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Abstract We demonstrate lower bounds for the eigenvalues of compact Bakry–
Émery manifolds with and without boundary. The lower bounds for the first
eigenvalue rely on a generalized maximum principle which allows gradient esti-
mates in the Riemannian setting to be directly applied to the Bakry–Émery setting.
Lower bounds for all eigenvalues are demonstrated using heat kernel estimates and
a suitable Sobolev inequality.

1 Introduction

Let (M , g) be a Riemannian manifold and φ ∈ C2(M). A Bakry–Émery manifold is
a triple (M , g,φ), where the measure on M is the weighted measure e−φdVg . The
naturally associated Bakry–Émery Laplacian is

Δφ = Δ− ∇φ · ∇, (1)

where

Δ = 1√
det (g)

∑

i,j

∂ig
ij
√

det (g)∂j .

The operator can be extended as a self-adjoint operator with respect to the weighted
measure e−φdVg . It is also known as a “drifting” or “drift” Laplacian. Bakry and
Émery [3] observed that this generalized notion of Laplace operator has analogous
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properties to the standard Laplacian (which is none other than a Bakry–Émery Lapla-
cian with φ ≡ 0) and can be used to study a much larger class of diffusion equations
and relations between energy and entropy. For example, a Bakry–Émery Laplacian
appears in the Ornstein-Uhlenbeck equation, and Bakry–Émery manifolds play a
key role in the log-Sobolev inequality of Gross [26] and Federbush [20] as well as
the hypercontractivity inequality of Nelson [35].

The Bakry–Émery Laplacian has a canonically associated heat operator,

∂t −Δφ.

The fundamental solution is known as the Bakry–Émery heat kernel. The naturally
associated curvature tensor for (M , g,φ) is the Bakry–Émery Ricci curvature defined
by1

Ricφ = Ric+ Hess(φ).

Above Ric and Δ are, respectively, the Ricci curvature and Laplacian with respect
to the Riemannian metric g.

A collection of geometric results for Bakry–Émery manifolds is contained in
[43]. We are interested in the analysis of the Bakry–Émery Laplacian and associated
heat kernel. It turns out that some results can be extracted from the analysis of the
Laplacian and heat kernel on an appropriately defined Riemannian manifold. In this
article we are interested in obtaining new lower bounds for the eigenvalues of the
Bakry–Émery Laplacian which are presented in Sect. 2. Upper bounds are also known
to hold for compact Bakry–Émery manifolds. We include here a brief summary of
some recent results in this area in order to compare them to the lower bounds that
we obtain. Although our survey is certainly not comprehensive, it gives a flavor of
the type of estimates that one can show.

2 Eigenvalue Estimates

2.1 One-dimensional Collapse

We discovered in [33] that the eigenvalues of a Bakry–Émery Laplacian on a compact
n-dimensional manifold are the limit under one-dimensional collapse of Neumann
eigenvalues for the classical Laplacian on a related (n+ 1)-dimensional manifold.

Theorem 1 (L.-R.) Let (M , g,φ) be a compact Bakry–Émery manifold. Let

Mε := {(x, y) | x ∈ M , 0 ≤ y ≤ εe−φ(x)} ⊂ M × R
+,

with φ ∈ C2(M) and e−φ ∈ C(M∪∂M). Let {μk}∞k=0 be the eigenvalues of the Bakry–
Émery Laplacian on M . If ∂M �= ∅, assume the Neumann boundary condition. Let
μk(ε) be the Neumann eigenvalues of Mε for Δ̃ := Δ+ ∂2

y . Then

μk(ε) = μk +O(ε2), ∀k ≥ 0.

1 In the notation of [29], this is the∞ Bakry–Émery Ricci curvature.
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2.2 Maximum Principle and Gradient Estimates

One of the classical methods for obtaining eigenvalue estimates is via gradient esti-
mates, which was first used by Li-Yau [31]. The papers [1, 4, 28, 40, 45–48] appear
to be the most influential. These estimates, which are often quite complicated and
tricky, are based on the following maximum principle.

Let M be a compact Riemannian manifold. Let u be a smooth function on M .
Assume that

H = 1

2
|∇u|2 + F (u),

where F is a smooth function of one variable, and let x0 be an interior point ofM at
which H reaches its maximum. Then at x0

0 ≥ |∇2u|2 + ∇u∇(Δu)+ Ric(∇u,∇u)+ F ′(u)Δu+ F ′′(u)|∇u|2.
The above inequality is useful for obtaining lower bounds on the first eigenvalue

of a Laplace or Schrödinger operator; see [38]. This together with the eigenvalue
convergence under one-dimensional collapse in Theorem 1 would indicate that sim-
ilar estimates could be obtained for M using Mε. However, there are two major
problems with this naive approach:

1. Mε need not be convex, even ifM is. As we know, ifM is convex, the maximum
of H must be reached in the interior of M . In general, we do not have such a
property for Mε.

2. The natural Ricci curvature attached to the problem is Ricφ , not the Ricci curvature
of Mε, which is essentially Ric.

Nonetheless, carefully estimating the eigenfunctions and their derivatives onMε, we
proved the following maximum principle for Bakry–Émery manifolds. For a smooth
function u on Mε, we define the following function on M

ψ(x) := u(x, 0), x ∈ M.

Theorem 2 (Maximum Principle (L.-R.)) Assume that (x0, 0) is the maximum point
of H on M × {0} ⊂ Mε. Then

o(1) ≥ |∇2ψ |2 + ∇ψ∇(Δφu)+ Ricφ(∇ψ ,∇ψ)+ F ′(ψ)Δφu+ F ′′(ψ)|∇ψ |2

as ε → 0, where o(1) depends on a certain weighted Hölder norm of u (see [33,
Theorem 5] for details). In particular, if u is an eigenfunction of unit L2 norm, then
o(1) → 0 as ε→ 0.

It therefore follows from this maximum principle that one may apply all the proofs
of gradient estimates directly to Bakry–Émery geometry which we summarize as
follows.
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Bakry–Émery Gradient Estimate Principle. There is a one-one correspondence
between the gradient estimate on a Riemannian manifold and on a Bakry–Émery
manifold. More precisely, the eigenvalue estimate on the Bakry–Émery manifold
(M , g,φ) is equivalent to that on the Riemannian manifold (Mε, g+dy2) for ε small
enough.

Remark 1 It is known that the Bakry–Émery Laplacian is unitarily equivalent the
Schrödinger operator

Δ+ 1

2
Δφ + 1

4
|∇φ|2,

(see [18, 19, 39]). Using this observation, we are able to prove several eigenvalue
inequalities in the Bakry–Émery setting virtually effortlessly, as long as the analo-
gous results have been obtained in the Riemannian case. However, to obtain results
involving gradient estimates, the equivalent estimates for the eigenfunctions are also
required; these were demonstrated in [33].

Remark 2 Similar estimates can also be obtained by taking the warped product
with the unit ball [9], the advantage of that treatment being to avoid the boundary
estimates. However, further work is necessary in that case to eliminate the extra
eigenvalues which are created in that process.

2.3 Lower Bounds for the First Eigenvalue

Using the maximum principle and Theorem 1, we are able to provide the Bakry–
Émery version of the first eigenvalue estimates. Throughout this subsection, let
(M , g,φ) be a compact n-dimensional Bakry–Émery manifold either without bound-
ary or with convex boundary, in which case we assume the Neumann boundary
condition. We first consider the case in which the (Bakry–Émery) Ricci curvature
has a nonpositive lower bound.

Theorem 3 Assume Ricφ ≥ −(n − 1)k for some k ≥ 0. Then the first (positive)
eigenvalue of the Bakry–Émery Laplacian μ1 satisfies

μ1 ≥ π2

d2
exp (− cn

√
kd2),

where d is the diameter of M with respect to g, and cn is a constant depending only
on n.

In the Riemannian case (φ ≡ 0), the result is due to Yang [44] following a similar
idea of Zhong and Yang [48].

Proof Let f be the first eigenfunction and assume without loss of generality

max f = 1;

min f = −β
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for some 0 < β ≤ 1. The following gradient estimate was demonstrated in [44,
Lemma 2],

|∇f |
√

1− f 2
≤ √μ1 + 1

2
max(

√
n− 1,

√
2)

√
(n− 1)k

√
1− f 2 (2)

for the Riemannian case. By our principle, the same estimate is true in the Bakry–
Émery case. As a result, we have

μ1 ≥ π2

16
· max(n− 1, 2)(n− 1)k

(exp (1/2 max(
√
n− 1,

√
2)

√
(n− 1)kd2)− 1)2

(3)

which is obtained by integrating (2) over the geodesic connecting the maximum and
minimum points of f .

Define the normalized eigenfunction

ϕ := f − (1− β)/2

(1+ β)/2

so that max ϕ = 1 and min ϕ = −1. Similarly, the following gradient estimate in
[44, Lemma 5],

|∇ϕ|2 ≤ μ1 + (n− 1)k + μ1ξ (ϕ),

is also true in the Bakry–Émery case, where μ1 + (n − 1)k + μ1ξ (ϕ) satisfies an
ordinary differential equation in [44, Eq. (40)]. Consequently, we have

μ1 ≥ π2

d2
· 1

1+ (n− 1)k/μ1
. (4)

Combining the above inequality with (3) proves the theorem; for further details we
refer to [44]. �

When the (Bakry–Émery) Ricci curvature has a positive lower bound, we ob-
tain a result of Futaki-Sano [22] by our maximum principle and the corresponding
Riemannian case proven by Ling [32].

Theorem 4 Assume that Ricφ ≥ (n− 1)k for some positive constant k > 0. Then
the first (positive) eigenvalue of the Bakry–Émery Laplacian satisfies

μ1 ≥ π2

d2
+ 3

8
(n− 1)k, for n = 2;

μ1 ≥ π2

d2
+ 31

100
(n− 1)k, for n > 2,

where d is the diameter of the manifold.
A slightly stronger estimate was shown byAndrews and Ni [2] for convex domains

in a Bakry–Émery manifold.
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Theorem 5 (Andrews-Ni) Assume that for the Bakry–Émery manifold (M , g,φ) the
associated curvature Ricφ ≥ (n − 1)k > 0. Then for any convex domain Ω , the
first positive eigenvalue of the Bakry–Émery Laplacian with Neumann boundary
condition satisfies

μ1 ≥ π2

d2
+ (n− 1)k

2
,

where d is the diameter of Ω .

2.4 Lower Bounds of Higher Eigenvalues

We will also demonstrate a lower bound for all the eigenvalues which holds whenever
the manifold satisfies an appropriate Sobolev inequality (S) as in Sect. 3 below.

Theorem 6 LetM be a compact manifold without boundary, on which the Sobolev
inequality (S) holds. Then the kth eigenvalue of the Bakry–Émery Laplacian satisfies
the lower bound

λ
ν
2
k ≥ c(ν) kV −1

φ C
ν
2

1

where Vφ is the weighted volume of M and c(ν) > 0 is a uniform constant that only
depends on ν and C1 is as in Lemma 2. The same inequality holds when ∂M �= ∅
for the positive Neumann eigenvalues.

Remark 3 We note that in the case ∂M �= ∅, if the Sobolev inequality (S) holds for
all u|∂M = 0 with constantC2, then the kth Dirichlet eigenvalue of the Bakry–Émery
Laplacian satisfies the same inequality with constant C2.

Assuming the Sobolev inequalities onMε, then the result follows from Cheng-Li
[12] and Theorem 1. This however, would entail a uniform Sobolev constant for
all the Mε. Instead, we shall prove this result using the Bakry–Émery heat kernel
estimates which we will present in the following sections.

2.5 Upper Bounds

In this section we provide some recent upper bound estimates for eigenvalues of
Bakry–Émery manifolds. We first recall that in the case of a Riemannian manifold,
Cheng proved the following (see [38, Theorem III.2])

Theorem 7 (Cheng) Let M be a compact Riemannian manifold without boundary
or with Neumann boundary condition. Let d be the diameter of M . Then for j ≥ 1,

1. If Ric ≥ 0, then μj ≤ 8n(n+ 4)j 2/d2;
2. If Ric ≥ n− 1, then μj ≤ 4nj 2/d2;
3. If Ric ≥ −(n− 1)k for k ≥ 0, then μj ≤ 1

4k + 8n(n+ 4)j 2/d2
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Using [9], the above inequalities are true under slightly stronger assumptions in
the Bakry–Émery case.

Theorem 8 LetM be a compact Bakry–Émery manifold without boundary or with
Neumann boundary condition. Let d be the diameter of M . Let ε > 0. If

Ricφ − ε∇φ ⊗∇φ ≥ −(n− 1)k, for k ≥ 0,

then
μj ≤ C(n, ε)(k + j 2/d2), ∀j ∈ N,

where C(n, ε) is a constant depending on n and ε.
Using this result we are able to prove the following which is essentially due to

[18, 19, 39].

Theorem 9 Assume that Ricφ − ε∇φ ⊗∇φ ≥ 0. Then we have

μj ≤ C(n, ε)μ1.

Proof By Theorem 3, we have

π2

d2
≤ μ1.

The result therefore follows from Theorem 8. �

Recently, Funano and Shioya proved [21] the following stronger and somewhat
surprising result.

Theorem 10 (Funano-Shioya) Let (M , g,φ) be a compact Bakry–Émery manifold
with nonnegative Bakry–Émery Ricci curvature. Then there exists a positive constant
Cj which depends only on j (and not even on the dimension!) and in particular is
independent of (M , g,φ) such that

μj ≤ Cjμ1.

Moreover, this result also holds if the ∂M �= ∅ is C2 under the Neumann boundary
condition.

Using an example, they showed that the nonnegativity of curvature is a necessary
condition. The proof relies on a geometric theory of concentration of metric measure
spaces due to Gromov [25].

Hassannezhad demonstrated upper bounds for the eigenvalues without curvature
assumptions [27].

Theorem 11 (Hassannezhad) There exist constants An and Bn depending only on
n such that for every n-dimensional compact Bakry–Émery manifold (M , g,φ) with
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|∇φ| ≤ σ for some σ ≥ 0, and for every j ∈ N we have

μj ≤ An max{σ 2, 1}
(
Vφ([g])

V (M , g)

)2/n

+ Bn
(

j

V (M , g)

)2/n

.

Above V (M , g) denotes the volume of M with respect to g, and V ([g]) denotes the
min-conformal volume,

V ([g]) = inf{V (M , g0), such that g0 ∈ [g], and Ric(g0) ≥ −(n− 1)}.
This theorem was proven by first demonstrating an analogous estimate for the

Schrödinger operator

Δ+ 1

2
Δφ + 1

4
|∇φ|2,

which is unitarily equivalent to the Bakry–Émery Laplace operator; see [39, p. 28].
The proof of the following theorem is based on constructing a family of test

functions supported on a suitable family of balls and is known as a Buser type upper
bound, since this idea goes back to Buser [6], and has also been used by Cheng [11]
as well as Li and Yau [30].

Theorem 12 (Hassannezhad) There are positive constantsAn andBn which depend
only on the dimensionn such that for every compact Bakry–Émery manifold (M , g,φ)
with Ricφ ≥ −k2(n− 1) and |∇φ| ≤ σ , for some constants k, σ ≥ 0, such that for
every j ∈ N we have

μj ≤ Anmax{σ 2, 1}k2 + Bn
(

j

Vφ(M)

)2/n

,

where

Vφ(M) :=
∫

M

e−φdVg

is the weighted volume of M .

3 Sobolev Inequalities

A classical way to obtain lower bounds on the eigenvalues of the Laplacian on a
compact set is via the trace of the heat kernel as in [16]. Cheng and Li demonstrated
in [12] that one can also find such lower bounds with respect to the Sobolev constant
since a Sobolev inequality always holds in the compact case. Their method also
ultimately relies on demonstrating upper bounds for the heat trace as in [16].

Definition 1 We say that the Bakry–Émery manifold (Mn, g,φ) satisfies the prop-
erty (S), if there exist constants ν = ν(n) > 2, α = α(n), and Co depending only on
M such that for all u ∈ H1(M)

(∫

M

|u| 2ν
ν−2 e−φ

) ν−2
ν

≤ Co V −
2
ν

φ

∫

M

( |∇u|2 + α|u|2 ) e−φ (S)



Eigenvalue Estimates on Bakry–Émery Manifolds 53

where Vφ denotes the weighted volume of M .
A global Sobolev inequality as above is known to hold on compact Riemannian

manifolds. In a recent article, the first two authors found sufficient conditions for
a local Sobolev inequality to hold on a weighted manifold [10]. The local Sobolev
inequality points to the geometric features upon which Co would depend in the
case of a weighted manifold. In particular, the authors showed that a volume form
comparison assumption is sufficient to ensure a local Sobolev inequality. For any
point x ∈ M we denote the Riemannian volume form in geodesic coordinates at
x by

dv(expx (rξ )) = J (x, r , ξ ) dr dξ

for r > 0 and ξ any unit tangent vector at x. Then the φ-volume form in geodesic
coordinates is given by

Jφ(x, r , ξ ) = e−φJ (x, r , ξ ).

If y = expx (rξ ) is a point that does not belong to the cut-locus of x, then

Δr(x, y) = J ′(x, r , ξ )

J (x, r , ξ )
and Δφr(x, y) = J ′φ(x, r , ξ )

Jφ(x, r , ξ )

where r(x, y) = d(x, y), and the derivatives are taken in the radial direction. The
first equality gives Bishop’s volume comparison theorem under the assumption of a
uniform Laplacian upper bound. On weighted manifolds, the second equality pro-
vides us with weighted volume comparison results whenever we have a uniform
Bakry–Émery Laplacian upper bound.

Definition 2 We say that the Bakry Émery manifold (Mn, g,φ) satisfies the property
VR , if there exists a positive and nondecreasing functionA(R) and a uniform constant
a (independent of R) such that for all x ∈ Bxo (R) and 0 < r1 < r2 < R

Jφ(x, r2, ξ )

Jφ(x, r1, ξ )
≤

(
r2

r1

)a
eA(R). (VR)

The above inequality is assumed for all points expx (riξ ) that do not belong to the
cut locus of x.

We denote by Bx(r) the geodesic ball of radius r at x and by Vφ(x, r) its weighted
volume. The following result was proven in [10].

Lemma 1 Let (Mn, g,φ) be a Bakry–Émery manifold that satisfies the property VR
for all x ∈ Bxo (R). Then for any x ∈ Bxo (R), 0 < r < R and u ∈ C∞0 (Bx(r)) there
exist constants ν = ν(n) > 2, C1(n, a) and C2(n) such that

(∫

Bx (r)
|u| 2ν

ν−2 e−φ
) ν−2

ν

≤ C1
eC2A(R) r2

Vφ(x, r)
2
ν

∫

Bx (r)
( |∇u|2 + r−2|u|2 ) e−φ. (5)

Previously, similar local Sobolev inequalities were proven in the case of a uniform
upper bound onΔφr . AssumptionVR , however, only requires that the integral ofΔφr
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on a geodesic ball be bounded and is thus more general. We refer the interested reader
to [10] for specific conditions on Ricφ and φ that would guarantee such a uniform
upper bound. On a compact manifold they all certainly hold. An interesting question
we intend to investigate in future work is to determine the optimal Co and α of (S).
We would also like to remark that in the case φ ≡ 0 one can use the existence of a
local Sobolev inequality (5) to find lower bounds for the Neumann eigenvalues of the
Laplacian over a geodesic ball. In [7] such lower estimates were also obtained for the
Bochner Laplacian on forms. It would also be interesting to consider the analogous
problem on weighted manifolds.

The Sobolev inequality (S) allows us to prove an L2 gradient estimate which
together with the heat kernel estimates will be sufficient to prove the eigenvalue
lower bounds.

Lemma 2 Suppose that (S) holds on M . Then for all u ∈ H 1(M) that satisfy∫
M

u = 0

∫

M

|∇u|2 e−φ ≥ C1

(∫

M

u2 e−φ
) 2+ν

ν
(∫

M

|u| e−φ
)− 4

ν

for a uniform constant C1 = λ1
Co (λ1+α) V

2
ν

φ , where λ1 is the first nonzero eigenvalue
of M .

Proof The Sobolev inequality (S) implies

∫

M

|∇u|2 ≥ C−1
o V

2
ν

φ

(∫

M

|u| 2ν
ν−2 e−φ

) ν−2
ν

− α
∫

M

|u|2 e−φ. (6)

Moreover, whenever
∫
M

u = 0, the definition of λ1 gives

∫

M

u2 e−φ ≥ 1

λ1

∫

M

|∇u|2 e−φ.

Substituting the above inequality to the right side of (6) and solving for
∫
M
|∇u|2 we

get

∫

M

|∇u|2 e−φ ≥ λ1

Co (λ1 + α)
V

2
ν

φ

(∫

M

|u| 2ν
ν−2 e−φ

) ν−2
ν

. (7)

By writing u2 = |u|4/(ν+2)|u|2ν/(ν+2) and applying the Hölder inequality with p =
(ν + 2)/4 and q = p/(p − 1) = (ν + 2)/(ν − 2) we get the estimate

(∫

M

u2 e−φ
) 2+ν

ν

≤
(∫

M

|u| e−φ
) 4

ν
(∫

M

|u| 2ν
ν−2 e−φ

) ν−2
ν

.

The lemma follows by solving the above inequality for the second term in the right
side and substituting into (7). �
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