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Abstract. This paper presents a new nature inspired Intelligent Water
Drops (IWD) based algorithm for finding peaks in continuous multi-
modal optimization problems. Initially various conceptual similarities
were identified between IWD algorithm and Genetic Algorithm(GA).
Simultaneously applying IWD-Continuous Optimization(IWD-CO) algo-
rithm and GA on a function in finding the global optima and found IWD-
CO having faster convergence qualities. By taking this as basis, GA has
been replaced with IWD-CO in a recently developed Modified Roaming
Optimization(MRO) algorithm and applied to various benchmark func-
tions and found drastic variation in convergence. Results are proving that
replacing GA with IWD-CO can be a novel step in evolutionary based
multimodal search algorithms.

Keywords: Genetic algorithm · Intelligent water drops algorithm ·
Roaming optimization · Modified roaming optimization · Evolutionary
computation

1 Introduction

The nature besides the fact that it evolved a highly sophisticated life form of
human being from an ape houses a wide range of life forms. Since the dawn of
time, the whole of flora and fauna has gradually evolved and developed intelli-
gent techniques for attracting the mates, finding food and all the basic needs.
For many years researchers inspired from natural phenomenon and started imitat-
ing its processes to create meta-models. Nature inspired problem solving methods
such as Evolutionary algorithms, Swarm based optimization algorithms etc., have
been contributing much innovation in major areas like Robotics, Signal Process-
ing etc. Most of them mainly contribute to optimization algorithms which can be
defined as the process to make a system or design as effective or functional as pos-
sible by satisfying the given constraints. In these cases having secondary/multiple
optimal solutions in hand may allow us to perform the required task. This has led
to the development of multimodal optimization methodologies. In principle mul-
timodal optimization is defined as finding multiple local optima(not necessarily
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equal). The major advantages of having all multiple optima are obtaining insight
into the multimodal function landscape and alternative solutions can be chosen if
the behavior of the constraints in the search space makes previous optimum solu-
tion unfeasible to implement. Some of the major areas where multimodal function
optimization arises are localization, classification etc.

The Evolutionary Computation (EC) encompasses Genetic Algorithms
(GAs), Differential Evolution (DE) etc. Traditional GAs are successfully iden-
tified the optima in the domain but they are incapable of maintaining rules of
secondary importance. Attempts have been made to solve multimodal function
optimization problems using a wide range of new approaches including Goldberg
and Richardson’s sharing [1], divides population using similarity of the individ-
uals into possible solution spaces. DeJong’s crowding [2], creates separate niches
by replacing existing strings according to their similarity with other strings in
an overlapping population. Rodica Lung and D. Dumitrescu’s Roaming Opti-
mization(RO) [3], divides the population into groups called sub-populations in a
quest for multiple solutions. Besides sub-population concept, Archive Test plays
major role in deciding the optimal solutions. RO has been successfully applied for
detecting Nash equilibrium in multi-player games [4] and later Modified Roaming
Optimization(MRO) [5] proposed by Chakravarthi J et al. added Density based
cluster removal step for drastic decrements in running time of algorithm. This
solved Inverse Kinematics(IK) problems of SCARA and PUMA robots as well.
As there are ample of techniques for multimodal optimization, fastness became
predominant factor of algorithms. In Genetic Algorithms, mutation helps to
achieve the speed by having comparisons with previous results. Recently a novel
evolutionary Intelligent Water Drops (IWD) algorithm [6], developed by Hamed
Shah Hosseini, behaves similar to GA. Nagalakshmi et al. used IWD - Contin-
uous Optimization(IWD-CO) algorithm [8] to solve Combined Economic and
Emission Dispatch (CEED) [7] to find optimal cost values for 3, 6 plant power
generating stations. Their work illustratively proving that IWD-CO has faster
convergence compare to GA. In this paper, we have identified various similar-
ities between IWD-CO and GA, simultaneously both have been applied to a
continuous function in capturing it’s global peak and various comparisons were
made and later we replaced GA with IWD-CO in MRO [5] for finding peaks in
multimodal benchmark test functions.

Rest of the paper has arranged in this way. Chapter-II explains IWD-CO
algorithm and compares IWD-CO with GA, Chapter-III gives the proposed
IWD algorithm for Multimodal Spaces, simulations and results are presented
in Chapter-IV. Finally concluding remarks are given in chapter-V.

2 Intelligent Water Drops Continuous Optimization
Algorithm

2.1 Basic IWD-CO Algorithm

In nature, water flow occurs in rivers and canals. Natural river paths have been cre-
ated by swarm of water drops. Natural water drops have the tendency to flow from
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high terrain to low terrain. In order to reach an ideal path, water drops always try
to change the real path which is having many twists and turns [8]. After observing
natural phenomena of water flow and to mimic this process Hamed-Shah Hosseini
[6] has created Intelligent Water Drops algorithm. The Intelligent Water Drops are
given some properties of natural water drops such as,

– Water drop transfers some amount of soil when it moves from one place to
another.

– While moving, soil of water drop increases and soil on the path will be
decreased.

This nature-inspired evolution based Intelligent Water Drops are used to solve
discrete and continuous optimization problems as well. The steps of Intelligent
Water Drops-Continuous Optimization (IWD-CO) algorithm are as follows.

Problem Representation: Consider our problem is either to maximize or
minimize an objective function F (x1, x2, x3, ...., xM ) where x1, x2, x3, ...., xM are
input parameters to the function. Mathematically, we can represent it as

max (or) min(F (x1, x2, x3, ...., xM )) (1)

A directed graph with (M × P ) nodes and (2 × M × P ) directed edges will be
created. Between every adjacent nodes there will be two edges named 0 and 1.
Here, M represents M-variable function and P represents the Precision which is
the number of binary digits required to represent each variable. Initially same
amount of soil is deposited on all the edges. Each IWD will carry some amount
of soil with it and initially this value is kept zero and increases as it is passing
through the nodes.

soil(ei,i+1(k)) represents amount of soil present on kth edge between ith and
i + 1th node. k is an edge that can be either 0 or 1 and i is a node that ranges
from 1 to M × P . soilIWD

j represents soil possessed by jth IWD. According to
[6], various steps in IWD-CO algorithm are Edge Selection, Local soil updation,
Mutation based local search and Global soil updation. Throughout this paper
we used P = 32 and initial soil on the edges is 10000.

Edge Selection: Every IWD starts its journey from node 1 and finishes it by
visiting the last node through edge selection process. Edge Selection for IWD is
to choose an edge that is connected to next node. If the IWD is at node i then
it selects the next edge (ei,i+1) by choosing either 0 or 1 string between i and
i+1 nodes. The probability P IWD(ei,i+1(k)) for selecting an edge is given by

P IWD(ei,i+1(k)) =
f(soil(ei,i+1(k)))
1∑

l=0

f(soil(ei,i+1(l)))

(2)

where,

f(soil(ei,i+1(k))) =
1

0.0001 + g(soil(ei,i+1(k)))
(3)
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and

g(soil(ei,i+1(k))) =
{

soil(ei,i+1(k)); if minl=0,1(soil(ei,i+1(l))) ≥ 0
soil(ei,i+1(k)) − minl=0,1(soil(ei,i+1(l))); else

(4)

Local Soil Updation: During visiting the nodes and selecting edges, the IWD
updates the soil carrying by itself and removing some soil from the currently used
edge. The soil of the IWD, soilIWD and soil of the visited edge, soil(ei,i+1(k))
are updated by

soil(ei,i+1(k)) = 1.1 ∗ soil(ei,i+1(k)) − 0.01 ∗ Δsoil(ei,i+1(k)) (5)

soilIWD = soilIWD + Δsoil(ei,i+1(k)) (6)

where,
Δsoil(ei,i+1(k)) = 0.001 (7)

Mutation Based Local Search: In IWD-CO mutations are nothing but
changing the IWD position randomly in the search space by switching an edge
in its path to avoid premature convergence. These mutations change the behav-
ior of IWD path probabilistically. To improve the efficacy strong mutations have
been introduced. Strong mutations accept the mutated fitness only if it is greater
than previous fitness otherwise it remains unchanged.

Global Soil Updation: The Iteration best solution T IB , among all IWDs is
found at the end of current iteration by considering the best fitness value. In
order to increase the probability for other IWDs to follow the best IWD’s tour,
soil on the respective edges are modified. This updation is given by

soil(ei,i+1(k)) = min(max(TempSoil(ei,i+1(k)),MinSoil),MaxSoil) (8)

∀ ei,i+1(k) ∈ T IB

where,

TempSoil(ei,i+1(k)) = 1.1∗soil(ei,i+1(k))−0.01∗soilIWD
IB

(M ∗ P )
; ∀ ei,i+1(k) ∈ T IB

(9)
soilIWD

IB represents the soil of best IWD. Here, Global soil updation is bounded by
[MinSoil, MaxSoil]. Global soil updation will be done to the soil profile of the best
IWD tour. This updation helps other IWDs to follow the best tour. In previous
work [7], It is identified that IWD-CO has faster in convergence compare to GA
and to check this, experiments have been done along with identification of various
similarities between IWD-CO and GA explained in next section.

2.2 Comparison of IWD-CO with GA

The main aim of this section is to show the similar behavior of the major steps in
both GA and IWD-CO and to reasonably prove the faster convergence capacity
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of IWD-CO over GA which led us to replace GA part in Modified Roaming
Optimization(MRO) algorithm with IWD-CO to improve the efficacy of the
results by proposing a new hybridized algorithm called Intelligent Water Drops
algorithm for Multimodal Spaces (IWD-MS).

Major Steps of GA and IWD-CO: Genetic Algorithm is a stochastic app-
roach based on genetic parameters such as selection, crossover and mutation. In
GA, the selection process means pairing of parent chromosomes and crossover
means exchanging of information of chromosomes i.e. generating child chromo-
somes(Child population) from parent chromosomes. Mutations are nothing but
switching the genes(binary bits), which helps in random exploration of search
space. After completing above steps we use best half part of parent population
and best half part of Child Population to create New population to persist the
present best solution further. IWD-CO is based on Evolution parameters such
as Global soil updation, Local soil updation and Mutations. In each iteration
Global soil updation is carried out on the path of best IWD tour by decreasing
the soil on the edges of that tour to increase the probability of next iteration
IWDs to follow this path. Local soil updation is helpful in selecting the best edge
i.e. to generate the best solution. Mutations in IWD-CO are called strong muta-
tions for it’s capacity of always increasing or maintaining the best fitness value.
From these depictions we observe the similarities in the evolution parameters of
IWD-CO and GA explained in next section.

Similarities in Evolutionary Parameters of IWD-CO and GA:

Global Soil updation - Selection: Global soil updation in IWD-CO behaves sim-
ilar to the Selection process in GA. Global soil updation is done to sustain
the best path by making new IWDs to follow it. Similarly GA uses Best chro-
mosomes(parents having high fitness) in Selection process to sustain the best
parental information for upcoming children population.
Local Soil updation - Crossover: Local soil updation in IWD-CO functions sim-
ilar to Crossover in GA. Crossover is mating of parent chromosomes resulting
the child population (New solutions). Similarly Local Soil updation in combi-
nation with Edge-Selection process produces the new solutions. Selected edge
(New Solution) will have the cumulative effect of all the previously flown IWDs
which changes the soil amount through Local soil updation. Here mating process
among all previous IWDs is internally happening in their journey. So this inter-
nally mating process(Local soil updation and Edge selection) in IWD-CO is
imitating the function of crossover as in GA.
Mutations in IWD-CO - Mutations in GA: Mutation step is same in both the
algorithms but IWD-CO uses strong mutations. The mutations help in both GA
and IWD-CO, to push the solution from the local optima towards the global
optima. By the above observations, IWD-CO can be thought of analogous to GA.

Efficacy of IWD-CO over GA: To check the difference between the conver-
gence capabilities of both algorithms, we considered peaks function f2 in Table 1,
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Fig. 1. (a) 3 peaks function surface plot (b) IWD-CO vs. GA while free mutations to
GA (c) IWD-CO vs. GA while strong mutations to GA

shown in Fig. 1(a), which has its global optima value 8.1062 at (-0.0087,1.5813).
We applied both GA and IWD-CO for that function by considering 6 initial solu-
tions (also known as chromosomes in GA and IWDs in IWD-CO). Figure 1(b)
shows the convergence in both algorithms. From this we can observe that IWD-
CO has faster convergence and it is taking less number of iterations to capture
global optima, whereas GA is taking relatively more number of iterations. Here
the differences are considered as Strong mutations in IWD-CO and Free muta-
tions in GA. But even if we apply strong mutations in GA, we can see the same
response as shown in Fig. 1(c). Even in this case, IWD-CO is showing faster
convergence. But there is an improvement in faster convergence of GA compare
to free mutations in GA case but still relatively it is slower than IWD-CO. The
reason for this effect is, in case of GA, the new chromosomes will be generated
based on previous two parent chromosomes only. So the solution provided by
new chromosomes will not have the effect of other chromosomes i.e. some of
the new solutions may miss the effect of best parent too. Due to this reason
the solution of present chromosomes may or may not support in updating the
global solution for next iteration. If this happens so for all the chromosomes, the
solution improvement may get delay in GA, even if we apply strong mutations
as well. Whereas due to the Global soil updation on the best IWD tour (edges
travelled by best IWD) will have effect in generating next best solution. So we
can guarantee the improvement or consistency of best solution to next iteration.

Figure 2 shows the convergence of individual IWDs and chromosomes.
Figure 3(a) shows parent and child best populations for all iterations in GA
and Fig. 3(b) shows the IWD parent and child best solutions. From this, we can
observe that next iteration best in IWD-CO has the cumulative effect of all the
previously flown IWDs and best IWD from previous iteration. For instance we
can observe this behavior from Fig. 2 which shows the individual IWD conver-
gence where behavior of IWD4 is the evolved behavior of IWD-1, IWD-2, IWD-3.
Similarly IWD-6 behavior is the evolved behavior of IWD-1 to IWD-5. New IWD
always tries to follow the best IWD path, which can be observed from Fig. 4,
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Fig. 2. IWD-CO vs. GA comparison of individual agents plot
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which shows convergence of global best solution and particular IWD solution.
Whereas GA has random effect in generating new (child) population. Strong
mutations are making IWD-CO to find the solution with very less number of
iterations because of it’s ability to make the solution better or constant each
time. From the above, we observe the analogy between GA and IWD-CO and
also the efficacy of IWD-CO with respect to the convergence. We expect better
results if we replace GA with IWD-CO in any of the evolutionary based para-
meters like sharing [1], crowding [2] and sub-population [3] for finding multiple
peaks of a multimodal optimization problems. For this we considered recently
developed MRO [5] and we come up with new hybridized algorithm Intelligent
Water Drops algorithm for Multimodal Spaces (IWD-MS) explained in next
section.



Intelligent Water Drops Algorithm for Multimodal Spaces 21

2 4 6 8 10 12 14 16 18 20

−1

0

1

2

3

4

5

6

7

8

IWD Global best solution vs. specific IWD solution

Iteration number

F
un

ct
io

n 
va

lu
e

Global best solution
IWD:5 solution

Fig. 4. Covergence plot of global best solution and specified IWD solution

3 Intelligent Water Drops Algorithm for Multimodal
Spaces

This paper uses the concept of sub-population bound search for capturing mul-
timodal peaks in a multimodal search space. It uses the concept proposed in
Modified Roaming Optimization [5] by replacing GA with IWD-CO because of
its fast converging capability seen in the Fig. 1, which is key for MRO algorithm.
Figure 5, shows the block diagram of MRO algorithm [5]. IWD-MS algorithms
has been created by including IWD-CO in place of GA in the MRO algorithm.
Figure 6, shows the flowchart of IWD-MS algorithm. The steps in this algorithm
are: Stability Measure, Roaming, Density based cluster removal and Archive
test. These are explained below.

Fig. 5. Block diagram representation of MRO algorithm

Stability Measure: Best agent in each sub-population is regarded as potential
optima. High stable potential optima contributes a near-optima point to the sta-
ble population. Stability measure determines, how better present sub-population
compare to its off-spring sub-population. If a sub-population’s stability exceeds
a predefined threshold then it is considered as high stable population [3]. Let
Pi and P 1

i are ith parent subpopulation and off-spring subpopulation respec-
tively and x∗

i is potential optima of ith subpopulation. Then we define a set ‘B’,
containing the off-springs of Pi which are better than x∗.

B(x∗
i ) =

{
x ∈ P 1

i : x > x∗
i

}
(10)
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Fig. 6. Flow chart representation of IWD-MS

The stability measure of ith subpopulation is defined as,

SM(Pi) = 1 − {B(x∗
i )/|Pi|} (11)

In each iteration potential optima from the high stable populations will be saved.

Roaming: Roaming is necessary to search in the unexplored areas of the search
space. The sub-populations having greater stability will contribute a potential
optima and move to new areas in quest for other optima and mutation is used
in roaming for the purpose of exploring new areas [3].

Density Based Cluster Removal Step: This step is applied on the Stable
Solution Set which contains the points that are near to peaks. Plot of the Stable
Solution Set depicts dense points around all the peaks as shown in Fig. 8. Density
based cluster removal step identifies and saves a peak and removes all the points
around that peak and it repeats the same procedure till the Stable Solution Set
becomes empty. In the process of identifying the cluster, it uses the concept of
density. Here, density is defined as,

density(x, δ) = N/δ (12)

where δ is a small constant and N is no.of points in the range.
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Archive Test: Archive test is applied on the final solutions obtained from Den-
sity based cluster removal step. It finds existence of a valley between every two
solutions. If there is no valley between any two solutions then it’s an indication
that those two points belong to the same peak. Best solution among them is
saved and the other one will be deleted. This step results final solutions(peaks)
of the given multimodal function.

It has been proved that the MRO is more efficient with inclusion of Density
based cluster removal step in reducing the total convergence time as compared to
Roaming Optimization(RO) [3]. This paper focused on checking the capability
of IWD-CO in capturing multiple peaks in a multimodal search space.

4 Simulations and Results

The proposed “Intelligent Water Drops Algorithm for Multimodal Spaces”(IWD-
MS) has been tested on various benchmark test functions shown in Table 1, for its
capability and efficacy in capturing multimodal peaks. Simulations conclusively
show the better convergence times for all benchmark test functions compared to
RO and MRO. Here, for illustrative purpose the Rastrigin benchmark function
f1 with 64 peaks in the range of [-4, 4] has been considered. Figure 7 shows
the surface plot of Rastrigin function and Fig. 8 shows the surface plot with all
stable points. Here, the proposed algorithm took 2.8216 sec. MRO and RO took
6.3165 and 96.434 sec respectively. Figure 9 shows 2-D plot of stable points after
applying the step Density based cluster removal proposed in MRO. Figure 10
shows the Rastrigin function with final solutions of captured 64 peaks after
application of archive test.

Fig. 7. Surface plot
of Rastrigin function

Fig. 8. Rastrigin function
with all Stable points
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Fig. 10. Final plot with
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Table 1. Multimodal benchmark functions

Function Profile Range Peaks

Rastrigin(2D) f1(x, y) = 20 +
2∑

i=1

x
2
i + (−1)

i ∗ 10 cos(2πxi) [−5, 5]2 100

Peaks f2(x, y) = 3(1 − x)2e−x2−y2 − 10((x/5) − x3 −
y5)e−x2−y2 − (1/3)e−(x+1)2−y2

[−3, 3]2 3

Shubert(1D) f3(x) =
5∑

j=1

j cos((j + 1)x + j) [−10, 10]2 19

Shubert(2D) f4(x, y) = (
5∑

i=1

i cos((i+1)x)+i)∗(
5∑

j=1

j cos((j+1)y)+j) [−10, 10]2 361

f5(x, y)(2D) f5(x, y) = cos
2
(x) + cos

2
(y) [−4, 4]2 9

Griewangk(2D) f6(x, y) =
1

4000

2∑

i=1

x
2
i −

2∏

i=1

cos(
xi√

i
) + 1 [−4.8, 4.8]2 4
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(a) 3-D plot of f5
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Fig. 13. (a) 3-D plot of f5 (b) 2-D plot of f5 (c) 3-D plot of f6 (d) 2-D plot of f6

Comparison of Proposed algorithm with MRO and RO: It is already proved in
the MRO [5] that it is taking less convergence time as compared to RO because
of density step. After having conclusions with respect to IWD-CO vs GA, from
chapter-II and from the above example on the Rastrigin function, it is showing
even less convergence time with same number of peaks captured as compared
to MRO and RO. To check the efficacy of the algorithm, it has been applied
to Rastrigin function with various ranges for which the number of peaks also
varies. Table 2 shows the comparison of proposed algorithm with MRO and RO
in terms of their captured peaks and total convergence time. To validate the
proposed algorithm for different characterized multimodal spaces, it has been
applied to three more multimodal space functions which have larger variation in
the number of peaks and search ranges. Figs. 11 and 12 show the 2-D plots of
3-peaks and 19-peaks functions at final iteration. Figure 13(a) shows the 3-D plot
of f5 and Fig. 13(b) shows 2-D plot with the captured peaks of f5 and Fig. 13(c)
shows the 3-D plot of f6 and Fig. 13(d) shows 2-D plot with the captured peaks
of f6. Table 3 shows the comparison chart for all benchmark functions con-
sidered for testing and the efficacy of the algorithm with peaks captured and
convergence time.
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Table 2. Comparison of IWD-MS,
MRO and RO for different ranges of
Rastrigin function

Method Range Total Detected Time

Peaks Peaks (sec)

IWD-MS [−1, 1]2 4 4 0.1796

MRO 4 0.6513

RO 4 1.322

IWD-MS [−2, 2]2 16 16 0.3136

MRO 16 1.8449

RO 16 8.513

IWD-MS [−3, 3]2 36 36 0.8108

MRO 36 2.7393

RO 36 24.623

IWD-MS [−4, 4]2 64 64 2.8216

MRO 64 6.3165

RO 64 96.434

IWD-MS [−5, 5]2 100 100 9.0472

MRO 100 16.1865

RO 100 368.217

Table 3. Comparison of IWD-MS,
MRO and RO for different test func-
tions

Function Method Detected Total Time

Peaks Peaks (sec)

f1 IWD-MS 100 100 9.0472

MRO 100 16.1865

RO 100 368.217

f2 IWD-MS 3 3 0.1470

MRO 3 0.3382

RO 3 0.3891

f3 IWD-MS 19 19 0.1083

MRO 19 0.7295

RO 19 3.189

f4 IWD-MS 361 361 31.1359

MRO 361 53.6204

RO 361 732.5

f5 IWD-MS 9 9 0.15

MRO 9 2.71

RO 9 4.42

f6 IWD-MS 4 4 0.11

MRO 4 1.12

RO 4 1.62

5 Conclusions and Future Works

This paper has made its trails to show the possibility of using the Intelligent
Water Drops algorithm, a nature inspired algorithm for multimodal spaces to
capture peaks. The process of comparing IWD-CO with GA, shows slow conver-
gence in GA in each iteration for both free and strong mutations and fastness
as basis, later by replacing IWD-CO with GA in MRO algorithm for different
test functions to capture multimodal peaks depicting that the convergence time
with IWD-MS is very less compared to GA in MRO and RO. These results cre-
ating a new path in the evolutionary algorithms that GA can be replaced with
IWD-CO in other themes like sharing, crowding which are also other techniques
in multimodal optimization problems.
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