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Abstract Marine debris is commonly observed everywhere in the oceans. Litter 
enters the seas from both land-based sources, from ships and other installations 
at sea, from point and diffuse sources, and can travel long distances before being 
stranded. Plastics typically constitute the most important part of marine litter some-
times accounting for up to 100 % of floating litter. On beaches, most studies have 
demonstrated densities in the 1 item m−2 range except for very high concentra-
tions because of local conditions, after typhoons or flooding events. Floating marine 
debris ranges from 0 to beyond 600 items km−2. On the sea bed, the abundance of 
plastic debris is very dependent on location, with densities ranging from 0 to >7700 
items km−2, mainly in coastal areas. Recent studies have demonstrated that pollution 
of microplastics, particles <5 mm, has spread at the surface of oceans, in the water 
column and in sediments, even in the deep sea. Concentrations at the water surface 
ranged from thousands to hundred thousands of particles km−2. Fluxes vary widely 
with factors such as proximity of urban activities, shore and coastal uses, wind and 
ocean currents. These enable the presence of accumulation areas in oceanic conver-
gence zones and on the seafloor, notably in coastal canyons. Temporal trends are not 
clear with evidences for increases, decreases or without changes, depending on loca-
tions and environmental conditions. In terms of distribution and quantities, proper 
global estimations based on standardized approaches are still needed before consid-
ering efficient management and reduction measures.
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2.1  Introduction

Anthropogenic litter on the sea surface, beaches and seafloor has significantly 
increased over recent decades. Initially described in the marine environment 
in the 1960s, marine litter is nowadays commonly observed across all oceans 
(Ryan 2015). Together with its breakdown products, meso-particles (5–2.5 cm) 
and micro-particles (<5 mm), they have become more numerous and floating lit-
ter items can be transported over long distances by prevailing winds and currents 
(Barnes et al. 2009).

Humans generate considerable amounts of waste and global quantities are con-
tinuously increasing, although waste production varies between countries. Plastic, 
the main component of litter, has become ubiquitous and forms sometimes up to 
95 % of the waste that accumulates on shorelines, the sea surface and the seafloor. 
Plastic bags, fishing equipment, food and beverage containers are the most com-
mon items and constitute more than 80 % of litter stranded on beaches (Topçu 
et al. 2013; Thiel et al. 2013). A large part of these materials decomposes only 
slowly or not at all. This phenomenon can also be observed on the seafloor where 
90 % of litter caught in benthic trawls is plastic (Galil et al. 1995; Galgani et al. 
1995, 2000; Ramirez-Llodra et al. 2013).

Even with standardized monitoring approaches, the abundance and distribution 
of anthropogenic litter show considerable spatial variability. Strandline surveys 
and cleanings as well as regular surveys at sea are now starting to be organized in 
many countries in order to generate information about temporal and spatial dis-
tribution of marine litter (Hidalgo-Ruz and Thiel 2015). Accumulation rates vary 
widely and are influenced by many factors such as the presence of large cities, 
shore use, hydrodynamics and maritime activities. As a general pattern, accumu-
lation rates appear to be lower in the southern than in the northern hemisphere. 
Enclosed seas such as the Mediterranean or Black Sea may harbor some of the 
highest densities of marine litter on the seafloor, reaching more than 100,000 items 
km−2 (Galgani et al. 2000). In surface waters, the problem of plastic fragments 
has increased in the last few decades. From the first reports in 1972 (Wong et al. 
1974), the quantities of microparticles in European seas have grown in comparison 
to data from 2000 (Thompson et al. 2004). Recent data suggest that quantities of 
microparticles appear to have stabilized in the North Atlantic Ocean over the last 
decade (Law et al. 2010). Little is known about trends in accumulation of debris 
in the deep sea. Debris densities on the deep seafloor decreased in some areas, 
such as in the Bay of Tokyo from 1996 to 2003 and in the Gulf of Lion between 
1994 and 2009 (Kuriyama et al. 2003; Galgani et al. 2011a, b). By contrast, in 
some areas around Greece, the abundance of debris in deep waters has substan-
tially increased over a period of eight years (Stefatos et al. 1999; Koutsodendris 
et al. 2008) and on the deep Arctic seafloor of the HAUSGARTEN observatory 
over aperiod of ten years (Bergmann and Klages 2012). Interpretation of tempo-
ral trends is complicated by seasonal changes in the flow rate of rivers, currents, 
wave action, winds etc. Decreasing trends of macroplastics (>2.5 cm) on beaches 
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of remote islands suggest that regulations to reduce dumping at sea have been 
successful to some extent (Eriksson et al. 2013). However, both the demand and 
the production of plastics reached 299 million tons in 2013 and are continuing to 
increase (PlasticsEurope 2015).

2.2  Composition

Analysis of the composition of marine litter is important as it provides vital infor-
mation on individual litter items, which, in most cases, can be traced back to their 
sources. Sources of litter can be characterised in several ways (see also Browne 
2015). One common method is to classify marine litter sources as either land-
based or ocean-based, depending on where the litter entered the sea. Some items 
can be attributed with a high level of confidence to certain sources such as fish-
ing gear, sewage-related debris and tourist litter. So-called use-categories provide 
valuable information for developing reduction measures (Galgani et al. 2011a).

Land-based sources include mainly recreational use of the coast, general pub-
lic litter, industry, harbors and unprotected landfills and dumps located near the 
coast, but also sewage overflows, introduction by accidental loss and extreme 
events. Marine litter can be transported to the sea by rivers (Rech et al. 2014; Sadri 
and Thompson 2014) and other industrial discharges and run-offs or can even be 
blown into the marine environment by winds. Ocean-based sources of marine litter 
include commercial shipping, ferries and liners, both commercial and recreational 
fishing vessels, military and research fleets, pleasure boats and offshore instal-
lations such as platforms, rigs and aquaculture sites. Factors such as ocean cur-
rent patterns, climate and tides, the proximity to urban, industrial and recreational 
areas, shipping lanes and fishing grounds also influence the types and amount of 
litter that are found in the open ocean or along beaches.

Assessments of the composition of litter in different marine regions show that 
“plastics”, which include all petroleum-based synthetic materials, make up the 
largest proportion of overall litter pollution (e.g. Pham et al. 2014). Packaging, 
fishing nets and pieces thereof, as well as small pieces of unidentifiable plastic or 
polystyrene account for the majority of the litter items recorded in this category 
(Galgani et al. 2013). Some of this can take hundreds of years to break down or 
may never truly degrade (Barnes et al. 2009).

Whether or not visual observations from ships and airplanes, observations 
using underwater vehicles, manned or not, acoustics and finally trawling will 
provide the necessary detail to characterise litter and eventually define sources is 
not always clear. Previous notions that at a global scale most of the marine lit-
ter is from land-based sources rather than from ships, were confirmed (Galgani 
et al. 2011b). Marine litter found on beaches consists primarily of plastics (bottles, 
bags, caps/lids, etc.), aluminium (cans, pull tabs) and glass (bottles) and mainly 
originates from shoreline recreational activities but is also transported by the sea 
by currents. In some cases, specific activities account for local litter densities well 
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above the global average (Pham et al. 2014). For example, marine litter densities 
on beaches can be increased by up to 40 % in summer because of high tourist 
numbers (Galgani et al. 2013). In some tourist areas, more than 75 % of the annual 
waste is generated in summer, when tourists produce on average 10–15 % more 
waste than the inhabitants; although not all of this waste enters the marine envi-
ronment (Galgani et al. 2011b).

In some areas such as the North Sea or the Baltic Sea, the large diversity of 
items and the composition of the litter recorded indicate that shipping, fisheries 
and offshore installations are the main sources of litter found on beaches (Fleet 
et al. 2009). In some cases, litter can clearly be attributed to shipping, sometimes 
accounting for up to 95 % of all litter items in a given region, a large proportion of 
which originates from fishing activities often coming in the form of derelict nets 
(Van Franeker et al. 2011). In the North Sea, this percentage has been temporally 
stable (Galgani et al. 2011a) but litter may be supplemented by coastal recreational 
activities and riverine input (Lechner et al. 2014; Morritt et al. 2014). Studies 
along the US west coast, specifically off the coast of the southern California Bight 
(Moore and Allen 2000; Watters et al. 2010; Keller et al. 2010; Schlining et al. 
2013) have shown that ocean-based sources are the major contributors to marine 
debris in the eastern North Pacific with, for example, fishing gear being the most 
abundant debris off Oregon (June 1990). Investigations in coastal waters and 
beaches around the northern South China Sea in 2009 and 2010 indicated that plas-
tics (45 %) and Styrofoam (23 %) accounted for more than 90 % of floating debris 
and 95 % of beached debris. The sources were primarily land-based and mostly 
attributed to coastal recreational activities (Lee et al. 2013). In the Mediterranean, 
reports from Greece classify land-based (69 % of the litter) and vessel-based 
(26 %) waste as the two predominant sources of litter (Koutsodendris et al. 2008).

2.3  Distribution

2.3.1  Beaches

Marine debris is commonly found at the sea surface or washed up on shorelines, 
and much of the work on marine litter has focussed on coastal areas because of 
the presence of sources, ease of access/assessment and for aesthetic reasons 
(McGranahan et al. 2007). Marine litter stranded on beaches is found along all 
coasts and has become a permanent reason for concern. Beach-litter data are 
derived from various approaches based on measurements of quantities or fluxes, 
considering various litter categories, and sampling on transects of variable width 
and length parallel or perpendicular to the shore. This makes it difficult to draw 
a quantitative global picture of beach litter distribution. In general, methods that 
are used for estimating amounts of marine debris on beaches are considered 
cheap and fairly reliable, but it is not clear how it relates to litter at sea, floating 
or not. Moreover, in some coastal habitats, litter may be of terrestrial origin and 
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may never actually enter the sea. Most surveys are done with a focus on clean-
ing, thereby missing proper classification of litter items. When studies are not 
dedicated to specific items, litter is categorized by the type of material, function 
or both. Studies record the numbers, some the mass of litter and some do both 
(Galgani et al. 2013). Evaluations of beach litter reflect the long-term balance 
between inputs, land-based sources or stranding, and outputs from export, burial, 
degradation and cleanups. Then, measures of stocks may reflect the presence and 
amounts of debris. Factors influencing densities such as cleanups, storm events, 
rain fall, tides, hydrological changes may alter counts, evaluations of fluxes and, 
even if surveys can track changes in the composition of beach litter, they may 
not be sensitive enough to monitor changes in the abundance (Ryan et al. 2009). 
This problem can be circumvented by recording the rate, at which litter accumu-
lates on beaches through regular surveys that are performed weekly, monthly or 
annually after an initial cleanup (Ryan et al. 2009). This is actually the most com-
mon approach, revealing long-term patterns and cycles in accumulation, requir-
ing nonetheless much effort to do surveys. However, past studies may have vastly 
underestimated the quantity of available debris because sampling was too infre-
quent (Smith and Markic 2013).

It is unfeasible to review the hundreds of papers on beach macro-debris, which 
often apply different approaches and lack sufficient detail (see also Hidalgo-Ruz 
and Thiel 2015). Most studies range from a local (Lee et al. 2013) to a regional 
scale (Bravo et al. 2009) and cover a broad temporal range. Information on 
sources, composition, amounts, usages, baseline data and environmental sig-
nificance are often also gathered (Cordeiro and Costa 2010; Debrot et al. 2013; 
Rosevelt et al. 2013) as such data are easier collected. Most studies record all litter 
items encountered between the sea and the highest strandline on the upper shore. 
Sites are often chosen because of their ecological relevance, accessibility and par-
ticular anthropogenic activities and sources. Factors influencing the accumulation 
of debris in coastal areas include the shape of the beach, location and the nature of 
debris (Turra et al. 2014). In addition, most sediment-surface counts do not take 
buried litter into account and clearly underestimate abundance, which biases com-
position studies. However, raking of beach sediments for litter may disturb the res-
ident fauna. Apparently, a good correlation exists between accumulated litter and 
the amount arriving, indicating regular inputs and processes. Recent experiments 
with drift models in Japan indicate good correlation of flux with litter abundances 
on beaches (Yoon et al. 2010; Kataoka et al. 2013).

It appears that glass and hard plastics are accumulating more easily on rocky 
shores (Moore et al. 2001a). Litter often strands on beaches that lack strong preva-
lent winds, which may blow them offshore (Galgani et al. 2000; Costa et al. 2011). 
Abundance or composition of litter often varies even among different parts of an 
individual beach (Claereboudt 2004) with higher amounts found frequently at 
high-tide or storm-level lines (Oigman-Pszczol and Creed 2007). Because of this 
and beach topography, patchiness is a common distribution pattern on beaches, 
especially for smaller and lighter items that are more easily dispersed or buried 
(Debrot et al. 1999).
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It is very difficult to compare litter concentrations of various coastal areas (with 
different population densities, hydrographic and geological conditions) obtained from 
various studies with different methodologies, especially when the sizes of debris items 
that are taken into account are also different. Nevertheless, common patterns indi-
cate the prevalence of plastics, greater loads close to urban areas and touristic regions 
(Barnes et al. 2009). Data expressed as items m−2 or larger areas are more convenient 
for comparisons. Most studies have reported densities in the m−2 range (Table 2.1). 
High concentrations of up to 37,000 items per 50-m beach line (78.3 items m−2) were 
recorded in Bootless Bay, Papua New Guinea (Smith 2012) because of specific local 
conditions, following typhoons (3,227 items m−2; Liu et al. 2013) or flooding events 
(5,058 items m−2; Topçu et al. 2013). Data expressed as quantities per linear distance 
are more difficult to compare because the results depend on beach size/width. Plastic 
accounts for a large part of litter on beaches from many areas with up to 68 % in 
California (Rosevelt et al. 2013), 77 % in the south east of Taiwan (Liu et al. 2013), 

Table 2.1  Comparison of mean litter densities from recent data worldwide (non-exhaustive list)

Ranges of values are given in parentheses

Region Density (m−2) Density (linear m−1) Plastic (%) References

SW Black Sea 0.88 
(0.008–5.06)

24 (1.7–197) 91 Topçu et al. (2013)

Costa do Dende, 
Brazil

n.d. 9.1 75 Santos et al. (2009)

Cassina, Brazil n.d. 5.3–10.7 48 Tourinho and 
Fillmann (2011)

Gulf of Aqaba 2 (1–6) n.d. n.d. Al-Najjar and 
Al-Shiyabet (2011)

Monterey, USA 1 ± 2.1 n.d. 68 Rosevelt et al. 
(2013)

North Atlantic, 
USA

n.d. 0.10 (0.2) n.d. Ribic et al. (2010)

North Atlantic, 
USA

n.d. 0.42 (0.1) n.d. Ribic et al. (2010)

North Atlantic, 
USA

n.d. 0.08 (0.2) n.d. Ribic et al. (2010)

South Caribbean, 
Bonaire

1.4 (max. 115) n.d. n.d. Debrot et al. (2013)

Bootless Bay, 
Papua New Guinea

15.3 (1.2–78.3) n.d. 89 Smith (2012)

Nakdong, South 
Korea

0.97–1.03 n.d. n.d. Lee et al. (2013)

Kaosiung, Taiwan 0.9 (max. 3,227) n.d. 77 Liu et al. (2013)

Tasmania 0.016–2.03 n.d. n.d. Slavin et al. (2012)

Midway, North 
Pacific

n.d. 0.60–3.52 91 Ribic et al. (2012a)

Chile n.d. 0.01–0.25 n.d. Thiel et al. (2013)

Heard Island, 
Antarctica

n.d. 0–0.132 n.d. Eriksson et al. 
(2013)
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86 % in Chile (Thiel et al. 2013), and 91 % in the southern Black Sea (Topçu et al. 
2013). However, other types of litter or specific types of plastic may also be important 
in some areas, in terms of type (Styrofoam, crafted wood) or use (fishing gear).

For trends in the amount of litter washed ashore and/or deposited on coastlines, 
beach litter monitoring schemes provide the most comprehensive data on indi-
vidual litter items. Large data sets have already been held by institutions (Ribic 
et al. 2010) or NGO’s such as the Ocean Conservancy through their International 
Coastal Cleanup scheme for 25 years, or the EU OSPAR marine litter monitoring 
program, which started over 10 years ago and covers 78 beaches (Schultz et al. 
2013). The lack of large-scale trends in the OSPAR-regions is probably due to 
small-scale heterogeneity of near-shore currents, which evoke small-scale hetero-
geneity in deposition patterns on beaches (Schulz et al. 2013).

Ribic et al. (2010, 2012b) derived several nonlinear models to describe the 
development of pollution of coastal areas with marine litter. There were long-term 
changes in indicator debris on the Pacific Coast of the U.S. and Hawaii over the 
nine-year period of the study. Ocean-based indicator debris loads declined substan-
tially while at the same time land-based indicator items had also declined, except for 
the North Pacific coast region where no change was observed. Variation in debris 
loads was associated with land- and ocean-based processes with higher land-based 
debris loads being related to larger local populations. Overall and at the local scale, 
drivers included fishing activities and oceanic current systems for ocean-based 
debris and human population density and land use status for land-based debris.

At local scales, concentrations of specific items may be largely driven by spe-
cific activities or new sources. For example, 41 % of the total debris from beaches 
in California was of Styrofoam origin, with no other explanation than an increased 
use of packaging, which degrades very easily (Ribic et al. 2012b). Small-sized items 
may form an important fraction of debris on beaches. For example, up to 75 % of 
total debris from the southern Black Sea was smaller than 10 cm (Topçu et al. 2013). 
Small-sized particles include fragments smaller than 2.5 cm (Galgani et al. 2011b), 
the so-called meso-particles or mesodebris, which is, unlike macrodebris, often bur-
ied and not always targeted by cleanups. Stranding fluxes are then difficult to evalu-
ate and a decrease in the amount of litter at sea will only slow the rate of stranding. 
Little attention has been paid to sampling design and statistical power even though 
optimal sampling strategies have been proposed (Ryan et al. 2009). Densities of 
small-sized debris were found to be very high in some areas where, in addition to 
floating debris, they can pose a direct threat to wildlife, especially to birds that are 
known to ingest plastic (Kühn et al. 2015; Lusher 2015).

2.3.2  Floating Marine Debris

Floating debris constitutes the fraction of debris in the marine environment, which 
is transported by wind and currents at the sea surface, and is thus directly related 
to the pathways of litter at sea. Floating litter items can be transported by the 
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currents until they sink to the seafloor, be deposited on the shore or degrade over 
time (Andrady 2015). While the occurrence of anthropogenic litter items floating 
in the world oceans was reported already decades ago (Venrick et al. 1972; Morris 
1980), the existence of accumulation zones of Floating Marine Debris (FMD) in 
oceanic gyres has only recently gained worldwide attention (Moore et al. 2001b).

Synthetic polymers constitute the major part of floating marine debris, the fate 
of which depends on their physico-chemical properties and the environmental con-
ditions. As high-production volume polymers such as polyethylene and polypro-
pylene have lower densities than seawater, they float until they are washed ashore 
or sink because their density changes due to biofouling and leaching of additives. 
While being subject to biological, photic or chemical degradation processes, 
they can be physically degraded gradually into smaller fragments until becom-
ing microplastics, which is often defined as the size fraction <5 mm. This fraction 
requires different monitoring techniques, such as surface net trawls, and is there-
fore treated elsewhere (Löder and Gerdts 2015; Lusher 2015). Floating macrolitter 
is typically monitored by visual observation from ships, though results from net 
trawls are also being reported. The spatial coverage and thus the representative-
ness of the quantification depends on the methodology applied. Also, observation 
conditions, such as sea state, elevation of the observation position and ship speed 
affect results.

Existing datasets indicate substantial spatial variability and persistent gradients 
in floating marine litter concentrations (e.g. Erikssen et al. 2014). The variations 
can be attributed to differential release pathways or specific litter accumulation 
areas. Because of inconsistent reporting schemes used in scientific publications, 
data sets are often not comparable. Typically, item numbers are reported per sur-
face area. Mass-based concentrations can then only be derived through estimates. 
Differences are found between studies in size ranges, concentration units and item 
categories used. As the number of pieces increases drastically with decreasing size 
of the observed litter items, the reporting of corresponding size classes is of high 
importance for comparing debris abundances among studies. Apart from the dif-
ficulty in reporting sizes correctly from shipboard observations, many publications 
use different size-range categories.

In addition to research activities, the quantification of floating litter is part of 
the assessment schemes of national and international monitoring frameworks. 
Monitoring of the quantity, composition and pathways of floating litter can con-
tribute to an efficient management of waste streams and the protection of the 
marine environment. The European Marine Strategy Framework Directive, 
national programs, the Regional Sea Conventions and international agreements 
such as the United Nations Environmental Programme consider the monitoring 
of floating litter (Chen 2015). Visual assessment approaches include the use of 
research vessels, marine mammal surveys, commercial shipping carriers and dedi-
cated litter observation surveys. Aerial surveys are often conducted for larger items 
(Pichel et al. 2012). However, available data for floating litter are currently dif-
ficult to compare because existing observation schemes (NOAA, UNEP, Hellenic 
Marine Environment Protection Association—HELMEPA, etc.) apply different 
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approaches, observation schemes and category lists (Galgani et al. 2011a, b). 
Some approaches involve the reporting by volunteers (HELMEPA, Arthur et al. 
2011). While the main principle of monitoring floating debris through visual 
observation is very simple there are not many data sets, which allow a comparison 
of debris abundance. Some data sets are accessible as peer-reviewed publications 
or through reports from international organizations. However, the regions covered 
are very limited and monitoring occurs only sporadically.

Globally, the reported densities of floating marine debris pieces >2 cm ranges 
from 0 to beyond 600 items km−2. Ship-based visual surveys in the North Sea 
German Bight yielded 32 items km−2 on average (Thiel et al. 2011). The inte-
gration over different surveys and seasons resulted in litter densities of 25 items 
km−2 at the White Bank area, 28 items km−2 around the island of Helgoland and 
39 items km−2 in the East Frisian part of the German Bight. More than 70 % of 
the observed items were identified as plastics. From 2002 to 2006, aerial marine 
mammals surveys were used for the quantification of floating litter. Results were 
reported as sightings km−1, ranging from 0 to beyond 1 item km−1. Concentrations 
in coastal waters appeared to be lower than in offshore regions (Herr 2009).

In the northern Mediterranean Sea, in an offshore area of ca. 100 × 200 km 
between Marseille and Nice and also in the Corsican Channel, floating debris 
was quantified during marine mammals surveys. A maximum of 55 pieces km−2 
was recorded with strong spatial variability (Gerigny et al. 2011). In the Ligurian 
Sea, data were collected through ship-based visual observation in 1997 and 2000. 
Between 15 and 25 objects and between 1.5 and 3.0 objects km−2 were found in 
1997 and 2000, respectively, without specification of the size ranges used (Aliani 
and Molcard 2003). Voluntary surveys through HELMEPA made from commer-
cial shipping vessels in the Mediterranean Sea revealed a concentration of 2 items 
km−2 with higher concentrations in coastal areas but also longer transects without 
any litter encounters. While plastic material accounted for the highest proportion 
(83 %) of litter, textiles, paper, metal and wood comprised 17 % (UNEP 2009). No 
size ranges were given, but the described conditions during observation indicate 
that only larger items were considered. A large-scale survey in the Mediterranean 
Sea found 78 % of the observed objects larger than 2 cm to be of anthropogenic 
origin (Suaria and Aliani 2014). Plastic constituted 96 % of these. While high-
est densities (>52 items km−2) were reported from the Adriatic Sea and Algerian 
basin, lowest densities (<6.3 items km−2) were recorded in the central Thyrrenian 
and Sicilian Sea. Densities in other areas ranged between 11 and 31 items km−2 
(Suaria and Aliani 2014).

Visual aerial surveys were conducted in the Black Sea, flying slow at low alti-
tude above the Kerch Strait, the southern part of the Azov Sea and on the coastal 
Russian Black Sea. Concentrations in the Kerch Strait and the Azov Sea were 
comparable at 66 items km−2 and twice as high as those from the Black Sea (BSC 
2007).

In a visual observation study in the north Pacific, ca. 56 km off Japan, 
Shiomoto and Kameda (2005) found densities of 0.1–0.8 items km−2 at a 
size >5 cm.
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A study at the east coast of Japan utilized surface trawl nets for sampling 
on transects of 10 min at 2 knots with a net opening of 50 cm and a mesh size 
of 333 µm. The size of plastic pieces captured ranged from 1 to 280 mm. 
Pieces >11 mm accounted only for 8 % and particles of 1–3 mm accounted for 
62 % at total average litter mass of 3600 g km−2 (Yamashita and Tanimura 2007).

Visual observation studies in southern Chilean fjords revealed 1–250 items 
km−2 >2 cm during seven oceanographic cruises from 2002 to 2005 (Hinojosa 
and Thiel 2009; Hinojosa et al. 2011; Thiel et al. 2013). Typically, densities 
in the northern areas ranged from 10 to 50 items km−2. Matsumara and Nasu 
(1997) reported 0.5 items km−2 in the waters northwest of Hawaii, close to the 
so-called Pacific garbage patch, compared with 9 pieces km−2 in southeast Asia. 
Debris densities in the waters off British Columbia (Canada), comprised 0.9–
2.3 pieces km−2 with a mean of 1.5 items km−2 (Williams et al. 2011), but no 
size range was given. In the Gulf of Mexico, Lecke-Mitchell and Mullin (1997) 
recorded 1.0–2.4 pieces km−2 during cetacean survey flights (Table 2.2).

FMD density in the northern South China Sea was quantified by net trawls 
at 4.9 (0.3–16.9) items km−2, with Styrofoam (23 %) and other plastics (45 %) 
dominating (Zhou et al. 2011). More than 99 % of FMD was small- (<2.5 cm) 
or medium-sized (2.5–10 cm). Large items (10–100 cm) were detected by visual 

Table 2.2  Comparison of mean litter densities on the sea surface from worldwide data (non-
exhaustive list)

Region Density (item km−2) 
(max)

Size range (cm) Plastic (%) References

North Sea 25–38 >2 70 Thiel et al. (2011)

Belgian coast 0.7 n.d. 95 Van Cauwenberghe 
et al. (2013)

Ligurian coast 1.5–25 n.d. n.d. Aliani and Molcard 
(2003)

Mediterranean Sea 10.9 → 52 (194.6) >2 95.6 Suaria and Aliani 
(2014)

North Sea 2 (1–6) n.d. n.d. Herr (2009)

Kerch Strait/Black 
Sea

66 n.d. n.d. BSC (2007)

Chile 10–50 (250) >2 >80 Hinojosa and Thiel 
(2009)

West of Hawaii 0.5 0.08 (0.2) n.d. Matsumura and 
Nasu (1997)

British Columbia 1.48 (2.3) n.d. 92 Williams et al. 
(2011)

South China Sea 4.9 (0.3–16.9) <2.5–10 68 Zhou et al. (2011)

North Pacific 459 2 95 Titmus and 
Hyrenbach (2011)

Strait of Malacca 579 >1–2 98.8 Ryan (2013)

Bay of Bengal 8.8 >1–2 95.5 Ryan (2013)

Southern Ocean 0.032–6 >1 96 Ryan et al. (2014)
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observation resulting in mean concentrations of 0.025 items km−2 (Zhou et al. 
2011). In the northeast Indian Ocean, Ryan (2013) reported a large difference 
in the concentration of marine debris between the Strait of Malacca (578 ± 219 
items km−2) and the Bengal Sea (8.8 ± 1.4 items km−2). By contrast, Uneputty 
and Evans (1997) reported concentrations >375 items km−2 in Amon Bay, east 
Indonesia.

In 2009, a 4,400-km cruise from the American west coast to the North Pacific 
subtropical gyre and back to the coast provided data during 74 h of observation 
corresponding to a transect length of 1,343 km (Titmus and Hyrenbach 2011). A 
single observer at 10 m above the sea level recorded a total of 3,868 pieces, of 
which 90 % were fragments and 96 % of these were plastic. Eighty-one percent 
of the items had a size of 2–10 cm, 14 % of 10–30 cm and 5 % of >30 cm. The 
density of debris increased towards the centre of the gyre where smaller, proba-
bly older and weathered pieces were found. The authors note that visual observa-
tions are constrained by the inability to detect smaller fragments (<20 mm) and to 
retrieve the observed items for further analysis and concluded that visual observa-
tions can be easily conducted from ships of opportunity, which provide a useful 
and inexpensive tool for monitoring debris accumulation and distribution at sea.

A specific case of floating marine litter is abandoned or lost fishing gear, such 
as nets or longlines. These items cause significant harm when abandoned, as they 
continue to catch marine wildlife (Kühn et al. 2015). In 2003, a major effort, 
including the identification of possible accumulation areas by satellite imaging and 
ocean current modelling, was made to select appropriate areas for aerial surveys 
in search for abandoned fishing gear in the Gulf of Alaska (Pichel et al. 2012). 
Employing a wide range of methodologies including visual video, infrared video 
and Lidar imaging during 14 days of observation, 102 items of anthropogenic ori-
gin were sighted.

Modelling of oceanographic currents can help to identify pathways and accu-
mulation areas, thus enabling source attribution (Martinez et al. 2009; Maximenko 
et al. 2012). A modelling approach in the North Sea identified seasonal signals in 
litter reaching the coasts (Neumann et al. 2014). The concentrations and distribu-
tion patterns of floating marine debris can be expected to change according to cli-
matic changes (Howell et al. 2012). Lebreton et al. (2012) modelled the global 
oceanic currents in view of the cycling and distribution of introduced debris. Input 
scenarios were based on population density and major shipping lanes. A 30-year 
projection showed the accumulation of floating debris in ocean gyres and enclosed 
seas. These studies have the potential to investigate pathways and to guide mon-
itoring to enable effective implementation of management measures and the 
assessment of their efficiency. Modelling is also used to predict the pathways and 
impacts of large quantities of debris introduced through natural events such as tsu-
namis and related run-offs (Lebreton and Borrero 2013). Single events may drasti-
cally increase local debris concentrations. A study combining available worldwide 
data with a modelling approach estimated the weight of the global plastic pollution 
to comprise 75 % macroplastic (>200 mm), 11 % mesoplastic (4.75–200 mm), and 
11 and 3 % in two microplastic size classes, respectively (Erikssen et al. 2014). 
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The data suggest that a minimum of 233,400 tons of larger plastic items are adrift 
in the world’s oceans compared to 35,540 tons of microplastics.

Floating marine litter can be considered as ubiquitous, occurring even in the most 
remote areas of the planet such as the Arctic (Bergmann and Klages 2012). Floating 
litter items are also present in the remote Antarctic Ocean, although densities are low 
and cannot be expressed as concentrations (Barnes et al. 2010). Some 42 % of the 
observed 120 objects south of 63°S consisted of plastic. Debris items were observed 
even as far south as 73°S. However, the small number of surveys and low total object 
counts do not allow for trend assessments. In the African part of the Southern Ocean, 
52 items (>1 cm) were recorded during a 10,467 km transect survey, yielding densi-
ties ranging from 0.03 to 6 items km−2 (Ryan et al. 2014).

The diversity and non-comparability of monitoring approaches used cur-
rently hinders a comparison of absolute pollution indicators and spatial or tem-
poral assessments. The development and widespread implementation of protocols 
for monitoring, such as the ongoing efforts for the implementation of the MSFD 
(Galgani et al. 2013), could improve the quality of data gathered. Established pro-
tocols should be accompanied by training schemes, quality assurance and control 
procedures. The implementation of standardized protocols in the monitoring of 
riverine litter may enable source allocation.

Unfortunately, data acquired by NGOs or authorities are often not published 
in peer-reviewed journals and are therefore not readily accessible. A joint inter-
national database would facilitate the collection of such data and improve stand-
ardization and comparability. The collection of data, e.g. on-site through tablet 
computer applications, the standardization of reporting formats and the streamlin-
ing of data flows would facilitate data treatment. More easily accessible data sets 
can then help to prioritize activities and to monitor the success of litter reduction 
measures.

While monitoring by human observers is a simple and straightforward 
approach, in particular for large-scale and frequent surveys, automatized 
approaches are promising. Developing technologies may lead to the use of digital 
imaging and image recognition techniques for the autonomous large-scale moni-
toring of litter (Hanke and Piha 2011).

The implementation of international frameworks such as the EU MSFD, 
Regional Action Plans against Marine Litter and the agreements of the Rio +20 
Conference (United Nations 2012) require improvement of data availability and 
quality and can therefore be expected to provide the basis for coordinated assess-
ments in the future.

2.3.3  Seafloor

Change in the nature, presence or abundance of anthropogenic debris on the 
seafloor is much less widely investigated than sea surface patterns. Studies 
typically focus on continental shelves, as sampling difficulties, inaccessibility 
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and costs rarely allow for research in deeper waters, which accounts for almost 
half of the planet’s surface. Deep-sea surveys are important because ca. 50 % 
of plastic litter items sink to the seafloor and even low-density polymers 
such as polyethylene and propylene may lose buoyancy under the weight of 
fouling (Engler 2012). While acoustic approaches do not enable discrimina-
tion of different types of debris on the seafloor except for metals and may not 
record smaller objects, trawling was considered the most adequate method 
when taking into account mesh sizes and net opening width (Galgani et al. 
2011b) (Fig. 2.1). However, nets were primarily designed to collect specific 
biota leading to sample bias and underestimation of benthic litter quanti-
ties. Therefore, pole trawling has been suggested as the most consistent sur-
vey method for the assessment of benthic marine litter (Galgani and Andral 
1998), although rather destructive to seafloor habitats because of the scraping 
of sediments and inhabiting biota. However, trawls cannot be used in rocky 
habitats or on hard substrates and they do not allow for a precise localization 
of individual items. Samples from trawls are likely to underestimate debris 
abundance and may miss some types of debris altogether such as monofila-
ments because of variability in the sampling efficiency for different debris 
items (Watters et al. 2010). Fibres from the trawl nets themselves (Murray and 
Cowie 2011) may contaminate samples. Finally, it does not enable the assess-
ment of impacts of litter on habitats when it contributes its own impacts on the 
seafloor, which are more severe for the benthic fauna and habitats than the lit-
ter items caught by trawl.

Fig. 2.1  Litter collected by trawling in the Mediterranean Sea, France. 10 min experiment 
(credit Barbaroux and Galgani, IFREMER)
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Strategies to investigate seabed debris are similar to those for evaluating the 
abundance and composition of benthic species. Mass is less often determined 
for marine debris, because very large items may increase variability in measures. 
Although floating debris, such as that found in the highly publicized “gyres” and/
or convergence zones, is currently the focus of attention, debris accumulating on 
the seafloor has a high potential to impact benthic habitats and organisms. Fourty-
three studies were published between 2000 and 2013. Until recently, only few of 
them covered greater geographic areas or depths. The majority of these studies uti-
lized a bottom trawl for sampling as part of fish stock assessments. More recently, 
remotely operated vehicles and towed camera systems were increasingly used for 
deep-sea surveys (e.g. Pham et al. 2014, see Fig. 2.2).

The geographic distribution of debris on the ocean floor is strongly influenced 
by hydrodynamics, geomorphology and human factors (Galgani et al. 1996; Pham 
et al. 2014). Moreover, there are notable temporal variations, particularly seasonal, 
with tendencies for accumulation and concentration of marine litter in particular 

Fig. 2.2  Litter on the deep seafloor. a Plastic bags and bottles dumped 20 km off the French 
Mediterranean coast at 1,000 m in close vicinity to burrow holes (F. Galgani, IFREMER); b 
food package entrapped at 1,058 m in deep-water coral colony; c rope at 1,041 m depth, both 
from Darwin Mounds (courtesy of V. Huvenne, National Oceanography Centre Southampton 
(NOCS)); d waste disposal bin or a vaccum cleaner with prawns on the seafloor off Mauritania 
at 1,312 m depth (courtesy of D. Jones, SERPENT Project, NOCS); e plastic carrier bag found 
at ~2,500 m depth at the HAUSGARTEN observatory (Arctic) colonised by hormathiid anemo-
nes and surrounded by dead tests of irregular sea urchins (courtesy of M. Bergmann, AWI)
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geographic areas (Galgani et al. 1995). Interpretation of trends is, however, dif-
ficult because the ageing of plastics at depth is unknown and the accumulation of 
debris on the seafloor certainly began before scientific investigations started in the 
1990s.

In estuaries, large rivers are responsible for substantial input of debris to 
the seabed (Lechner et al. 2014; Rech et al. 2014). Rivers can also transport 
waste far offshore because of their high flow rate and strong currents (Galgani 
et al. 1995, 1996, 2000). Alternatively, small rivers and estuaries can also act 
as a sink for litter, when weak currents facilitate deposition on shores and 
banks (Galgani et al. 2000). In addition, litter may accumulate upstream of 
salinity fronts being transported to the sea later, when river flow velocity is 
increasing.

Plastics were found on the seabed of all seas and oceans and the presence of 
large amounts has been reported (Galil et al. 1995; Galgani et al. 2000; Barnes 
et al. 2009) but remains uncommon in remote areas such as Antarctica, par-
ticularly in deep waters (Barnes et al. 2009). So far, sampling has been limited 
to some dozens of trawls and van Cauwenberghe et al. (2013) and Fischer et al. 
(2015) found pieces of microplastics in deep-sea sediments from the south-
ern Atlantic and Kuril-Kamchatka-trench area, respectively. Large-scale evalu-
ations of seabed debris distribution and densities are more common in other 
regions (Galgani et al. 2000). However, these studies mostly involve extrapola-
tions from small-scale investigations mainly in coastal areas such as bays, estuar-
ies and sounds. The abundance of plastic debris shows strong spatial variations, 
with mean densities ranging from 0 to more than 7,700 items km−2 (Table 2.3). 
Mediterranean sites show the greatest densities owing to the combination of a 
densely populated coastline, shipping in coastal waters and negligible tidal flow. 
Moreover, the Mediterranean is a closed basin with limited water exchange 
through the Strait of Gibraltar. Generally, litter densities are higher in coastal seas 
(Lee et al. 2006) because of large-scale residual ocean circulation patterns but also 
because of extensive riverine input (Wei et al. 2012). However, debris that reaches 
the seabed may have been transported over considerable distances before sinking 
to the seafloor, e.g. as a consequence of heavy fouling. Indeed, some accumula-
tion zones were identified far from coasts (Galgani and Lecornu 2004; Bergmann 
and Klages 2012; Woodall et al. 2014, 2015). Accordingly, even in the shallow 
subtidal abundance and distribution patterns can differ substantially from the adja-
cent strandlines with plastics being the most important fraction at sea. In general, 
bottom debris tends to become trapped in areas of low circulation where sediments 
are accumulating (Galgani et al. 1996; Schlining et al. 2013; Pham et al. 2014). 
The consequence is an accumulation of plastic debris in bays, including lagoons 
of coral reefs, rather than in the open sea. These are the locations where large 
amounts of derelict fishing gear accumulate and cause damage to shallow-water 
biota and habitats (Dameron et al. 2007; Kühn et al. 2015).

Continental shelves are considered as accumulation zones for marine debris (Lee 
et al. 2006), however, often with lower concentrations of debris than adjacent can-
yons because debris is not retained but washed offshore by currents associated with 
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offshore winds and river plumes. Only few studies have assessed debris below 500 m 
depth (June 1990; Galil et al. 1995; Galgani et al. 1996, 2000; Galgani and Lecornu 
2004; Keller et al. 2010; Miyake et al. 2011; Mordecai et al. 2011; Bergmann and 
Klages 2012; Wei et al. 2012; Pham et al. 2013, 2014; Ramirez-Llodra et al. 2013, 
Schlining et al. 2013; Fischer et al. 2015; Vieira et al. 2014); Galgani et al. (2000) 
observed trends in deep-sea pollution over time (1992–98) off the European coast 
with an extremely variable distribution and debris accumulating in submarine can-
yons. Miyake et al. (2011) recorded debris down to 7,216 m depth in video surveys 
from the Ryukyu Trench. Litter was primarily composed of plastic and accumulated 
in deep-sea trenches and depressions. Accordingly, several authors (Galgani et al. 
1996; Mordecai et al. 2011; Pham et al. 2014) concluded that submarine canyons 
may act as a conduit for the transport of marine debris into the deep sea. Recent 
studies conducted in coastal deep-sea areas along California and the Gulf of Mexico 
(Watters et al. 2010; Schlining et al. 2013; Wei et al. 2012) confirmed this pattern. 
Also, an analysis of the composition and abundance of man-made, benthic marine 
debris collected in bottom trawl surveys at 1,347 randomly-selected stations along 
the US west coast in 2007 and 2008 indicated that densities increased significantly 
with depth, ranging from 30 items km−2 in shallow (55–183 m) to 128 items km−2 
in the deepest waters surveyed (550–1,280 m) (Keller et al. 2010). Higher densities 
at the bottom were also found in particular areas such as those around rocks, wrecks 
as well as in depressions or channels (Galgani et al. 1996). Deep submarine exten-
sions of coastal rivers influence the distribution of seabed debris. In some areas, local 
water movements transport debris away from the coast to accumulate in zones of 
high sedimentation. In the case of the Mississippi river, for example, the front can-
yon was a focal point for litter, probably due to bottom topography and currents (Wei 
et al. 2012). Under these conditions, the distal deltas of rivers can fan out in deeper 
waters, creating areas of high accumulation. Many authors (Galgani et al. 1996; 
Moore and Allen 2000; Wei et al. 2012) show that circulation may be influenced 
by strong currents occurring in the upper part of canyons, which decrease rapidly 
in deeper areas resulting in an increased confinement with a litter distribution that 
seems to be temporally more stable as a consequence.

A great variety of human activities such as fishing, urban development and tour-
ism contribute to the distribution pattern of debris on the seabed. Debris from the 
fishing industry is prevalent in fishing areas (Watters et al. 2010; Schlining et al. 
2013; Vieira et al. 2014). This type of material may account for a high proportion 
of debris. In the eastern China Sea (Lee et al. 2006), for example, 72 % of debris 
is made of plastic, mainly pots, nets, Octopus jars, and fishing lines. Investigations 
using submersibles at depths beyond the continental shelf and canyons have 
revealed substantial quantities of debris in remote areas. Galgani and Lecornu 
(2004) counted 0.2–0.9 pieces of plastic per linear kilometre at the HAUSGARTEN 
observatory (2500 m) in the Fram Strait (Arctic). Fifteen items, of which 13 were 
plastic, were observed during one dive between 5,330 and 5,552 m (‘Molloy 
Hole’), which reflects the local funnel-like topography and downwards directed 
eddies acting as particle trap. Bergmann and Klages (2012) reported doubled litter 
quantities between 2002 and 2011 in the HAUSGARTEN area. The accumulation 
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trends reported in that study raise particular concern as degradation rates of most 
polymers in deep-sea environments are assumed to be even slower due to the 
absence of light, low temperature and oxygen concentrations.

2.3.4  Microplastics

Similar to large debris, there is growing concern about the implications of the 
diverse microparticles in the marine environment, which are particles ≤1 μm 
(Galgani et al. 2012; Thompson et al. 2004). Most microparticles are tiny plas-
tic fragments known as microplastics, although other types of microparticles 
exist, such as fine fly ash particles emitted with flue gases from combustion, rub-
ber from tyre wear and tear as well as glass and metal particles, all of which con-
stantly enter the marine environment. The abundance and global distribution of 
microplastics in the oceans appeared to have steadily increased over past decades 
(Cole et al. 2011; Claessens et al. 2011; Thompson 2015), while a decrease in the 
average size of plastic litter has been observed over this time period (Barnes et al. 
2009). In recent years, the existence of microplastics and their potential impact on 
wildlife and human health has received increased public and scientific attention 
(Betts 2008; Galloway 2015; Lusher 2015).

Microplastics comprise a very heterogeneous assemblage of particles that vary 
in size, shape, color, chemical composition, density, and other characteristics. 
They can be subdivided by usage and source as (i) ‘primary’ microplastics, pro-
duced either for indirect use as precursors (nurdles or virgin resin pellets) for the 
production of polymer consumer products, or for direct use, such as in cosmetics, 
scrubs and abrasives and (ii) ‘secondary’ microplastics, resulting from the break-
down of larger plastic material into smaller fragments. Fragmentation is caused by 
a combination of mechanical forces, e.g. waves and/or photochemical processes 
triggered by sunlight. Some ‘degradable’ plastics are even designed to fragment 
quickly into small particles, however, the resulting material does not necessarily 
biodegrade (Roy et al. 2011). The various sources of microplastics and the path-
ways into the oceans are summarized in detail by Browne (2015).

In order to understand the environmental impacts of microplastics, many stud-
ies have quantified their abundance in the marine environment. One of the major 
difficulties in making large-scale spatial and temporal comparisons between exist-
ing studies is the wide variety of methods that have been applied to isolate, iden-
tify and quantify marine microplastics (Hidalgo-Ruz et al. 2012). For meaningful 
comparisons to be made and robust monitoring studies to be conducted, it is there-
fore important to define common methodological criteria for estimating abun-
dance, distribution and composition of microplastics (Löder and Gerdts 2015).

Microplastics normally float at the sea surface because they are less dense than sea-
water. However, the buoyancy and specific gravity of plastics may change during their 
time at sea due to weathering and biofouling, which results in their distribution across 
the sea surface, the deeper water column, the seabed, beaches and sea ice (Colton and 
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Knapp 1974; Barnes et al. 2009; Law et al. 2010; Browne et al. 2010; Claessens et al. 
2011; Collignon et al. 2012; Obbard et al. 2014). Until now, only a limited number 
of global surveys have been conducted on the quantity and distribution of microplas-
tics in the oceans (Lusher 2015). Most surveys focused on specific oceanic regions 
and habitats, such as coastal areas, regional seas, gyres or the poles (Thompson et al. 
2004, Collignon et al. 2012; Rios and Moore 2007). Concentrations of microplas-
tics at sea vary from thousands to hundreds of thousands of particles km−2 and latest 
reports suggest that microplastic pollution has spread throughout the world’s oceans 
from the water column (Lattin et al. 2010; Cole et al. 2011) to sediments even of the 
deep sea (Moore et al. 2001b; Law et al. 2010; Claessens et al. 2011; Cole et al. 2011; 
Collignon et al. 2012; Erikssen et al. 2014; Reisser et al. 2013; van Cauwenberghe 
et al. 2013; Woodall et al. 2014; Fischer et al. 2015). Recently, microplastics were also 
recorded from Arctic sea ice in densities two orders of magnitude higher than those 
previously reported from highly contaminated surface waters, such as those of the 
Pacific gyre (Obbard et al. 2014). This has important implications considering the pro-
jected acceleration in sea ice melting due to global climate change and concomitant 
release of microplastics to the Arctic marine ecosystem.

Time-series data on the composition and abundance of microplastics are sparse. 
However, available evidence on long-term trends suggests various patterns in 
microplastic concentrations. A decade ago, Thompson et al. (2004) demonstrated 
the broad spatial extent and accumulation of this type of contamination. They 
found plastic particles in sediments from U.K. beaches and archived among the 
plankton in samples dating back to the 1960s with a significant increase in abun-
dance over time. More recent evidence indicated that microplastic concentrations 
in the North Pacific subtropical gyre have increased by two orders of magnitude in 
the past four decades (Goldstein et al. 2013). However, no change in microplastic 
concentration was observed at the surface of the North Atlantic gyre for a period 
of 30 years (Law et al. 2010).

Less is known about the composition of microplastics in the oceans. Evidence 
suggests a temporal decrease in the average size of plastic litter (Barnes et al. 
2009; Erikssen et al. 2014). Studies based on the stomach contents of shearwa-
ters (Puffinus tenuirostris) in the Bering Sea also indicated a decrease in ‘indus-
trial’ primary pellets and an increase in ‘user’ plastic between the 1970s and the 
late 1990s (Vlietstra and Parga 2002) but constant levels over the last decade (Van 
Franeker et al. 2011). Similarly, long-term data from The Netherlands since the 
1980s show a decrease of industrial plastics and an increase in user plastics, with 
shipping and fisheries being the main sources (van Franeker 2012).

2.4  Summary and Conclusions

Marine debris is now commonly observed everywhere in the oceans and avail-
able information suggests that marine debris is highly dynamic in space and 
time. However, we need standardized methodologies for quantification and 
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characterisation of marine litter to be able to achieve global estimates. Litter enters 
the sea from land-based sources, from ships and other installations at sea, from point 
and diffuse sources, and can travel long distances before being deposited. While 
plastic typically constitutes a lower proportion of the discarded waste, it represents 
the most important part of marine litter with sometimes up to 95 % of the waste, and 
has become ubiquitous even in remote polar regions. However, trends are not clear 
with quantities having slightly decreased over the last 20 years in some locations, 
notably in the western Mediterranean. At the same time no change in litter quantities 
are evident in the convergence zones from oceanic basins or beaches. In other loca-
tions, however, including the deep seafloor, densities have increased.

Accumulation rates vary widely with factors such as proximity of urban activi-
ties, shore and coastal uses, wind and ocean currents. These enable the accumulation 
of litter in specific areas at the sea surface, on beaches or on the seafloor. Before an 
accurate estimate of global debris quantities can be made, basic information is still 
needed on sources, inputs, degradation processes and fluxes. For this and because 
there is considerable variation in methodology between regions and investigators, 
more valuable and comparable data have to be obtained from standardized sampling 
programs. In terms of distribution and quantities, important questions concerning 
the balance between the increase of waste and plastic productions, reduction meas-
ures and the quantities found at the surface and on shorelines remain unanswered. 
Potentially, important accumulation areas with high densities of debris are still to 
be discovered. It is now clear that managers and policy makers will need to bet-
ter understand the distribution of litter in order to assess and evaluate precisely the 
effectiveness of measures implemented to reduce marine litter pollution.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution 
Noncommercial License, which permits any noncommercial use, distribution, and reproduction 
in any medium, provided the original author(s) and source are credited.
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