
Chapter 2
One-Dimensional Frequency Distributions

2.1 One-Dimensional Distribution

The collection of information about class boundaries and relative or absolute
frequencies constitutes the frequency distribution. For a single variable (e.g., height)
we have a one-dimensional frequency distribution. If more than one variable is
measured for each statistical unit (e.g., height and weight), we may define a two-
dimensional frequency distribution. We use the notation X to denote the observed
variable.

2.1.1 Frequency Distributions for Discrete Data

Suppose the variable X can take on k distinct values xj; j D 1; ::; k. Note that
we index these distinct values or classes using the subscript j. We will denote n
observations on the random variable by xi; i D 1; : : : ; n. The context will usually
make it clear whether we are referring to the k distinct values or the n observations.
We will assume that n > k.

Frequency Table

For a discrete variable X, the frequency table displays the distribution of frequencies
over the given categories. From now on we will speak of discrete variables to
encompass categorical variables and discrete metric variables with few possible
observations. Note that the sum of the frequencies across the various categories
equals the number of observations, i.e.,

Pk
jD1 xj D n (Table 2.1).
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Table 2.1 A frequency table Values Absolute frequencies Relative frequencies

x1 h .x1/ f .x1/

x2 h .x2/ f .x2/
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Total n 1
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2.1.2 Graphical Presentation

Several graph types exist for displaying frequency distributions of discrete data.

Bar Graph

In a bar graph, frequencies are represented by the height of bars vertically drawn
over the categories depicted on the horizontal axis. Since the categories do not
represent intervals as in the case of grouped continuous data, the width of the bars
cannot be interpreted meaningfully. Consequently, the bars are drawn with equal
width (Fig. 2.1).

Stacked Bar Chart

Sometimes one wants to compare relative frequencies in different samples (different
samples may arise at different points in time or from different populations). This can
be done by drawing one bar graph for each sample. An alternative is the stacked bar
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Fig. 2.2 Example of a
stacked bar chart
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Fig. 2.3 Example of a pie
chart x1 
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chart. It consists of as many segmented bars as there are samples. Each segment of
a bar chart represents a relative frequency (Fig. 2.2).

Pie Chart

In pie charts, frequencies are displayed as segments of a pie. The area of each
segment is proportional to the corresponding relative frequency (Fig. 2.3).

Pictograph

In a pictograph, the size or number of pictorial symbols is proportional to observed
frequencies (Fig. 2.4).

Statistical Map

Different relative frequencies in different areas are visualized by different colors,
shadings, or patterns (Fig. 2.5).
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Fig. 2.4 Two examples of pictographs
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Fig. 2.5 Example of a statistical map



2.1 One-Dimensional Distribution 25

Table 2.2 Frequency table
on employed population in
Germany

j Status xj h
�
xj

�
.10000s/ f

�
xj

�

1 Wage-earners 14568 0:389

2 Salaried 16808 0:449

3 Civil servants 2511 0:067

4 Self employed 3037 0:081

5 Family employed 522 0:014

Total 37466 1:000
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Fig. 2.6 Pie chart and bar graph on employed population in Germany

Explained: Job Proportions in Germany

In April 1991, Germany’s employed population was surveyed with respect to type of
employment. Table 2.2 summarizes the data. Visualizing the proportions helps us to
analyze the data. In Fig. 2.6 you can clearly see the high proportion of wage-earners
and salaried in contrast to the other categories.

Enhanced: Evolution of Household Sizes

The evolution of household sizes over the twentieth century can be studied using
data compiled at various points in time.

Statistical elements: households
Statistical variable: size of household (metric, discrete)

Table 2.3 contains relative frequencies measured in percent for various years.
The structural shift in the pattern of household sizes towards the end of the

century becomes visible if we draw bar charts for each year. The graphics in Fig. 2.7
display a clear shift towards smaller families during the twentieth century.
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Table 2.3 Frequency table
on the evolution of household
sizes over the twentieth
century

Household size X 1900 1925 1950 1990

1 7.1 6.7 19.4 35.0

2 14.7 17.7 25.3 30.2

3 17.0 22.5 23.0 16.7

4 16.8 19.7 16.2 12.8

� 5 44.4 33.3 16.1 5.3

Total 100 100 100 100
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Fig. 2.7 Histograms on the evolution of household sizes over the twentieth century

2.2 Frequency Distribution for Continuous Data

Given a sample x1; x2; : : : ; xn on a continuous variable X, we may group the data
into k classes with class boundaries denoted by xl

1; xu
1 D xl

2; xu
2 D xl

3; : : : ; xu
k and

class widths �xj D xu
j � xl

j .j D 1; : : : ; k/. Note that the upper boundary for a given
class is equal to the lower boundary for the succeeding class.

An observation xi belongs to class j, if xl
j � xi < xu

j . Since within a category,
there are a range of possible values we will focus on the midpoint and denote it
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Table 2.4 Structure of a
frequency table Class # Classes

Absolute
frequencies

Relative
frequencies

1 xl
1 � X < xu

1 h .x1/ f .x1/

2 xl
2 � X < xu

2 h .x2/ f .x2/
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:

:
:
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:
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j � X < xu

j h
�
xj

�
f
�
xj

�

:
:
:

:
:
:

:
:
:

:
:
:

k xl
k � X < xu

k h .xk/ f .xk/

Total n 1

by xj. (Contrast this with the discrete data case where xj denotes the value for the
category.) Once again the subscript j corresponds to categories xj ; j D 1; : : : ; k and
the subscript i denotes observations xi ; i D 1; : : : ; n.

Frequency Table

A frequency table for continuous data provides the distribution of frequencies over
the given classes. The structure of a frequency table is shown in Table 2.4.

Graphical Presentation

Histogram

In a histogram, continuous data that have been grouped into categories are repre-
sented by rectangles. Class boundaries are marked on the horizontal axis. As they
can be of varying width, we cannot simply represent frequencies by the heights
of bars as we did for bar graphs. Rather, we must correct for class widths. The
rectangles are constructed so that their areas are equal to the corresponding absolute
or relative frequencies.

Oh �xj
� � �xj D h

�
xj
�

xu
j � xl

j

� �xu
j � xl

j

� D h
�
xj
�

or

Of �xj
� � �xj D f

�
xj
�

xu
j � xl

j

� �xu
j � xl

j

� D f
�
xj
�
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Fig. 2.8 Example of histogram—716 observations on monthly income (Euro)

If the class widths are identical, then the frequencies are also proportional to
the heights of the rectangles. The rectangles are drawn contiguous to each other,
reflecting common class boundaries xu

j D xl
jC1 (Fig. 2.8).

Stem-and-Leaf Display

In stem-and-leaf displays (plots), the data are not summarized using geometric
objects. Rather, the actual values are arranged to give a rough picture of the data
structure. The principle is similar to that of the bar chart, but values belonging to a
particular class are recorded horizontally rather than being represented by vertical
bars. Classes are set up by splitting the numerical observations into two parts: One
or more of the leading digits make up the stem, the remaining (trailing) digits are
called leaves. All observations with the same leading digits, i.e., the same stem,
belong to one class. Typically, class frequencies are proportional to the lengths of
the lines.

The principle is best understood by applying it to real data. Consider the
following collection of observations :

32; 32; 35; 36; 40; 44; 47; 48; 53; 57; 57; 100; 105

The “stems” consist of the following “leading digits”: 3; 4; 5; 10. They corre-
spond to the number of times that “ten” divides into the observation. The resulting
stem-and-leaf diagram is displayed below.

Frequency Stems Leaves
4 3 2256

4 4 0478

3 5 377

2 10 05



2.2 Frequency Distribution for Continuous Data 29

Displaying data graphically (or, as is the case here, quasi-graphically), we can
extract more relevant information than we could otherwise. (The human brain is
comparatively efficient at storing and comparing visual patterns.)

The above stem-and-leaf plot appears quite simple. We can refine this by splitting
the lines belonging to one stem in two, the first one for the trailing digits in the
range one to four, the second for five to nine. We label the first group with l for
low, the second with h for high. In the resulting stem-and-leaf plot the data appears
approximately evenly distributed:

Frequency Stems Leaves
2 3 l 22

2 3 h 56

2 4 l 04

2 4 h 78

1 5 l 3

2 5 h 77

1 10 l 0

1 10 h 5

Yet there is an apparent gap between stems 5 and 10. It is indeed one of the
advantages of stem-and-leaf plots that they are helpful in both giving insights into
concentration of data in specific regions and spotting extraordinary or extreme
observations. By labeling 100 and 105 as outliers we obtain a useful enhancement
to the stem-and-leaf plot:

Frequency Stems Leaves
2 3 l 22

2 3 h 56

2 4 l 04

2 4 h 78

1 5 l 3

2 5 h 77

2 Extremes: 100; 105

For an example with data conveying a richer structure of concentration and a
more detailed stem structure have a look at the following examples for grouped
continuous data.

Dotplots

Dotplots are used to graphically display small datasets. For each observation, a “dot”
(a point, a circle or any other symbol) is plotted. Some data will take on the same
values. Such ties would result in “overplotting” and thus would distort the display
of the frequencies.



30 2 One-Dimensional Frequency Distributions
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dotplot

hourly wage of males (blue) and females (red)

Fig. 2.9 Example of dotplot—student salaries in the USA

The dots are therefore spread out into the vertical dimension in a random fashion.
The y-axis thus contains uniformly spread random numbers over the Œ0; 1� interval.
Provided, the size of each symbol is sufficiently small for a given sample size, the
dots are then unlikely to overlap each other.

Example The data in Fig. 2.9 consist of 150 observations on student salaries in the
USA. In the upper part panel, we display a dot plot for all 150 observations. In the
lower part, we use color to distinguish the gender of the students. Since the random
perturbations in the vertical dimension are different for the two panels, the points
are located in slightly different positions.

Explained: Petrol Consumption of Cars

Petrol consumption of 74 cars has been measured in miles per gallon (MPG). The
measurements are displayed in a frequency table shown in Table 2.5. Using the same
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Table 2.5 Petrol
consumption of 74 cars in
miles per gallon (MPG)

X: Petrol consumption
Absolute
frequencies

Relative
frequencies

(MPG) h
�
xj

�
f
�
xj

�

12 � X < 15 8 0:108

15 � X < 18 10 0:135

18 � X < 21 20 0:270

21 � X < 24 13 0:176

24 � X < 27 12 0:162

27 � X < 30 4 0:054

30 � X < 33 3 0:041

33 � X < 36 3 0:041

36 � X < 39 0 0:000

39 � X < 42 1 0:013

Total 74 1:000
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Fig. 2.10 Histogram for petrol consumption of 74 cars in miles per gallon (MPG)

constant class width of 3 MPG, the frequency distribution is displayed in a histogram
in Fig. 2.10. As is evident from both, the frequency table and the histogram, the
largest proportion of cars lies in the category 18–21 MPG.

Explained: Net Income of German Nationals

Data

Statistical elements: German nationals, residing in private households,
minimum age 18

Statistical variable: monthly net income
sample size n 716
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Fig. 2.11 Histograms of monthly net income in Euro for different bandwidths

Histogram

In the histograms shown in Fig. 2.11, the classes are income brackets of equal width.
Reducing the common class size (and hence increasing the number of classes)
yields a more detailed picture of the income distribution. Observe how the absolute
frequencies decline as the class widths become more narrow.

Furthermore, increasing the number of classes decreases the smoothness of the
graph. Additional gaps become visible as more information about the actual data is
displayed. In choosing a class width we are striking a balance between two criteria:
the essential information about the population which might be more strikingly
conveyed in a smoother graph, and greater detail contained in a histogram with a
larger number of classes.

We can also separate histograms by gender, using a bin width of 500 Euro, as
shown in Fig. 2.12.
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Fig. 2.12 Histograms of monthly net income in Euro for males and females

Stem-and-Leaf Display

The stem-and-leaf plot provided in Table 2.6 displays all 716 income figures. It is
more detailed than the stem-and-leaf plots we have previously drawn. The stems,
specified by the first leading digit, are divided into five subclasses corresponding
to different values in the first trailing, i.e., leaf digit: The first line of each stem,
denoted by *, lists all leaves starting with 0 or 1, the second (t) those starting with
2 or 3, and so on. As the stem width is specified to be 1000, the first leaf digit
counts the hundreds. To condense exposition, each two observations belonging to
the same class (i.e., being the same leaf) are represented by just one number (leaf).
For example, six of the 716 surveyed persons earn between 2400 and 2500 Euros,
denoted by “444” in the “2 f” line.

The ampersand (&) denotes pairs of observations covering both leaves repre-
sented by one line. For example, 4 persons earn between 4200 and 4400 Euros.
Following the convention of each leaf representing two cases, there are two persons
with net earnings in the interval Œ4200; 4300/. The other two persons, symbolized by
&, would be displayed by the sequence “23,” if one leaf represented one observation.
Thus, one of the two persons belongs to the income bracket Œ4200; 4300/, the other
to the Œ4300; 4400/-bracket.

Observe, that the 17 “extreme” values are displayed separately to highlight their
distance from the other more heavily populated classes.
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Table 2.6 Stem-and-leaf plot

Frequency Stem and Leaf

2 0 * 1

21 0 t 2233333333

35 0 f 44444444555555555

47 0 s 66666666666666667777777

41 0 . 88888888888899999999

45 1 * 0000000000000000111111

38 1 t 2222222222222233333

63 1 f 4444444444455555555555555555555

45 1 s 6666666666667777777777

72 1 . 88888888888888888888888889999999999

78 2 * 00000000000000000000000000000001111111

46 2 t 22222222222222333333333

32 2 f 444555555555555

28 2 s 66666667777777

23 2 . 88888889999

28 3 * 00000000000011

10 3 t 2233

16 3 f 44555555

8 3 s 6677

5 3 . 88

12 4 * 00000&

4 4 t 2&

10 Extremes: (4400), (4500), (5000),(5500), (5600),(5900),

(6400), (6500), (7000), (15000)

Stem width: 1000

Each leaf: 2 case(s), & denotes fractional leaves

2.3 Empirical Distribution Function

Empirical distribution functions can be constructed for data that have a natural
numerical ordering. If h

�
xj
�

is the absolute frequency of observations on a discrete
variable, then the absolute frequency (or number) of observations not exceeding that
value is called the absolute cumulated frequency:

H
�
xj
� D

jX

sD1

h .xs/ ; j D 1; : : : ; k
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The relative cumulative frequency is calculated as:

F
�
xj
� D H

�
xj
�

n
D

jX

sD1

f .xs/ ; j D 1; : : : ; k

If the variable is continuous and the data are grouped into k classes, then
the above definitions apply except that we interpret H.xj/ as the frequency of
observations not exceeding the upper boundary of the j-th class.

2.3.1 Empirical Distribution Function for Discrete Data

For the relative cumulative frequency we have

F .x/ D
8
<

:

0 if x < x1Pj
sD1 f .xs/ if xj � x < xjC1 ; j D 2; : : : ; k

1 if xk � x

The graph of an empirical distribution function is a monotonically increasing step
function, the step size corresponds to the relative frequency at the “jump” points xj

(Table 2.7; Fig. 2.13).
In creating empirical distribution functions we are not losing information about

relative frequencies of observations, as we can always reverse the cumulation
process:

f
�
xj
� D F

�
xj
� � F

�
xj�1

�
; for j D 1; : : : ; k I F .x0/ D 0

Suppose xl < xu are two values that the discrete variable can take. Then the
number or frequency of observations taking on values between xl and xu can be
calculated as follows:

F .xu�1/ � F .xl/

Table 2.7 Example of
cumulative frequencies for
number of persons in a
household—data from 1990

# persons per household f
�
xj

�
F
�
xj

�

1 0:350 0:350

2 0:302 0:652

3 0:167 0:819

4 0:128 0:947

� 5 0:053 1:000
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Fig. 2.13 Distribution
function for the number of
persons in a household—data
from 1990
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2.3.2 Empirical Distribution Function for Grouped
Continuous Data

As for discrete data, the empirical distribution function for grouped continuous data
is a function of relative cumulative frequencies. But in this case, rather than using a
step function, one plots the cumulative frequencies against the upper boundaries of
each class, then joints the points with straight lines. Mathematically, the empirical
distribution function may be written as:

F .x/ D

8
ˆ̂
<

ˆ̂
:

0 if x < xl
1

Pj�1
iD1 f .xi/ C x�xl

j

xu
j �xl

j
� f
�
xj
�

if xl
j � x < xu

j ; j D 1; : : : ; k

1 if xu
k � x

The rationale for interpolating with straight lines is that one might expect the
distribution of points within classes to be approximately uniform.

An Example is provided in Table 2.8. The corresponding distribution function is
given in Fig. 2.14.

As mentioned earlier, the straight lines connecting class boundaries reflect linear
interpolations motivated by the assumption that observations are evenly distributed
within classes. We will illustrate this by drawing the variable part of the distribution

function for xl
j � x < xu

j ,
Pj�1

iD1 f .xi/ C x�xl
j

xu
j �xl

j
f .xj/, for a fixed interval (class)

h
xl

j; xu
j

�i
.

Evaluating at a lower class boundary we obtain F
�

xl
j

�
D Pj�1

iD1 f .xi/ C
xl

j�xl
j

xu
j �xl

j
f .xj/ D Pj�1

iD1 f .xi/. We can thus substitute F
�

xl
j

�
for

Pj�1
iD1 f .xi/ in the
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Table 2.8 Example—lives
of 100 light bulbs

Statistical elements Light bulbs

Statistical variable Life in hours, metric variable

sample size n 100

X: Life (hours) h
�
xj

�
f
�
xj

�
H
�
xj

�
F
�
xj

�

0 � X < 100 1 0:01 1 0:01

100 � X < 500 24 0:24 25 0:25

500 � X < 1000 45 0:45 70 0:70

1000 � X < 2000 30 0:30 100 1:00

Total 100 1:00

x

F(
x)
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0
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0

Fig. 2.14 Cumulative distribution function for lives of 100 light bulbs

formula for the distribution function and get

F .x/ D F
�
xl

j

�C x � xl
j

xu
j � xl

j

if xl
j � x < xu

j ; j D 1; : : : ; k

Figure 2.15 depicts the linear intra-class segment.

Explained: Petrol Consumption of Cars

The petrol consumption of 74 cars has been measured in miles per gallon (MPG).
The measurements are displayed in an augmented frequency table shown in
Table 2.9. The corresponding empirical distribution function is given in Fig. 2.16.

Again, the linear interpolation of lower class boundaries follows from the
assumption of an even distribution of observations within classes. Class widths
and boundaries are in turn constructed to approximate this assumption as closely as
possible. This allows us to retain as much information as possible about the shape
of the data.
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Fig. 2.15 Linear intra-class
segment for distribution
function
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Table 2.9 Augmented frequency table for petrol consumption of 74 cars measured in miles per
gallon (MPG)

X: Petrol
consumption

Absolute
frequencies

Relative
frequencies

Relative cumulative
frequencies

(MPG) h
�
xj

�
f
�
xj

�
F
�
xj

�

12 � X < 15 8 0:108 0:108

15 � X < 18 10 0:135 0:243

18 � X < 21 20 0:270 0:513

21 � X < 24 13 0:176 0:689

24 � X < 27 12 0:162 0:851

27 � X < 30 4 0:054 0:905

30 � X < 33 3 0:041 0:946

33 � X < 36 3 0:041 0:987

36 � X < 39 0 0:000 0:987

39 � X < 41 1 0:013 1:000

Total 74 1:000

Various statements can be extracted from Table 2.9, e.g.: 68.9 % of cars cannot
travel more than 24 miles per gallon.

Explained: Grades in Statistics Examination

These are the grades 20 students have achieved in a Statistics examination:

f2; 2; 4; 1; 3; 2; 5; 4; 2; 4; 3; 2; 5; 1; 3; 2; 2; 3; 5; 4g
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Fig. 2.16 Empirical
distribution function for
petrol consumption of 74 cars
measured in miles per gallon
(MPG)
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Table 2.10 Frequency table
of grades in statistics
examination

Absolute
frequency

Relative
frequency

Relative cumulative
frequency

X: Mark h
�
xj

�
f
�
xj

�
F
�
xj

�

1 2 0:10 0:10

2 7 0:35 0:45

3 4 0:20 0:65

4 4 0:20 0:85

5 3 0:15 1:00

Fig. 2.17 Relative
cumulative frequencies of
grades in statistics
examination
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Table 2.10 summarizes the information about the distribution of the given data.
The graph of the relative cumulative frequencies is depicted in Fig. 2.17. We
observe that the graph of the relative cumulative frequency (and hence the function)
is continuous from the right. Each bullet indicates the value of the distribution
function at a jump point. In the figure, the x-axis covers all real numbers within
the grade range, even though the random variable cannot take other values than
f1; 2; 3; 4; 5g. For theoretical reasons, the definition of the distribution function
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also assigns numbers (zero and one, respectively) to values outside Œ1; 5�. Various
statements can be deduced from the data summarized in the frequency table, e.g.

• 65 % of students have achieved a grade of at least 3.
• 15 % (1:00 � 0:85) of students achieved a grade of 5.

2.4 Numerical Description of One-Dimensional Frequency
Distributions

Statistics are numbers which summarize particular features of the data. Formally, a
statistic is a function of the data. They can be used to measure different features,
such as where the data are generally located (measures of location), the degree
to which they are dispersed (measures of dispersion or scale), whether they are
symmetrically distributed, the degree to which they are correlated, and so on. In the
following sections we will consider various measures of location and dispersion.
These measures can then be used to compare different datasets.

Measures of Location

In addition to summarizing where the data are located or concentrated, location
measures provide a benchmark against which individual observations can be
assessed.

Mode

The value occurring most frequently in a dataset is called the mode or the modal
value. If the variable is discrete, the mode is simply the value with the greatest
frequency. For continuous data measured with sufficient accuracy, however, most
observations are likely to be distinct, rendering the idea meaningless. However, by
grouping the data, we can determine the modal class, i.e., the class with the highest
frequency.

Mode for qualitative or discrete data is given by

arg max
xj

ff
�
xj
�g

Mode for Grouped Continuous Data The modal class is the class with the highest
class frequency. As a class interval consists of infinitely many numbers, we have
to introduce a convention according to which a single number within this class is
determined to represent the mode. The simplest convention is to use the midpoint of
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the modal class. An alternative and more technical adjustment involves selecting
a point which moves towards the neighboring cell with the higher density of
observations. It is defined as follows:

xD D xl
j C

Of �xj
� � Of �xj�1

�

2 � Of �xj
� � Of �xj�1

� � Of �xjC1

� � �xu
j � xl

j

�
;

where

xl
j,x

u
j lower/upper boundary of modal class

Of �xj
�

frequency distribution for modal class
Of �xj�1

�
frequency distribution for class preceding modal class

Of �xjC1

�
frequency distribution for class succeeding modal class

The modal class is given by: Œ500; 1000/. We can calculate the mode approx-
imated by the midpoint of the modal class which is just the arithmetic average

of the class boundaries: 0:5 �
�

xu
j C xl

j

�
D 750 h. Using the above formula

which moves the mid-point in the direction of the neighboring cell with the
higher density of observations one obtains: xD D 500 C 9�6

18�6�3
� 500 D 666 2

3

(Table 2.11).

Quantiles

Given data x1; x2; : : : ; xn; suppose we order or rank the data in increasing order to
obtain the ordered sequence x.1/; x.2/; : : : ; x.n/:.We call the elements of this sequence
the order statistics of the data. From the order statistics we can immediately read off
the third largest value, the smallest value, and so on.

Let p be a number between zero and one and think of p as a proportion of
the data. A value which divides the sequence of order statistics into the two sub-
sequences containing the first .p � n/ and the last ..1 � p/ � n/ observations is called
the p-quantile. We will denote it by xp. Equivalently, we may think of xp as a
value such that 100p % of the data lie below it and 100.1 � p/ % of the data lie
above.

Table 2.11 Example—Lives of 100 light bulbs

j X: Life (hours) h
�
xj

�
f
�
xj

� Of �xj

� � 10�4 F
�
xj

�

1 0 � X < 100 1 0:01 1 0:01

2 100 � X < 500 24 0:24 6 0:25

3 500 � X < 1000 45 0:45 9 0:70

4 1000 � X < 2000 30 0:30 3 1:00

Total 100 1:00
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Quantiles for Ungrouped Data

• If n � p is not an integer and k the smallest integer satisfying k > n � p, then we
define xp D x.k/. The quantile is thus the observation with rank k, x.k/.

• If, k D n � p is an integer, we will take xp to be the midpoint between x.k/.and
x.kC1/.

Quantiles for Grouped Data For data that are grouped in classes, we will carry out
interpolations between class boundaries to obtain a p-quantile:

xp D xl
j C

p � F
�

xl
j

�

f
�
xj
� � �xu

j � xl
j

�

Here, xl
j, xu

j and f
�
xj
�

are the lower boundary, upper boundary, and the relative
frequency of the class containing the p-th quantile. The cumulative relative fre-
quency up to and including the class preceding the quantile class is denoted by

F
�

xl
j

�
.

The quantile xp can be defined using interpolation. The principle of interpolation
for the quantity p D F.xp/ can be easily understood from Fig. 2.18.

Some special quantiles:

• deciles (tenths)—the ordered observations are divided into ten equal parts. p D
s=10; s D 1; : : : ; 9—deciles: x0:1; x0:2; : : : ; x0:9

• quintiles—the ordered observations are divided into five equal parts. p D
r=5; r D 1; 2; 3; 4—quintiles: x0:2; x0:4; x0:6; x0:8

• quartiles—the ordered observations are divided into four equal parts. p D
q=4; q D 1; 2; 3—quartiles: x0:25; x0:5; x0:75

Median (Central Value)

The value which divides the ordered observations into two equal parts is called
the median xz D x0:5. The median is much less sensitive to outlying or extreme
observations than other measures such as the mean which we study below. The
median xz corresponds to the second quartile x0:5.

Median for Ungrouped Data

• for n odd: x0:5 D x
. nC1

2 /

• for n even: x0:5 D .x.n=2/ C x.n=2C1//=2: This is simply the mid-point of the two
center-most observations.

Median for Grouped Variables

• The median for grouped data is defined as the mid-point of the class which
contains the central portion of the data.
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xp x

F(x)^

p

1

xp

f(x)^

Fig. 2.18 Quantiles of grouped data

• Formally, let xl
j and xu

j be the lower and upper boundaries of the class for which
F.xu

j�1/ D F.xl
j/ � 0:5 and F.xu

j / � 0:5. Then,

x0:5 D xl
j C 0:5 � F.xl

j/

f .xj/
� .xu

j � xl
j/

• The median can be easily determined from the graph of the distribution function
since F.x0:5/ D 0:5, see Fig. 2.19.
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x0.5 x

F(x)

0.5

1

Fig. 2.19 Median for grouped continuous data

Properties of the Median (of Numerical Variables)

• optimality

nX

iD1

jxi � x0:5j D
kX

jD1

jxj � x0:5j � f .xj/ ! min:

The median is optimal in the sense that it minimizes the sum of absolute
deviations of the observations from a point that lies in the midst of the data
(Fig. 2.19).

• linear transformation yi D a C bxi �! y0:5 D a C bx0:5

If the data are transformed linearly, then the median is shifted by that same
linear transformation.

Calculation of Quartiles The empirical distribution function (third column of the
Table 2.12) implies that both the first quartile x0:25; p D 0:25 and the second quartile
x0:5; p D 0:50 belong to third group (3000–5000 EUR). By interpolation we find
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Table 2.12
Example—Monthly net
income of households (up to
25000 EUR)

Income range
Proportion of
households:

Empirical distribution
function:

(EUR) f .x/ F.x/

1–800 0:044 0:044

800–1400 0:166 0:210

1400–3000 0:471 0:681

3000–5000 0:243 0:924

5000–25000 0:076 1:000

X        (in DM)

F(
X)

1536 2385 3568 5000

0.25

0.50

0.75

11

Fig. 2.20 Graph of the empirical distribution function and quartiles

the following (Fig. 2.20).

x0:25 D 1400 C 1600 � 0:25 � 0:21

0:471
D 1535:88 EUR

x0:50 D 1400 C 1600 � 0:50 � 0:21

0:471
D 2385:14 EUR

x0:75 D 3000 C 2000 � 0:75 � 0:681

0:243
D 3567:90 EUR

The Interpretation 25 % of the households has net monthly income not exceeding
1535.88 EUR and 75 % of the households has income higher than 1535.88 EUR
(first quartile). 50 % of the households have income smaller than 2385.14 EUR and
50 % of the households have income higher than 2385.14 EUR (second quartile).
75 % of the households have income less than 3567.90 EUR and 25 % of the
households have income exceeding 3567.90 EUR (third quartile).

The above also implies that 50 % of the households has net income between
1535.88 EUR and 3567.90 EUR.
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Arithmetic Mean

The arithmetic mean or average, denoted NX, is obtained by summing all observations
and dividing by n. The arithmetic mean is sensitive to outliers. In particular, an
extreme value tends to “pull” the arithmetic mean in its direction.

The mean can be calculated in various ways, using the original data, using the
frequency distribution and using the relative frequency distribution. For discrete
data, each method yields a numerically identical answer.

Calculation using original data:

Nx D 1

n

nX

iD1

xi

Calculation using the frequency and relative frequency distribution:

Nx D 1

n

kX

jD1

xjh.xj/ D
kX

jD1

xjf .xj/

Properties of the Arithmetic Mean

• Center of gravity: The sum of the deviations of the data from the arithmetic mean
is equal to zero.

nX

iD1

.xi � Nx/ D 0 ,
kX

jD1

.xj � Nx/h.xj/ D 0

• Minimum sum of squares: The sum of squares of the deviations of the data from
the arithmetic mean is smaller than the sum of squares of deviations from any
other value c.

nX

iD1

.xi � Nx/2 <

nX

iD1

.xi � c/2

kX

jD1

.xj � Nx/2h.xj/ <

kX

jD1

.xj � c/2h.xj/

• Pooled data: Assume that the observed data are in disjoint sets D1; D2; : : : ; Dr,
and that the arithmetic mean Nxp for each of the sets is known. Then the arithmetic
mean of all observed values (considered as one set) can be calculated using the
formula

Nx D 1

n

rX

pD1

Nxpnp n D
rX

pD1

np

where np denotes the number of observations in p-th group (p D 1; : : : ; r).
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Table 2.13
Example 1—Monthly income
of households (MIH)

MIH
Proportion of
households

Cumulative distribution
function

(EUR) f .x/ F.x/

1–800 0:044 0:044

800–1400 0:166 0:210

1400–3000 0:471 0:681

3000–5000 0:243 0:924

5000–25000 0:076 1:000

Table 2.14
Example 2—Monthly income
of 716 people

Nx D 1881:40 EUR

x0:25 D 1092:50 EUR

x0:50 D 1800:00 EUR

x0:75 D 2400:00 EUR

‘mode’ D 2000.00 EUR

• Linear transformation:

yi D a C bxi �! Ny D a C bNx

• Sum:

zi D xi C yi �! Nz D Nx C Ny

From the data of Example 1 given in Table 2.13 we can calculate the arithmetic
mean using the mid-points of the groups:

Nx D 400 � 0:044 C 1100 � 0:166 C 2200 � 0:471 C 4000 � 0:243 C 15000 � 0:076

D 17:6 C 182:6 C 1036:2 C 972 C 1140 D 3348:4 EUR.

The arithmetic mean 3348.4 EUR is higher than the median calculated above
(2385.14 EUR). This can be explained by the fact that the arithmetic mean is more
sensitive to the relatively small number of large incomes. The high values shift the
arithmetic mean but do not influence the median (Table 2.14).

Explained: Average Prices of Cars

This dataset contains prices (in USD) of 74 cars. The distribution of prices is
displayed using a dotplot below. The price variable is on the horizontal axis. The
data are randomly scattered in the vertical direction for better visualization.

In Fig. 2.21, the median is displayed in red and the arithmetic mean in magenta.
As can be seen, the two values almost coincide.
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4000 6000 8000 10000 12000 14000 16000

Fig. 2.21 Prices for 74 cars (USD)—arithmetic mean: 4896.417 (magenta) and median: 4672.000
(red)

4000 6000 8000 10000 12000 14000 16000

Fig. 2.22 Corrected prices for 74 cars (USD)—arithmetic mean: 5063.083 (magenta) and median:
4672.000 (red)

4000 6000 8000 10000 12000 14000 16000

Fig. 2.23 Repeated measurements of car prices—arithmetic mean: 5063.083 (magenta) and
median: 5006.500 (red)

For symmetric distributions, the median and arithmetic mean are identical. This
is almost true for our example.

However, during a check of the data, it was discovered that one value had not
been entered correctly. The value 15962 USD was incorrectly changed to 5962 USD.
Figure 2.22 contains corrected values:

The median (because it is robust) did not change. On the other hand, the
arithmetic mean has increased significantly, as it is sensitive to extreme values. The
miscoded observation takes on a value well outside the main body of the data.

The measurements were repeated after some time with the results shown in
Fig. 2.23.
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Fig. 2.24 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_dot1

Now, there are a number of relatively more expensive cars. The distribution of
prices is now skewed to the right. These more extreme observations pull the mean
to the right much more so than the median. Thus for right-skewed distributions, the
arithmetic mean is larger than the median.

Interactive: Dotplot with Location Parameters

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please select

• a dotplot type, e.g., jitter
• if you like the mean and median to be included in the plot

The last two panels allow you to choose a dataset or variable and to change
the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output

The interactive example allows us to display a one-dimensional frequency distribu-
tion in the form of a dotplot for a variety of variables. Possible values are displayed
along the horizontal axis. For easier visualization, the observations may be randomly
shifted (jitter) in the vertical direction. The median and the arithmetic mean can be
displayed graphically and numerically (Fig. 2.24).

Interactive: Simple Histogram

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.
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Fig. 2.25 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_hist

Please select

• the number of bins
• if you like the observations to be shown

The last two panels allow you to choose a dataset or variable and to change
the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output

The graphic displays all observations of a variable summarized in a histogram
(Fig. 2.25).

2.5 Location Parameters: Mean Values—Harmonic Mean,
Geometric Mean

If the observed variables are ratios, then the arithmetic mean may not be appropriate.

Harmonic Average

The harmonic average, denoted NxH , is useful for variables which are ratios. We
assume that all data points are not equal to zero, i.e., xi ¤ 0. As a consequence
the xj ¤ 0.

NxH D n
nP

iD1

1
xi
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NxH D

kP

jD1

gj

kP

jD1

gj

xj

; j D 1; : : : ; k

In the latter formula, gj provides additional information which will become clear
in the example below.

Example 1

Part of the road j 1 2 3 4

Distance gj in km 2 4 3 8

Speed xj in km/h 40 50 80 100

We would like to calculate the average speed of the car during the period of
travel. It is inappropriate to simply average the speeds since they are measured over
differing periods of time. In the table, gj is the distance traveled in each segment.
Using the above formula we calculate:

Total time:
kP

jD1

gj

xj
D 0:2475 h

Total distance:
kP

jD1

gj D 17 km

Average: NxH D 17
0:2475

D 2C4C3C8
2
40 C 4

50 C 3
80 C 8

100

D 68:687 km=h

The arithmetic mean would lead to an incorrect result 67:5 km=h, because it does
not account for the varying lengths of the various parts of the road. Correct use of
the arithmetic mean would involve calculating the time spent along each segment.
In the above example these times are denoted by hj D gj=xj for each segment.

h1 D g1=x1 D 0:05I h2 D g2=x2 D 0:08I
h3 D g3=x3 D 0:0375I h4 D g4=x4 D 0:08I

Nx D 40 � 0:05 C 50 � 0:08 C 80 � 0:0375 C 100 � 0:08

0:05 C 0:08 C 0:0375 C 0:08
D 68:687 km=h

Thus, in order to calculate the average of ratios using additional information
for the numerator (in our case xj with the additional information gj) we use the
harmonic average. In order to calculate the average from ratios using additional
information on the denominator, we choose the arithmetic average.

Example 2 Four students, who have part time jobs, have the hourly (respectively
weekly) salaries given in Table 2.15.

We are supposed to find the average hourly salary. This calculation cannot be
done using only the arithmetic average of the hourly salaries, because that would
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Table 2.15 Hourly and
weekly salary of four students

Student Euro/h Weekly salary in Euro

A 18 180

B 20 300

C 15 270

D 19 380

Table 2.16 Hourly salary
and working hours of four
students

Student Euro/h Working hours

A 18 10

B 20 15

C 15 18

D 19 20

not take into account the different times spent in the job. The variable of interest is
a ratio (Euro/h) and the additional information (weekly salary in Euro) is related to
the numerator of this ratio. Hence, we will use the harmonic average.

NxH D

P

j
gj

P

j

gj

xj

D 180 C 300 C 270 C 380
180
18

C 300
20

C 270
15

C 380
19

D 1130

63
D 17:94

These four students earn on average 17.94 Euro/h (Table 2.15). The situation
changes if we are given the number of hours worked per week (instead of the weekly
salary).

Now, the additional information (weekly working hours) is related to the
denominator of the ratio. Hence, we can use an arithmetic average, in this case
the weighted arithmetic average.

Nx D 18 � 10 C 20 � 15 C 15 � 18 C 19 � 20

10 C 15 C 18 C 20
D 1130

63
D 17:94

The average salary is again 17.94 Euro/h.

Geometric Average

The geometric mean, denoted NxG, is used to calculate the mean value of variables
which are positive, are ratios (e.g., rate of growth) and are multiplicatively related.

NxG D n
p

x1 � x2 � � � � � xn
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The logarithm of the geometric average is equal to the arithmetic average of the
logarithms of the observations:

log NxG D 1

n

X

iD1

n log xi

Mean Growth Rate and Forecast

Let x0; x1; : : : ; xn be the measurements ordered according to the time of observation
from 0 to n. The growth rates can be calculated as

it D xt=xt�1

i1 � i2 � � � � � in D xn=x0

The product of all growth rates is equal to the total growth from time 0 to n. The
average growth rate will be obtained as a geometric average of the growth rates in
distinct time periods:

N{g D p
n i1 � i2 � � � � � in D p

n
xn

x0

Knowing the mean growth rate and the value in time n, we can forecast the value
in time n C T.

x?
nCT D xn � .N{G/T

Solving this equation with respect to T, we obtain a formula for the time which is
necessary to reach the given value:

T D log.xnCT/ � log.xn/

log.N{G/

Example 1

Now we calculate:

• mean value (geometric average)
• forecast for 1990
• time (year), when GDP reaches the value 2500.

N{G D 8

r
1971:8

1733:8
D 1:0162

x?
1990 D 1971:8 � 1:01622 D 2036:2 bn DM

T D log.2500/ � log.1971:8/

log.1:0162/
D 14:77 years.
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Table 2.17 Gross domestic
product (GDP) for Germany
in 1985 prices (bn DM)

Year t GDP xt it

1980 0 1733:8 –

1981 1 1735:7 1:0011

1982 2 1716:5 0:9889

1983 3 1748:4 1:0186

1984 4 1802:0 1:0307

1985 5 1834:5 1:0180

1986 6 1874:4 1:0217

1987 7 1902:3 1:0149

1988 8 1971:8 1:0365

Table 2.18 German stock index (DAX) during the period 1990–1997

Year 1989 1990 1991 1992 1993 1994 1995 1996 1997

DAX
(end of
the year)

1791 1399 1579 1546 2268 2107 2254 2889 4250

DAX
(change)

�21.9 % 12.9 % �2.1 % 46.7 % �7.1 % 7.0 % 28.0 % 47.1 %

The value of GDP of 2500 is forecasted in year 1988 C 15 D 2003 (Table 2.17).

Example 2
The German stock index (DAX) was changing during the period 1990–1997, as

shown in Table 2.18.

We want to find the average yearly change in the DAX over the period. Use of
the arithmetic average leads to an incorrect result as illustrated below.

• Nx D .�21:9/C.12:9/C.�2:1/C.46:7/C.�7:1/C.7:0/C.28:2/C.47:1/

8
D 110:80

8
D 13:85 %

• Starting in the year 1989 and using the “average change of DAX” to calculate the
value of the DAX in 1997, one obtains:

1990 1791 � 1.1385D2093
1991 2093 � 1.1385D2383
: : : : : :

1997 4440 � 1.1385D5055
• The result 5055 is much higher than the actual value of the DAX in 1997 which

was 4250.

The correct mean value is, in this case, the geometric mean, because it measure
the growth during a certain period. The value of DAX in 1990 can be calculated
from the value in 1989 and the relative change as follows:

DAX1990 D .1 C .�0:219// � DAX1989

D .1 C .�0:219// � 1791 D 0:781 � 1791 D 1399
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Analogously, we can “forecast” the value for 1991 from the relative change and
the value of DAX in 1990:

DAX1991 D .1 C 0:129/ � DAX1990

D .1 C 0:129// � 1399 D 1:129 � 1399 D 1579

The values are multiplicatively related. The geometric mean yields the following:

XG D 8
p

0:781 � 1:129 � 0:979 � 1:467 � 0:929 � 1:070 � 1:282 � 1:417

D 1:1141

The average growth rate per year of the DAX over the period 1990–1997 was
11.41 %. Using this geometric mean and the value of DAX in 1989 to predict the
value of DAX in 1997, we obtain the correct result:

1990 1791 � 1.1141D1995
1991 1995 � 1.1141D2223
: : : : : :

1997 3815 � 1.1141D4250

The average growth rate of DAX in 1990–1997 can be used also to forecast the
value of at the end of year 1999. We obtain the prediction:

DAX1999 D DAX1997 � 1:1141 � 1:1141 D 4250 � 1:11412 D 5275

2.6 Measures of Scale or Variation

The various measures of location outlined in the previous sections are not sufficient
for a good description of one-dimensional data. An illustration of this follows:

Monthly expenditures for free time and holidays (in EUR):

• data from 10 two person households: 210, 250, 340, 360, 400, 430, 440, 450,
530, 630 displayed on the axis:

• data from 10 four person households: 340, 350, 360, 380, 390, 410, 420, 440,
460, 490 displayed on the axis:
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The arithmetic average NX is in both cases is equal to 404 EUR, but the
graphs show visible differences between the two distributions. For households
with four people the values are more concentrated around the center (in this case
the mean) than for households with two people, i.e., the spread or variation is
smaller.

Measures of scale measure the variability of data. Together with measures of
location (such as means, medians, and modes) they provide a reasonable description
of one-dimensional data. Intuitively one would want measures of dispersion to have
the property that if the same constant was added to each of the data-points, the
measure would be unaffected. A second property is that if the data were spread
further apart, for example through multiplication by a constant greater than one, the
measure should increase.

Range

The range is the simplest measure of scale:

Range for Ungrouped Data

• The range, denoted R, is defined as the difference between the largest and the
smallest observed value

R D xmax � xmin D x.n/ � x.1/

where x.1/; : : : ; x.n/ are the ordered data, i.e., the order statistics.

Range for Grouped Data

• For grouped data, the range R is defined as the difference between the upper
bound of the last (highest) class xu

k and the lower bound of the first (smallest)
class xl

1:

R D xu
k � xl

1

Properties

• For a linear transformation we have: yi D a C bxi �! Ry D jbjRx

Note that addition of the constant a which merely shifts the data does not
affect the measure of variability.
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Interquartile Range

The interquartile range is the difference between the third quartile x0;75 and the first
quartile x0;25:

QA D x0:75 � x0:25

The interquartile range is the width of the central region which captures 50 % of the
observed data. The interquartile range relative to the median is defined as QAr D
QA=x0:5.

Properties

• Robust towards extreme values (outliers)
• Linear transformation: yi D a C bxi �! QAy D jbjQAx

Again addition of the constant a does not affect the measure of variability.

Mean Absolute Deviation

The mean of the absolute deviations of the observed values from a fixed point c is
called the mean absolute deviation (MAD) and it is denoted by d. The fixed point
c can be any value. Usually, it is chosen to be one of the measures of location;
typically the mean Nx or median x0:5.

As with the range and the interquartile range, adding the same constant to all
the data. Multiplication by a constant rescales the measure by the absolute value of
that same constant. Each of the formulas below may be used for ungrouped data.
If the data have been grouped, then one would use the second formula where the
xj are mid-points of the classes, and h.xj/ and f .xj/ are the absolute and relative
frequencies:

d D 1

n

nX

iD1

jxi � cj

d D 1

n

kX

jD1

jxj � cjh.xj/ D
kX

jD1

jxj � cjf .xj/

Properties

• The optimality property of the median implies that the median is the value which
minimizes the mean absolute deviation. Thus any other value substituted for c
above would yield a larger value of this measure.

• For a linear transformation of the data: yi D a C bxi �! dy D jbjdx
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Example

• Observed values: 2, 5, 9, 20, 22, 23, 29
x0:5 D 20; d.x0:5/ D 8; 29

Nx D 15:71; d.Nx/ D 8:90

The Variance and the Standard Deviation

The mean of the squared deviations of the observed values from a certain fixed point
c is called the mean squared error (MSE) or the mean squared deviation. The point
c can be chosen ad libitum.

MQ.c/ D 1

n

nX

iD1

.xi � c/2

MQ.c/ D 1

n

kX

jD1

.xj � c/2h.xj/ D
kX

jD1

.xj � c/2f .xj/

The Variance If we choose the point c to be the mean Nx, then the MSE is called
the variance. The variance of the observed values will be denoted as s2 and may be
computed as follows.

s2 D 1

n

nX

iD1

.xi � Nx/2 D 1

n

nX

iD1

x2
i � Nx2

s2 D 1

n

kX

jD1

.xj � Nx/2h.xj/ D
kX

jD1

.xj � Nx/2f .xj/

Standard Deviation The standard deviation (s) is defined as the square root of the
variance.

s D
p

s2 D
vu
u
t1

n

nX

iD1

.xi � Nx/2

s D
vu
ut1

n

kX

jD1

.xj � Nx/2h.xj/ D
vu
ut

kX

jD1

.xj � Nx/2f .xj/

The variance s2 (and therefore also the standard deviation s) is always greater
than or equal to 0. Zero variance implies that the observed data are all identical and
consequently do not have any spread.
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Properties

• The mean squared error with respect to Nx (the variance) is smaller than the mean
square error with respect to any other point c. This result can be proved as
follows:

MSE.c/ D 1

n

nX

iD1

.xi � c/2 D 1

n

nX

iD1

.xi � Nx C Nx � c/2

D 1

n

"
nX

iD1

.xi � Nx/2 C 2.Nx � c/

nX

iD1

.xi � Nx/ C n.Nx � c/2

#

D 1

n

nX

iD1

.xi � Nx/2 C .Nx � c/2 D s2 C .Nx � c/2

The middle term of the middle line vanishes since
nP

iD1

.xi � Nx/ D 0. These

formulas imply that the mean square error MSE.c/ is always greater than or equal
to the variance. Obviously equality holds only if c D Nx.

• For linear transformations we have: yi D a C bxi �! s2
y D b2s2

x ; sy D jbjsx

• Standardization: by subtracting the mean and dividing by the standard deviation
one creates a new dataset for which the mean is zero and the variance is one. Let:
zi D a C bxi; where a D �Nx=sx; b D 1=sx, then

zi D xj � Nx
sx

) Nz D 0; s2
z D 1

Example

• Observed values: 2, 5, 9, 20, 22, 23, 29
• x0:5 D 20 MSE.x0:5/ D 109:14

• Nx D 15:71 MSE.Nx/ D Variance D 90:78

Theorem (pooling) Let us assume that the observed values (data) are divided into r
groups with ni i D 1; ::; r observations. Assume also that the means and variances
in these groups are known. To obtain the variance s2 of the pooled data we may use:

s2 D
rX

iD1

ni

n
s2

i C
rX

iD1

ni

n
. Nxi � Nx/2

Nx1; : : : ; Nxr are the arithmetic averages in the groups
s2
1; : : : ; s2

r are the variances in the groups
n1; : : : ; nr are numbers of observations in the groups, n D n1 C � � � C nr
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Variance Decomposition The above formula illustrates that the variance can be
decomposed into two parts:

Total variance D variance within the groups C variance between the groups.

Coefficient of Variation In order to compare the standard deviations for different
distributions, we introduce a relative measure of scale (relative to the mean), the
so-called coefficient of variation. The coefficient of variation expresses variation as
a percentage of the mean:

v D s=Nx Nx > 0

Example The mean values and the standard deviations of two sets of observations
are:

Nx1 D 250 s1 D 10

Nx2 D 750 s2 D 30

By comparing the standard deviations, we conclude that the variation in the
second dataset is three times higher than the variation in the first. But, in this case
it would be more appropriate to compare the coefficients of variation since the data
have very different means:

v1 D 10=250 D 0:04

v2 D 30=750 D 0:04

The relative spread of both datasets is the same.

Explained: Variations of Pizza Prices

The price (in EUR) of Dr. Oetker pizza was collected in 20 supermarkets in Berlin
(Fig. 2.26):

3.99; 4.50; 4.99; 4.79; 5.29; 5.00; 4.19; 4.90; 4.99; 4.79; 4.90; 4.69; 4.89; 4.49;
5.09; 4.89; 4.99; 4.29; 4.49; 4.19

• The average price for a pizza in these 20 supermarkets is 4.27 Euro (= mean)
• The median price is 4.84 Euro (= median)
• The difference between the highest and smallest price is 1.30 Euro (= range)
• If the MAD is calculated around the mean it is 0.29 Euro (= MAD) if calculated

around the median it is 0.28 Euro (= MAD).
• 50 % of all prices lie in the interval between 4.49 Euro (quartile x0:25) and

4.99 Euro (quartile x0:75), this interval is of width 0.50 Euro (= interquartile
range).2

• Mean square error around the mean is 0.12241 Euro2 (= variance), the square
root of the variance is 0.34987 Euro (= standard deviation).
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Fig. 2.26 Prices for pizza in 20 supermarkets—parameters of scale

Enhanced: Parameters of Scale for Cars

The price of 74 types of cars in USD was collected in 1985. The data are displayed
in Fig. 2.27. The upper panel displays the range (green), arithmetic average (black),
and the standard deviation (red). The lower panel displays the range (green), median
(mint green), and the interquartile range (magenta).

Arithmetic average: 4896.417
Median: 4672
Range 4536
Interquartile range 1554.75
Standard deviation 991.2394

During a check of the data, it was discovered that there was an input error. The
correct value of 15962 USD was incorrectly recorded as 5962 USD. Figure 2.28
contains the corrected results.

Arithmetic average: 5063.083
Median: 4672
Range 12508
Interquartile range 1554.75
Standard deviation 1719.064

It is clear that the range increased, because it is a function of the extreme values.
The value of interquartile range did not change since no prices within this range
were altered. The standard deviation increased significantly. The reason is that
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4000 6000 8000 10000 12000 14000 16000

Fig. 2.27 Prices of 74 cars in USD—upper panel: range (green), arithmetic average (black), and
the standard deviation (red); lower panel: range (green), median (mint green), and the interquartile
range (magenta)

standard deviation is calculated from all observed prices and involves the squares of
deviations which causes it to be particularly sensitive to extreme values (outliers).

The investigation was repeated after some time. The results are presented in
Fig. 2.29.

Arithmetic average: 6165.257
Median: 5006.5
Range 12615
Interquartile range 2112
Standard deviation 2949.496

Now, there are a number of expensive vehicles whose prices are substantially
different from the lower priced cars. Thus the price are skewed to the right. For
skewed distributions, the standard deviation is typically higher than the interquartile
range. This feature is demonstrated in the above example.

Interactive: Dotplot with Scale Parameters

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.
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4000 6000 8000 10000 12000 14000 16000

Fig. 2.28 Corrected prices of 74 cars in USD—upper panel: range (green), arithmetic average
(black), and the standard deviation (red); lower panel: range (green), median (mint green), and the
interquartile range (magenta)

Please select

• a dotplot type, e.g., jitter
• if you like the mean, median, range, or interquartile range to be included in the

plot

The last two panels allow you to choose a dataset or variable and to change
the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output

The interactive example in Fig. 2.30 allows us to display a one-dimensional fre-
quency distribution in the form of a dotplot for a variety of variables. Possible values
are displayed along the horizontal axis. For easier visualization, the observations
may be randomly shifted (jitter) in the vertical direction. Furthermore, the median,
the arithmetic mean, range, and interquartile range can be included.
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4000 6000 8000 10000 12000 14000 16000

Fig. 2.29 Repeated investigation of prices of 74 cars in USD—upper panel: range (green),
arithmetic average (black), and the standard deviation (red); lower panel: range (green), median
(mint green), and the interquartile range (magenta)

Fig. 2.30 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_dot2

2.7 Graphical Display of the Location and Scale Parameters

Boxplot (Box-Whisker-Plot)

Unlike the stem-and-leaf diagram, the boxplot does not contain information about
all observed values. It displays only the most important information about the
frequency distribution. Specifically, the boxplot contains the smallest and the largest
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Fig. 2.31 The structure of a boxplot

observed values x.1/ and x.n/ and three quartiles x0:25; x0:5ax0:75. The second quartile
x0:5 is of course the median (Fig. 2.31).

The quartiles are denoted by a line and the first and third quartile are connected
so that we obtain a box. The line inside this box denotes the median. The height
of this box is the interquartile range which is the difference between the third and
the first quartile: x0:75 and x0:25. Inside this box, one finds the central 50 % of all
observed values.

The whiskers show the smallest and largest values within a 1.5 multiple of the
interquartile range calculated from the boundary of the box. The bounds x0:25 � 1:5 �
QA and x0:75 C1:5 �QA are called the lower and upper fence, respectively. The values
lying outside the fences are marked as outliers with a different symbol. Usually, the
boxplot also displays the mean as a dashed line. The boxplot provides quick insight
into the location, scale, shape, and structure of the data.
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Example—boxplot of student salaries in USD
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Example—boxplot of student salaries in USD; males and females separated

Explained: Boxplot of Car Prices

The prices of 74 types of cars were obtained in 1983. The results are displayed in
Fig. 2.32.

The upper panels of the graphs contain dotplots. The lower panels show boxplots.
The values lying outside a 1.5 multiple (resp. 3 multiple) of the interquartile
range are denoted as extreme (outlying) observations. These outlying observations
produce a large difference between the median (solid line) and the mean (dashed
line).
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Table 2.19
Example—Student salaries in
USD

Total Men Women

xmin D 1 xmin D 1 xmin D 1:74997

xmax D 44:5005 xmax D 26:2903 xmax D 44:5005

R D 43:5005 R D 25:2903 R D 42:7505

x0:25 D 5:24985 x0:25 D 6:00024 x0:25 D 4:74979

x0:5 D 7:77801 x0:5 D 8:92985 x0:5 D 6:79985

x0:75 D 11:2504 x0:75 D 12:9994 x0:75 D 10:0001

QA D 6:00065 QA D 9:99916 QA D 5:25031

Nx D 9:02395 Nx D 9:99479 Nx D 7:87874

s2 D 26:408 s2 D 27:9377 s2 D 22:2774

s D 5:13887 s D 5:28562 s D 4:7199

v D 0:57 v D 0:53 v D 0:60

4000 6000 8000 10000 12000 14000 16000

extreme values

Fig. 2.32 Boxplot of prices of 74 cars

Interactive: Visualization of One-Dimensional Distributions

The interactive example includes a number of sidebar panels. You can access the
panels by setting a mark at the corresponding check box on the upper right.

Please choose

• a dotplot type, e.g., jitter
• the number of bins for the histogram
• if you like the mean and median to be included in the plots
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Fig. 2.33 Screenshot of the interactive example, available at http://u.hu-berlin.de/men_vis

The last two panels allow you to choose a dataset or variable and to change
the font size. For a detailed explanation on datasets and variables, please refer to
Appendix A.

Output

The interactive example in Fig. 2.33 allows us to display a one-dimensional fre-
quency distribution in the form of a dotplot, a histogram, a boxplot, and cumulative
distribution function for a variety of variables. Possible values are displayed along
the horizontal axis. For easier visualization, the observations may be randomly
shifted (jitter) in the vertical direction. Furthermore, the median and the arithmetic
mean can be included. You also receive a table showing the numerical values of
certain parameters.
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