reduce the computational burden. First, using statistical evidence
of single-SNP effects to prioritize SNPs can be promising and has
been shown to have high power [14, 17]. This approach follows
from the hierarchical model-building principles of the general lin-
ear model whereby interaction terms are tested only after all main
effect terms are deemed statistically significant (as some predefined
p-value threshold). For example, in a 500,000 SNP GWAS analy-
sis, one might use a threshold of p<1x107° based on a chi-square
test. As such, it is expected that there would be approximately five
SNPs significant by chance alone; presumably additional SNPs will
be significant because some of those will be true effects for that
particular dataset. If the SNPs that are important for the epistatic
model are not among those top hits, the interactions will not be
tested. If we select or filter variables based on their main effects, we
bias the analysis using statistical information and assume that rele-
vant interactions occur only between markers that independently
have some effect on the phenotype alone. Filtering SNPs based on
the strength of independent main effects can identify SNP combi-
nations among loci with small to moderate main effects, such as
two 2-SNP models identified for Amyotrophic lateral sclerosis
(ALS) [18] or multiple sclerosis (MS) [19]. If, however, the genetic
variants that are important for disease risk have effects only
through their interactions with other genes, this filtering by main
effects approach would potentially miss these types of discoveries.

The second approach is to use intrinsic knowledge extracted
from the dataset to filter the list of SNPs to test for interactions.
Data reduction algorithms that explicitly assess the quality of an
SNP in its relationship to the clinical outcome are an alternative to
pure statistical or biological filters. A series of Relief algorithms
have been explored including Relief, ReliefF, Spatially Uniform
ReliefF (SURF), Tuned ReliefF (TuRF), and SURF and TURF
[20, 21]. These approaches use a nearest neighbor approach to
assess SNP quality to detect attributes associated with disease. In
this case, nearest neighbors are individuals in the dataset who are
genetically similar at the many SNPs across the genome. Relief uses
a single neighbor, ReliefF uses multiple nearest neighbors, and the
SURF and TUREF are various extensions to the ReliefF filtering.
Filtering approaches that use intrinsic properties of the data, such
as these ReliefF methods, look like a promising alternative for
epistasis in GWAS. According to published studies, they will be
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successful in removing nonfunctional SNPs while maintaining the
SNP-SNP interaction models. This will effectively reduce the
number of statistical tests that need to be performed, which
relieves computational complexity issues as well as multiple com-
parisons issues [22].

Third, the use of extrinsic biological knowledge to filter SNPs
and then evaluate multi-marker combinations based on biological
criteria has been suggested [23-24]. If we filter variables using
biological information extrinsic to our dataset—i.e., only examine
interactions between SNPs in a common pathway or with a com-
mon structure or function based on the literature or information in
databases—we bias the analysis in favor of models with an estab-
lished biological foundation in the literature, and novel interac-
tions between SNPs would be missed. Furthermore, the analysis is
conditioned on the quality of the biological information used.
However, the interaction models with detectable statistical epistasis
will have good evidence for biological epistasis and a high likeli-
hood of being interpretable [22].

Each of these strategies imposes a specific bias into the analysis,
and no one strategy will be optimal in all cases (see Note 1). Each of
these has advantages and disadvantages with known biases and limi-
tations. While all of the proposed approaches for filtering have
clear strengths and limitations, we propose that filtering based on
extrinsic biological knowledge will be a robust approach for the
detection of epistasis in large-scale genomic analyses including
GWAS as well as next-generation sequencing. While the available
biological knowledge is incomplete and always evolving, it provides
a framework for exploring epistasis in which models are plausible,
more likely to be interpretable, and reduces the computational and
statistical burdens. By limiting the search space, we limit the number
of statistical tests, multiple comparison burden, as well as computa-
tional complexity. The remainder of this chapter will focus on
approaches being developed for using biological knowledge to pri-
oritize the search for missing heritability in the epistasis domain and
provide some examples where these strategies have been implemented.

4 Methods for Incorporating Biological Knowledge

The incorporation of prior knowledge into GWAS has been
proposed and many new tools have been developed to allow for
this type of analysis (se¢ Note 2). While most of them have been
utilized and published based on a single-locus test of association,
nearly all of them could be used in the search for epistasis. This is
certainly a rapidly growing area of research; as such it is not possible
to thoroughly describe all of the recent developments. However, in
the following sections, a number of approaches will be described
with suggestions for how they could guide the search for epistasis
in large, genome-wide datasets.



24 Marylyn D. Ritchie

4.1 Protein-Protein
Interaction
Approaches

4.2 Pathway
Approaches

Protein—protein interactions can be measured using mass spec-
trometry, immunoprecipitation, yeast two-hybrids, and affinity
pull down followed by mass spectrometry [25]. As discussed in
Ritchie [22], a number of protein—protein interaction databases
are publicly available, including the database of interacting pro-
teins (DIPs) [26], BioGRID (Biological General Repository for
Interaction Datasets) [27], and human protein reference database
(HPRD) [28]. As described by Pattin and Moore, a couple of dif-
ferent approaches could be used to incorporate protein—protein
interaction data [25]. First, the most straightforward approach
includes filtering the full SND list by the SNPs included in the
genes encoding the proteins involved in the interactions [25]. This
would reduce the number of SNPs explored for epistasis. However,
it would also prevent the identification of models that include
novel biology. An alternative and perhaps more promising approach
involves developing a metric to score the relative importance of the
SNPs such that the full list could be prioritized or weighted, rather
than filtered in or out of the dataset. This would allow for novel
biology to be discovered, although it would favor models with a
priori evidence of support [25]. Scoring systems like this can then
be used for filtering as well as for Bayesian priors for analysis.

As discussed by Ritchie [22], the use of pathway data to look for
overrepresentation of genome-wide associated hits has been done
in many studies. For example, Perry et al. used Kyoto Encyclopedia
of Genes and Genomes (KEGGQG), BioCarta, and Gene Ontology
(GO) to perform a modified gene-set enrichment analysis (GSEA)
for type II diabetes [29]. In rheumatoid arthritis (RA), Beyene
et al. utilized a selection of prior knowledge from ¢2 curated gene
sets, which are obtained from online pathway databases,
citations in PubMed, and domain experts [30]. For GSEA, their
final set included 1,900 gene sets collected from canonical path-
ways, chemical and genetic perturbations, BioCarta pathways,
GeneMAPP, and KEGG [30].

Another similar gene set enrichment analysis, the SNP-ratio
test (SRT) [31], compares the proportion of statistically significant
genes to all SNPs within genes that are part of a specific pathway.
An empirical p-value is then calculated based on comparisons in
datasets where a permutation test has been performed (i.c., the
assignment of case/control status has been randomized).
Approaches like this rely largely on single-SNP analysis, but then
look for enrichment of sets of SNPs to report interesting findings,
with the idea that sets of interacting SNPs/genes would show up
in pathway enrichment tests. So while it is not epistasis evidence,
they are at least considering polygenic models.

Baranzini and colleagues [18] propose a protein interaction
and network-based analysis (PINBPA) for the study of a multiple
sclerosis (MS) dataset. An alternative approach was explored by
Askland et al., where they used exploratory visual analysis (EVA) to
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perform a number of pathway-based analyses of bipolar disorder
[32]. Another approach, pathway genetic load (PGL), looks for
evidence of epistasis between genes confined to a single pathway
[33]. This approach dramatically reduces the computational
complexity of an epistasis search in GWAS data.

As discussed by Ritchie [22], assessing the statistical signifi-
cance of pathways is also an important and difficult challenge. It is
not enough to simply look for an overrepresentation of hits in a
particular pathway or set of pathways. There are reasons unrelated
to the associations that can lead to this, such as the selection of
SNPs on the genotyping platforms or the choice of pathway anno-
tation for analysis. Large pathways have a greater chance of being
statistically significant, and many of the bioinformatics tools used
for these types of studies are biased toward detecting large, well-
defined pathways [34]. Methods to perform permutation testing
in pathway analysis frameworks have been developed to provide
increased power and efficiency [35]. Other approaches index path-
ways using Gene Ontology terms and test for overrepresentation
of pathways in a list of hits from a genome-wide association study
(such as ALIGATOR-Association LIst Go AnnoTatOR) and
successfully identify pathways for complex traits, such as bipolar
disorder [36]. It is also important to re-iterate that pathway analy-
sis approaches, in themselves, were not developed for the purpose
of detecting epistasis. These methods focus on single-SNP analyses
and explore pathways where accumulated single locus associations
are detected. However, it is obvious that these pathway approaches
will develop hypotheses regarding potential “underground net-
works” [1], which would be particularly interesting to focus efforts
for detection of epistasis.

Perhaps the most lucrative solution involves a comprehensive
knowledge-based approach that includes evidence from pathways,
protein—protein interactions, prior association, gene ontology, link-
age, or gene expression, etc. Because we have a limited number of
known epistatic models in humans, it is currently a challenge to
hypothesize what structure models will involve and what relation-
ships between genes we should expect. We can look to the known
examples of epistasis in model organisms to point us in the right
direction, but until we have more examples in humans, we are merely
speculating and may not include all possible types of models.
Ritchie [22] described that one of the major disadvantages of
the comprehensive approach is the current inability to accurately
evaluate it compared to other approaches in simulated data
experiments. Unfortunately, simulation studies, where biological
knowledge is concerned, are very difficult to perform. There are
two issues. First, if you do the straightforward type of simulation
study where you preselect functional SNPs based on biological
knowledge, embed them into the simulation, and use that same
knowledge to guide the search, the simulation is overly simplistic
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and really not very interesting. The second issue is that to do it
right, we need to have a simulation tool whereby we can simulate
pathways and networks, and then create disease models including
some of the loci from these networks. This type of tool does not
currently exist. So, unfortunately, while a simulation study to com-
pare approaches would be fantastic, it is not currently feasible.
Once a body of literature is published demonstrating some of the
pathway and network effects we can expect to observe in natural,
biological data, we will be able to develop simulation tools to test
additional novel analytic methods. After that, we may have a better-
detailed critique on the different approaches.

Several approaches have been developed that include a more
thorough extraction of prior information from multiple sources.
The Biofilter is one such system [37, 38]. Layers of biological
machinery exist between genetic variations and the phenotypes
they manifest, and imposing this extra dimension of known bio-
logical information into statistical analyses may help identify rela-
tionships between genetic variants that contribute to common
complex disease. The Biofilter is a database system cataloging bio-
logical information based on data from BioGRID, dbSNP, NCBI
gene, Gene Otology, MINT, NetPath, OregAnno, Pfam,
PharmGKB, Reactome, UCSC genome browser, and the NHGRI
GWAS catalog [38]. The strategy of Biofilter steps beyond the
annotation and grouping of independent SNP effects. The Biofilter
uses biological information about gene—gene relationships and
gene—disease relationships to construct multi-SNP models before
conducting any statistical analyses. Rather than annotating the
independent effect of each SNP in a GWAS dataset, the Biofilter
allows the explicit detection and modeling of interactions between
a set of SNPs preselected by the application. In this manner, the
Biofilter process provides a tool to discover significant multi-SNP
models with nonsignificant main effects that have established bio-
logical plausibility. This approach has the added benefit of reduc-
ing both the computational and statistical burden of exhaustively
evaluating all possible multi-SNP models. The goal of the Biofilter
is to take advantage of what we know, recognizing that there is
much more to be discovered [38].

Biofilter uses biological information about gene—gene relation-
ships to construct multi-SNP models that can then be prioritized
before conducting any statistical analyses. The key idea behind
Biofilter model generation is that any pathway, ontological cate-
gory, protein family, experimental interaction, or other grouping
of genes or proteins implies a relationship between each of those
genes or proteins. Thus Biofilter provides a tool to discover signifi-
cant multi-SNP models with nonsignificant main effects that have
established biological plausibility. The Biofilter model generation
process thus far has been protein-coding gene-centric, and as such,
SNPs from GWAS genotyping platforms must first be assigned to
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protein-coding regions [38, 39]. Relationships between genes
represented by a genotyping platform can then be translated to
multi-SNP models. If the same two genes appear together in more
than one grouping, they’re likely to have an important biological
relationship; if they appear in multiple groups from several inde-
pendent sources, then they’re even more likely to be biologically
related in some way, and receive a higher implication index.
Biofilter has access to thousands of such groupings because of the
use of multiple domain sources and can analyze all of them to iden-
tify the sets of genes or SNPs appearing together in the greatest
number of groupings and the widest array of original data sources.
These pairs can then be tested for significance within a research
dataset, and, depending on the level of data filtering or application
of an implication index cutoff, Biofilter can be used to avoid the
prohibitive computational and multiple-testing burden of an
exhaustive pairwise analysis. Once multi-SNP models are con-
structed, they can be evaluated using any relevant analytic method
such as logistic regression, multifactor dimensionality reduction
(MDR), Bayesian networks, etc.

We have developed the Library of Knowledge Integration
(LOKI) database (Fig. 2) and integrated eleven public domain
data sources. These sources are combined into one central LOKI
database for use in annotation, filtering, and building models of
gene—gene interactions for analysis. Biofilter and LOKI are
described in detail in Pendergrass et al. [38]. Biofilter has been

Genes and Protein, Gene, and '
SNPS Drug Interactions
NCBI MINT

dbSNP BioGRID
Entrez PharmGKB
AN
Library of
-»  Knowledge -«
Pfam Integration ‘\ OReZAND0
/ \.
ECRs Pathways
Gene Ontology
ucsc KEGG
NetPath

Fig. 2 The current Library of Knowledge Integration (LOKI). LOKI contains informa-
tion from multiple database repositories, covering multiple domains. From [38]
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applied to a number of natural, biological datasets for the discovery
of gene-gene interaction models associated with complex traits
including Multiple Sclerosis [40], HDL cholesterol [41], HIV
Pharmacogenomics [42], and cataract status [43].

Another approach for comprehensive data integration is
INTERSND. INTERSNP is a powerful, flexible approach that
implements logistic regression or log-linear models for joint analy-
sis of multiple SNPs [16]. The filtering of SNPs can be done using
statistical evidence from single locus statistics, genomic evidence
based on genomic location, or biologic relevance based on path-
way information from KEGG [16]. Approaches such as these have
the greatest potential since they rely on multiple sources and types
of information. This is, of course, as long as the analytic strategy is
implemented in such a way that the incorporation of incorrect
knowledge does not impede the ability to detect the correct mod-
els. Using prior knowledge can be an incredibly powerful tool, but
we should be careful to use it in an efficient manner (see Note 4).

5 Real World Example: HDL Cholesterol

Plasma concentrations of low-density lipoprotein (LDL) choles-
terol, high-density lipoprotein (HDL) cholesterol, triglycerides
(TRI), and total cholesterol are among the most important risk
factors for coronary artery disease (CAD). Lipid traits have been
well studied in genome-wide association studies with between
100,000 [44] and over 188,000 individuals [45] included. While
there have been over 150 loci identified for association with lipid
traits, the proportion of heritability explained is still modest with
~25-30 % of the genetic variance for each lipid trait [44, 45]. Due
to this missing heritability, several groups have embarked on explo-
rations of epistasis or gene—gene interactions in lipid traits.

For example, Turner et al. looked for epistasis associated with
HDL cholesterol [41] using a biological knowledge-driven filter-
ing method. Here, the Biofilter [37, 38] was used to decrease the
number of SNP-SNP models evaluated from genome-wide geno-
type data. Through the application of the Biofilter, eleven signifi-
cant GxG models were in the discovery Biobank cohort, eight of
which show evidence of replication in a second biobank cohort
[41]. The strongest predictive model included a pairwise interac-
tion between LPL (which modulates the incorporation of triglycer-
ide into HDL) and ABCA 1 (which modulates the incorporation of
free cholesterol into HDL) [41]. The authors required that any
Gx@G interactions in the discovery cohort (#=3,740 participants)
showed evidence of replication in the de-identified EMRs of a second
cohort (n=1,858 participants). This resulted in replicated GxG
interactions associated with variation in HDL-C, all of which have
potential biological relevance.
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A similar approach was taken by Ma et al.; they used prior
knowledge from established genome-wide association study
(GWAS) hits, protein—protein interactions, as well as pathway
information to guide their gene—gene interaction analyses [46].
These results were further followed up through the evaluation of
gene-based interaction analysis [47] as well as potential eQTLs
involved in gene—gene interactions [48]. These results demon-
strated that gene-gene interactions modulate complex human
traits, including HDL cholesterol, and the use of prior biological
knowledge can increase power to identify biologically interesting
and relevant models (see Note 3).

6 Notes

1. The search space for enumerating all possible epistasis models
in genome-wide datasets is computationally prohibitive; thus
numerous data reduction or filtering strategies have been
employed to reduce the SNP set for epistasis modeling
including:

e Statistical filtering using single-SNP statistics (such as the
chi-square test).

— Advantage: simple, unbiased with respect to the
biologist.

— Disadvantage: relies on all important genes having
independent main effects.

e Intrinsic filtering using statistical or computational data-
driven approaches (such as ReliefF).
— Advantage: unbiased with respect to the biologist; uses
the data.

— Disadvantage: complicated; models may not have bio-
logical relevance.

e Extrinsic filtering using biological knowledge (such as
Biofilter or pathway analysis).
— Advantage: results are biologically relevant.

— Disadvantage: limited by current state of biology;
biased toward genes we know something about as a

field.

2. Biological knowledge-based epistasis methods are emerging as
powerful strategies for epistasis analyses.

3. Real data applications have been deemed successful finding
evidence of epistasis replicating across multiple datasets.

4. Many methods for incorporation of biological knowledge into
epistasis analysis exist and continue to be developed.
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