
Chapter 1

Uncertain Measure

Uncertainty theory was founded by Liu [122] in 2007 and subsequently studied
by many researchers. Nowadays uncertainty theory has become a branch of
axiomatic mathematics for modeling belief degrees. This chapter will present
normality, duality, subadditivity and product axioms of uncertainty theory.
From those four axioms, this chapter will also introduce an uncertain measure
that is a fundamental concept in uncertainty theory. In addition, product
uncertain measure and conditional uncertain measure will be explored at the
end of this chapter.

1.1 Measurable Space

From the mathematical viewpoint, uncertainty theory is essentially an al-
ternative theory of measure. Thus uncertainty theory should begin with a
measurable space. In order to learn uncertainty theory, let us introduce al-
gebra, σ-algebra, measurable set, Borel algebra, Borel set, and measurable
function. The main results in this section are well-known. For this reason
the credit references are not provided. You may skip this section if you are
familiar with them.

Definition 1.1 Let Γ be a nonempty set (sometimes called universal set).
A collection L consisting of subsets of Γ is called an algebra over Γ if the
following three conditions hold: (a) Γ ∈ L; (b) if Λ ∈ L, then Λc ∈ L; and
(c) if Λ1,Λ2, · · · ,Λn ∈ L, then

n⋃
i=1

Λi ∈ L. (1.1)

The collection L is called a σ-algebra over Γ if the condition (c) is replaced
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with closure under countable union, i.e., when Λ1,Λ2, · · · ∈ L, we have

∞⋃
i=1

Λi ∈ L. (1.2)

Example 1.1: The collection {∅,Γ} is the smallest σ-algebra over Γ, and
the power set (i.e., all subsets of Γ) is the largest σ-algebra.

Example 1.2: Let Λ be a proper nonempty subset of Γ. Then {∅,Λ,Λc,Γ}
is a σ-algebra over Γ.

Example 1.3: Let L be the collection of all finite disjoint unions of all
intervals of the form

(−∞, a], (a, b], (b,∞), ∅. (1.3)

Then L is an algebra over < (the set of real numbers), but not a σ-algebra
because Λi = (0, (i− 1)/i] ∈ L for all i but

∞⋃
i=1

Λi = (0, 1) 6∈ L. (1.4)

Example 1.4: A σ-algebra L is closed under countable union, countable
intersection, difference, and limit. That is, if Λ1,Λ2, · · · ∈ L, then

∞⋃
i=1

Λi ∈ L;
∞⋂
i=1

Λi ∈ L; Λ1 \ Λ2 ∈ L; lim
i→∞

Λi ∈ L. (1.5)

Definition 1.2 Let Γ be a nonempty set, and let L be a σ-algebra over Γ.
Then (Γ,L) is called a measurable space, and any element in L is called a
measurable set.

Example 1.5: Let < be the set of real numbers. Then L = {∅,<} is a
σ-algebra over <. Thus (<,L) is a measurable space. Note that there exist
only two measurable sets in this space, one is ∅ and another is <. Keep in
mind that the intervals like [0, 1] and (0,+∞) are not measurable!

Example 1.6: Let Γ = {a, b, c}. Then L = {∅, {a}, {b, c},Γ} is a σ-algebra
over Γ. Thus (Γ,L) is a measurable space. Furthermore, {a} and {b, c} are
measurable sets in this space, but {b}, {c}, {a, b}, {a, c} are not.

Definition 1.3 The smallest σ-algebra B containing all open intervals is
called the Borel algebra over the set of real numbers, and any element in B

is called a Borel set.
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Example 1.7: It has been proved that intervals, open sets, closed sets,
rational numbers, and irrational numbers are all Borel sets.

Example 1.8: There exists a non-Borel set over <. Let [a] represent the set
of all rational numbers plus a. Note that if a1 − a2 is not a rational number,
then [a1] and [a2] are disjoint sets. Thus < is divided into an infinite number
of those disjoint sets. Let A be a new set containing precisely one element
from them. Then A is not a Borel set.

Definition 1.4 A function f from a measurable space (Γ,L) to the set of
real numbers is said to be measurable if

f−1(B) = {γ ∈ Γ | f(γ) ∈ B} ∈ L (1.6)

for any Borel set B of real numbers.

Continuous function and monotone function are instances of measurable
function. Let f1, f2, · · · be a sequence of measurable functions. Then the
following functions are also measurable:

sup
1≤i<∞

fi(γ); inf
1≤i<∞

fi(γ); lim sup
i→∞

fi(γ); lim inf
i→∞

fi(γ). (1.7)

Especially, if limi→∞ fi(γ) exists for each γ, then the limit is also a measur-
able function.

1.2 Event

Let (Γ,L) be a measurable space. Recall that each element Λ in L is called
a measurable set. The first action we take is to rename measurable set as
event in uncertainty theory.

How do we understand those terminologies? Let us illustrate them by an
indeterminate quantity (e.g. bridge strength). At first, the universal set Γ
consists of all possible outcomes of the indeterminate quantity. If we believe
that the possible bridge strengths range from 80 to 120 in tons, then the
universal set is

Γ = [80, 120]. (1.8)

Note that you may replace the universal set with an enlarged interval, and
it would have no impact.

The σ-algebra L should contain all events we are concerned about. Note
that event and proposition are synonymous although the former is a set and
the latter is a statement. Assume the first event we are concerned about
corresponds to the proposition “the bridge strength is less than or equal to
100 tons”. Then it may be represented by

Λ1 = [80, 100]. (1.9)
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Also assume the second event we are concerned about corresponds to the
proposition “the bridge strength is more than 100 tons”. Then it may be
represented by

Λ2 = (100, 120]. (1.10)

If we are only concerned about the above two events, then we may construct
a σ-algebra L containing the two events Λ1 and Λ2, for example,

L = {∅, Λ1, Λ2, Γ}. (1.11)

In this case, we totally have four events: ∅, Λ1, Λ2 and Γ. However, please
note that the subsets like [80, 90] and [110, 120] are not events because they
do not belong to L.

Keep in mind that different σ-algebras are used for different purposes.
The minimum requirement of a σ-algebra is that it contains all events we
are concerned about. It is suggested to take the minimum σ-algebra that
contains those events.

1.3 Uncertain Measure

Let us define an uncertain measure M on the σ-algebra L. That is, a number
M{Λ} will be assigned to each event Λ to indicate the belief degree with
which we believe Λ will happen. There is no doubt that the assignment is
not arbitrary, and the uncertain measure M must have certain mathematical
properties. In order to rationally deal with belief degrees, Liu [122] suggested
the following three axioms:

Axiom 1. (Normality Axiom) M{Γ} = 1 for the universal set Γ.

Axiom 2. (Duality Axiom) M{Λ}+ M{Λc} = 1 for any event Λ.

Axiom 3. (Subadditivity Axiom) For every countable sequence of events Λ1,
Λ2, · · · , we have

M

{ ∞⋃
i=1

Λi

}
≤
∞∑
i=1

M{Λi}. (1.12)

Remark 1.1: Uncertain measure is interpreted as the personal belief degree
(not frequency) of an uncertain event that may happen. It depends on the
personal knowledge concerning the event. The uncertain measure will change
if the state of knowledge changes.

Remark 1.2: Duality axiom is in fact an application of the law of truth
conservation in uncertainty theory. The property ensures that the uncer-
tainty theory is consistent with the law of excluded middle and the law of
contradiction. In addition, the human thinking is always dominated by the
duality. For example, if someone says a proposition is true with belief degree
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0.6, then all of us will think that the proposition is false with belief degree
0.4.

Remark 1.3: Given two events with known belief degrees, it is frequently
asked that how the belief degree for their union is generated from the in-
dividuals. Personally, I do not think there exists any rule to make it. A
lot of surveys showed that, generally speaking, the belief degree of a union
of events is neither the sum of belief degrees of the individual events (e.g.
probability measure) nor the maximum (e.g. possibility measure). Perhaps
there is no explicit relation between the union and individuals except for the
subadditivity axiom.

Remark 1.4: Pathology occurs if subadditivity axiom is not assumed. For
example, suppose that a universal set contains 3 elements. We define a set
function that takes value 0 for each singleton, and 1 for each event with at
least 2 elements. Then such a set function satisfies all axioms but subaddi-
tivity. Do you think it is strange if such a set function serves as a measure?

Remark 1.5: Although probability measure satisfies the above three axioms,
probability theory is not a special case of uncertainty theory because the
product probability measure does not satisfy the fourth axiom, namely the
product axiom on Page 17.

Definition 1.5 (Liu [122]) The set function M is called an uncertain mea-
sure if it satisfies the normality, duality, and subadditivity axioms.

Exercise 1.1: Let Γ = {γ1, γ2, γ3}. It is clear that there exist 8 events in
the σ-algebra

L = {∅, {γ1}, {γ2}, {γ3}, {γ1, γ2}, {γ1, γ3}, {γ2, γ3}, Γ}. (1.13)

Assume c1, c2, c3 are nonnegative numbers satisfying the consistency condi-
tion

ci + cj ≤ 1 ≤ c1 + c2 + c3, ∀i 6= j. (1.14)

Define

M{γ1} = c1, M{γ2} = c2, M{γ3} = c3,

M{γ1, γ2} = 1− c3, M{γ1, γ3} = 1− c2, M{γ2, γ3} = 1− c1,

M{∅} = 0, M{Γ} = 1.

Show that M is an uncertain measure.

Exercise 1.2: Suppose that λ(x) is a nonnegative function on < (the set of
real numbers) such that

sup
x∈<

λ(x) = 0.5. (1.15)
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Define a set function

M{Λ} =


sup
x∈Λ

λ(x), if sup
x∈Λ

λ(x) < 0.5

1− sup
x∈Λc

λ(x), if sup
x∈Λ

λ(x) = 0.5
(1.16)

for each Borel set Λ. Show that M is an uncertain measure on <.

Exercise 1.3: Suppose ρ(x) is a nonnegative and integrable function on <
(the set of real numbers) such that∫

<
ρ(x)dx ≥ 1. (1.17)

Define a set function

M{Λ} =



∫
Λ

ρ(x)dx, if

∫
Λ

ρ(x)dx < 0.5

1−
∫

Λc

ρ(x)dx, if

∫
Λc

ρ(x)dx < 0.5

0.5, otherwise

(1.18)

for each Borel set Λ. Show that M is an uncertain measure on <.

Theorem 1.1 (Monotonicity Theorem) Uncertain measure M is a mono-
tone increasing set function. That is, for any events Λ1 ⊂ Λ2, we have

M{Λ1} ≤M{Λ2}. (1.19)

Proof: The normality axiom says M{Γ} = 1, and the duality axiom says
M{Λc1} = 1 −M{Λ1}. Since Λ1 ⊂ Λ2, we have Γ = Λc1 ∪ Λ2. By using the
subadditivity axiom, we obtain

1 = M{Γ} ≤M{Λc1}+ M{Λ2} = 1−M{Λ1}+ M{Λ2}.

Thus M{Λ1} ≤M{Λ2}.

Theorem 1.2 Suppose that M is an uncertain measure. Then the empty set
∅ has an uncertain measure zero, i.e.,

M{∅} = 0. (1.20)

Proof: Since ∅ = Γc and M{Γ} = 1, it follows from the duality axiom that

M{∅} = 1−M{Γ} = 1− 1 = 0.

Theorem 1.3 Suppose that M is an uncertain measure. Then for any event
Λ, we have

0 ≤M{Λ} ≤ 1. (1.21)
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Proof: It follows from the monotonicity theorem that 0 ≤M{Λ} ≤ 1 because
∅ ⊂ Λ ⊂ Γ and M{∅} = 0, M{Γ} = 1.

Theorem 1.4 Let Λ1,Λ2, · · · be a sequence of events with M{Λi} → 0 as
i→∞. Then for any event Λ, we have

lim
i→∞

M{Λ ∪ Λi} = lim
i→∞

M{Λ\Λi} = M{Λ}. (1.22)

Especially, an uncertain measure remains unchanged if the event is enlarged
or reduced by an event with uncertain measure zero.

Proof: It follows from the monotonicity theorem and subadditivity axiom
that

M{Λ} ≤M{Λ ∪ Λi} ≤M{Λ}+ M{Λi}
for each i. Thus we get M{Λ ∪ Λi} → M{Λ} by using M{Λi} → 0. Since
(Λ\Λi) ⊂ Λ ⊂ ((Λ\Λi) ∪ Λi), we have

M{Λ\Λi} ≤M{Λ} ≤M{Λ\Λi}+ M{Λi}.

Hence M{Λ\Λi} →M{Λ} by using M{Λi} → 0.

Theorem 1.5 (Asymptotic Theorem) For any events Λ1,Λ2, · · · , we have

lim
i→∞

M{Λi} > 0, if Λi ↑ Γ, (1.23)

lim
i→∞

M{Λi} < 1, if Λi ↓ ∅. (1.24)

Proof: Assume Λi ↑ Γ. Since Γ = ∪iΛi, it follows from the subadditivity
axiom that

1 = M{Γ} ≤
∞∑
i=1

M{Λi}.

Since M{Λi} is increasing with respect to i, we have limi→∞M{Λi} > 0. If
Λi ↓ ∅, then Λci ↑ Γ. It follows from the first inequality and the duality axiom
that

lim
i→∞

M{Λi} = 1− lim
i→∞

M{Λci} < 1.

The theorem is proved.

Example 1.9: Assume Γ is the set of real numbers. Let α be a number with
0 < α ≤ 0.5. Define a set function as follows,

M{Λ} =



0, if Λ = ∅
α, if Λ is upper bounded

0.5, if both Λ and Λc are upper unbounded

1− α, if Λc is upper bounded

1, if Λ = Γ.

(1.25)

It is easy to verify that M is an uncertain measure. Write Λi = (−∞, i] for
i = 1, 2, · · · Then Λi ↑ Γ and limi→∞M{Λi} = α. Furthermore, we have
Λci ↓ ∅ and limi→∞M{Λci} = 1− α.
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1.4 Uncertainty Space

Definition 1.6 (Liu [122]) Let Γ be a nonempty set, let L be a σ-algebra
over Γ, and let M be an uncertain measure. Then the triplet (Γ,L,M) is
called an uncertainty space.

For practical purposes, the study of uncertainty spaces is sometimes re-
stricted to complete uncertainty spaces.

Definition 1.7 An uncertainty space (Γ,L,M) is called complete if for any
Λ1,Λ2 ∈ L with M{Λ1} = M{Λ2} and any subset A with Λ1 ⊂ A ⊂ Λ2, one
has A ∈ L. In this case, we also have

M{A} = M{Λ1} = M{Λ2}. (1.26)

Exercise 1.4: Let (Γ,L,M) be a complete uncertainty space, and let Λ be
an event with M{Λ} = 0. Show that A is an event and M{A} = 0 whenever
A ⊂ Λ.

Exercise 1.5: Let (Γ,L,M) be a complete uncertainty space, and let Λ be
an event with M{Λ} = 1. Show that A is an event and M{A} = 1 whenever
A ⊃ Λ.

Definition 1.8 (Gao [48]) An uncertainty space (Γ,L,M) is called contin-
uous if for any events Λ1,Λ2, · · · , we have

M
{

lim
i→∞

Λi

}
= lim
i→∞

M{Λi} (1.27)

provided that limi→∞ Λi exists.

Exercise 1.6: Let (Γ,L,M) be a continuous uncertainty space. For any
events Λ1,Λ2, · · · , show that

lim
i→∞

M{Λi} = 1, if Λi ↑ Γ, (1.28)

lim
i→∞

M{Λi} = 0, if Λi ↓ ∅. (1.29)

1.5 Product Uncertain Measure

Product uncertain measure was defined by Liu [125] in 2009, thus producing
the fourth axiom of uncertainty theory. Let (Γk,Lk,Mk) be uncertainty
spaces for k = 1, 2, · · · Write

Γ = Γ1 × Γ2 × · · · (1.30)
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that is the set of all ordered tuples of the form (γ1, γ2, · · · ), where γk ∈ Γk
for k = 1, 2, · · · A measurable rectangle in Γ is a set

Λ = Λ1 × Λ2 × · · · (1.31)

where Λk ∈ Lk for k = 1, 2, · · · The smallest σ-algebra containing all mea-
surable rectangles of Γ is called the product σ-algebra, denoted by

L = L1 × L2 × · · · (1.32)

Then the product uncertain measure M on the product σ-algebra L is defined
by the following product axiom (Liu [125]).

Axiom 4. (Product Axiom) Let (Γk,Lk,Mk) be uncertainty spaces for k =
1, 2, · · · The product uncertain measure M is an uncertain measure satisfying

M

{ ∞∏
k=1

Λk

}
=
∞∧
k=1

Mk{Λk} (1.33)

where Λk are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.

Remark 1.6: Note that (1.33) defines a product uncertain measure only for
rectangles. How do we extend the uncertain measure M from the class of
rectangles to the product σ-algebra L? For each event Λ ∈ L, we have

M{Λ} =



sup
Λ1×Λ2×···⊂Λ

min
1≤k<∞

Mk{Λk},

if sup
Λ1×Λ2×···⊂Λ

min
1≤k<∞

Mk{Λk} > 0.5

1− sup
Λ1×Λ2×···⊂Λc

min
1≤k<∞

Mk{Λk},

if sup
Λ1×Λ2×···⊂Λc

min
1≤k<∞

Mk{Λk} > 0.5

0.5, otherwise.

(1.34)

Remark 1.7: Note that the sum of the uncertain measures of the maximum
rectangles in Λ and Λc is always less than or equal to 1, i.e.,

sup
Λ1×Λ2×···⊂Λ

min
1≤k<∞

Mk{Λk}+ sup
Λ1×Λ2×···⊂Λc

min
1≤k<∞

Mk{Λk} ≤ 1.

This means that at most one of

sup
Λ1×Λ2×···⊂Λ

min
1≤k<∞

Mk{Λk} and sup
Λ1×Λ2×···⊂Λc

min
1≤k<∞

Mk{Λk}

is greater than 0.5. Thus the expression (1.34) is reasonable.
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Figure 1.1: Extension from Rectangles to Product σ-Algebra. The uncertain
measure of Λ (the disk) is essentially the acreage of its inscribed rectangle
Λ1×Λ2 if it is greater than 0.5. Otherwise, we have to examine its complement
Λc. If the inscribed rectangle of Λc is greater than 0.5, then M{Λc} is just
its inscribed rectangle and M{Λ} = 1 −M{Λc}. If there does not exist an
inscribed rectangle of Λ or Λc greater than 0.5, then we set M{Λ} = 0.5.
Reprinted from Liu [129].

Remark 1.8: If the sum of the uncertain measures of the maximum rect-
angles in Λ and Λc is just 1, i.e.,

sup
Λ1×Λ2×···⊂Λ

min
1≤k<∞

Mk{Λk}+ sup
Λ1×Λ2×···⊂Λc

min
1≤k<∞

Mk{Λk} = 1,

then the product uncertain measure (1.34) is simplified as

M{Λ} = sup
Λ1×Λ2×···⊂Λ

min
1≤k<∞

Mk{Λk}. (1.35)

Theorem 1.6 (Peng and Iwamura [185]) The product uncertain measure
defined by (1.34) is an uncertain measure.

Proof: In order to prove that the product uncertain measure (1.34) is indeed
an uncertain measure, we should verify that the product uncertain measure
satisfies the normality, duality and subadditivity axioms.

Step 1: The product uncertain measure is clearly normal, i.e., M{Γ} = 1.

Step 2: We prove the duality, i.e., M{Λ} + M{Λc} = 1. The argument
breaks down into three cases. Case 1: Assume

sup
Λ1×Λ2×···⊂Λ

min
1≤k<∞

Mk{Λk} > 0.5.
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Then we immediately have

sup
Λ1×Λ2×···⊂Λc

min
1≤k<∞

Mk{Λk} < 0.5.

It follows from (1.34) that

M{Λ} = sup
Λ1×Λ2×···⊂Λ

min
1≤k<∞

Mk{Λk},

M{Λc} = 1− sup
Λ1×Λ2×···⊂(Λc)c

min
1≤k<∞

Mk{Λk} = 1−M{Λ}.

The duality is proved. Case 2: Assume

sup
Λ1×Λ2×···⊂Λc

min
1≤k<∞

Mk{Λk} > 0.5.

This case may be proved by a similar process. Case 3: Assume

sup
Λ1×Λ2×···⊂Λ

min
1≤k<∞

Mk{Λk} ≤ 0.5

and
sup

Λ1×Λ2×···⊂Λc

min
1≤k<∞

Mk{Λk} ≤ 0.5.

It follows from (1.34) that M{Λ} = M{Λc} = 0.5 which proves the duality.

Step 3: Let us prove that M is an increasing set function. Suppose Λ
and ∆ are two events in L with Λ ⊂ ∆. The argument breaks down into
three cases. Case 1: Assume

sup
Λ1×Λ2×···⊂Λ

min
1≤k<∞

Mk{Λk} > 0.5.

Then

sup
∆1×∆2×···⊂∆

min
1≤k<∞

Mk{∆k} ≥ sup
Λ1×Λ2×···⊂Λ

min
1≤k<∞

Mk{Λk} > 0.5.

It follows from (1.34) that M{Λ} ≤M{∆}. Case 2: Assume

sup
∆1×∆2×···⊂∆c

min
1≤k<∞

Mk{∆k} > 0.5.

Then

sup
Λ1×Λ2×···⊂Λc

min
1≤k<∞

Mk{Λk} ≥ sup
∆1×∆2×···⊂∆c

min
1≤k<∞

Mk{∆k} > 0.5.

Thus
M{Λ} = 1− sup

Λ1×Λ2×···⊂Λc

min
1≤k<∞

Mk{Λk}

≤ 1− sup
∆1×∆2×···⊂∆c

min
1≤k<∞

Mk{∆k} = M{∆}.
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Case 3: Assume
sup

Λ1×Λ2×···⊂Λ
min

1≤k<∞
Mk{Λk} ≤ 0.5

and
sup

∆1×∆2×···⊂∆c

min
1≤k<∞

Mk{∆k} ≤ 0.5.

Then
M{Λ} ≤ 0.5 ≤ 1−M{∆c} = M{∆}.

Step 4: Finally, we prove the subadditivity of M. For simplicity, we only
prove the case of two events Λ and ∆. The argument breaks down into three
cases. Case 1: Assume M{Λ} < 0.5 and M{∆} < 0.5. For any given ε > 0,
there are two rectangles

Λ1 × Λ2 × · · · ⊂ Λc, ∆1 ×∆2 × · · · ⊂ ∆c

such that
1− min

1≤k<∞
Mk{Λk} ≤M{Λ}+ ε/2,

1− min
1≤k<∞

Mk{∆k} ≤M{∆}+ ε/2.

Note that
(Λ1 ∩∆1)× (Λ2 ∩∆2)× · · · ⊂ (Λ ∪∆)c.

It follows from the duality and subadditivity axioms that

Mk{Λk ∩∆k} = 1−Mk{(Λk ∩∆k)c} = 1−Mk{Λck ∪∆c
k}

≥ 1− (Mk{Λck}+ Mk{∆c
k})

= 1− (1−Mk{Λk})− (1−Mk{∆k})

= Mk{Λk}+ Mk{∆k} − 1

for any k. Thus

M{Λ ∪∆} ≤ 1− min
1≤k<∞

Mk{Λk ∩∆k}

≤ 1− min
1≤k<∞

Mk{Λk}+ 1− min
1≤k<∞

Mk{∆k}

≤M{Λ}+ M{∆}+ ε.

Letting ε→ 0, we obtain

M{Λ ∪∆} ≤M{Λ}+ M{∆}.

Case 2: Assume M{Λ} ≥ 0.5 and M{∆} < 0.5. When M{Λ ∪∆} = 0.5, the
subadditivity is obvious. Now we consider the case M{Λ ∪ ∆} > 0.5, i.e.,
M{Λc ∩∆c} < 0.5. By using Λc ∪∆ = (Λc ∩∆c) ∪∆ and Case 1, we get

M{Λc ∪∆} ≤M{Λc ∩∆c}+ M{∆}.
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Thus

M{Λ ∪∆} = 1−M{Λc ∩∆c} ≤ 1−M{Λc ∪∆}+ M{∆}

≤ 1−M{Λc}+ M{∆} = M{Λ}+ M{∆}.

Case 3: If both M{Λ} ≥ 0.5 and M{∆} ≥ 0.5, then the subadditivity is
obvious because M{Λ}+ M{∆} ≥ 1. The theorem is proved.

Definition 1.9 Assume (Γk,Lk,Mk) are uncertainty spaces for k = 1, 2, · · ·
Let Γ = Γ1 × Γ2 × · · · , L = L1 ×L2 × · · · and M = M1 ∧M2 ∧ · · · Then the
triplet (Γ,L,M) is called a product uncertainty space.

1.6 Independence

Definition 1.10 (Liu [129]) The events Λ1,Λ2, · · · ,Λn are said to be inde-
pendent if

M

{
n⋂
i=1

Λ∗i

}
=

n∧
i=1

M{Λ∗i } (1.36)

where Λ∗i are arbitrarily chosen from {Λi,Λci ,Γ}, i = 1, 2, · · · , n, respectively,
and Γ is the sure event.

Remark 1.9: Especially, two events Λ1 and Λ2 are independent if and only
if

M {Λ∗1 ∩ Λ∗2} = M{Λ∗1} ∧M{Λ∗2} (1.37)

where Λ∗i are arbitrarily chosen from {Λi,Λci}, i = 1, 2, respectively. That is,
the following four equations hold:

M{Λ1 ∩ Λ2} = M{Λ1} ∧M{Λ2},
M{Λc1 ∩ Λ2} = M{Λc1} ∧M{Λ2},
M{Λ1 ∩ Λc2} = M{Λ1} ∧M{Λc2},
M{Λc1 ∩ Λc2} = M{Λc1} ∧M{Λc2}.

Example 1.10: The impossible event ∅ is independent of any event Λ be-
cause ∅c = Γ and

M{∅ ∩ Λ} = M{∅} = M{∅} ∧M{Λ},
M{∅c ∩ Λ} = M{Λ} = M{∅c} ∧M{Λ},
M{∅ ∩ Λc} = M{∅} = M{∅} ∧M{Λc},

M{∅c ∩ Λc} = M{Λc} = M{∅c} ∧M{Λc}.
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Example 1.11: The sure event Γ is independent of any event Λ because
Γc = ∅ and

M{Γ ∩ Λ} = M{Λ} = M{Γ} ∧M{Λ},
M{Γc ∩ Λ} = M{Γc} = M{Γc} ∧M{Λ},
M{Γ ∩ Λc} = M{Λc} = M{Γ} ∧M{Λc},
M{Γc ∩ Λc} = M{Γc} = M{Γc} ∧M{Λc}.

Example 1.12: Generally speaking, an event Λ is not independent of itself
because

M{Λ ∩ Λc} 6= M{Λ} ∧M{Λc}

whenever M{Λ} is neither 1 nor 0.

Theorem 1.7 (Liu [129]) The events Λ1,Λ2, · · · ,Λn are independent if and
only if

M

{
n⋃
i=1

Λ∗i

}
=

n∨
i=1

M{Λ∗i } (1.38)

where Λ∗i are arbitrarily chosen from {Λi,Λci , ∅}, i = 1, 2, · · · , n, respectively,
and ∅ is the impossible event.

Proof: Assume Λ1,Λ2, · · · ,Λn are independent events. It follows from the
duality of uncertain measure that

M

{
n⋃
i=1

Λ∗i

}
= 1−M

{
n⋂
i=1

Λ∗ci

}
= 1−

n∧
i=1

M{Λ∗ci } =
n∨
i=1

M{Λ∗i }

where Λ∗i are arbitrarily chosen from {Λi,Λci , ∅}, i = 1, 2, · · · , n, respectively.
The equation (1.38) is proved. Conversely, if the equation (1.38) holds, then

M

{
n⋂
i=1

Λ∗i

}
= 1−M

{
n⋃
i=1

Λ∗ci

}
= 1−

n∨
i=1

M{Λ∗ci } =
n∧
i=1

M{Λ∗i }.

where Λ∗i are arbitrarily chosen from {Λi,Λci ,Γ}, i = 1, 2, · · · , n, respectively.
The equation (1.36) is true. The theorem is proved.

Theorem 1.8 (Liu [137]) Let (Γk,Lk,Mk) be uncertainty spaces and Λk ∈
Lk for k = 1, 2, · · · , n. Then the events

Γ1 × · · · × Γk−1 × Λk × Γk+1 × · · · × Γn, k = 1, 2, · · · , n (1.39)

are always independent in the product uncertainty space. That is, the events

Λ1, Λ2, · · · ,Λn (1.40)

are always independent if they are from different uncertainty spaces.
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Figure 1.2: (Λ1 × Γ2) ∩ (Γ1 × Λ2) = Λ1 × Λ2

Proof: For simplicity, we only prove the case of n = 2. It follows from the
product axiom that the product uncertain measure of the intersection is

M{(Λ1 × Γ2) ∩ (Γ1 × Λ2)} = M{Λ1 × Λ2} = M1{Λ1} ∧M2{Λ2}.

By using M{Λ1 × Γ2} = M1{Λ1} and M{Γ1 × Λ2} = M2{Λ2}, we obtain

M{(Λ1 × Γ2) ∩ (Γ1 × Λ2)} = M{Λ1 × Γ2} ∧M{Γ1 × Λ2}.

Similarly, we may prove that

M{(Λ1 × Γ2)c ∩ (Γ1 × Λ2)} = M{(Λ1 × Γ2)c} ∧M{Γ1 × Λ2},

M{(Λ1 × Γ2) ∩ (Γ1 × Λ2)c} = M{Λ1 × Γ2} ∧M{(Γ1 × Λ2)c},

M{(Λ1 × Γ2)c ∩ (Γ1 × Λ2)c} = M{(Λ1 × Γ2)c} ∧M{(Γ1 × Λ2)c}.

Thus Λ1 × Γ2 and Γ1 × Λ2 are independent events. Furthermore, since Λ1

and Λ2 are understood as Λ1 × Γ2 and Γ1 × Λ2 in the product uncertainty
space, respectively, the two events Λ1 and Λ2 are also independent.

1.7 Polyrectangular Theorem

Let (Γ1,L1,M1) and (Γ2,L2,M2) be two uncertainty spaces, Λ1 ∈ L1 and
Λ2 ∈ L2. It follows from the product axiom that the rectangle Λ1 × Λ2 has
an uncertain measure

M{Λ1 × Λ2} = M1{Λ1} ∧M2{Λ2}. (1.41)

This section will extend this result to a more general case.
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Definition 1.11 (Liu [137]) Let (Γ1,L1,M1) and (Γ2,L2,M2) be two un-
certainty spaces. A set on Γ1 × Γ2 is called a polyrectangle if it has the form

Λ =
m⋃
i=1

(Λ1i × Λ2i) (1.42)

where Λ1i ∈ L1 and Λ2i ∈ L2 for i = 1, 2, · · · ,m, and

Λ11 ⊂ Λ12 ⊂ · · · ⊂ Λ1m, (1.43)

Λ21 ⊃ Λ22 ⊃ · · · ⊃ Λ2m. (1.44)

A rectangle Λ1×Λ2 is clearly a polyrectangle. In addition, a “cross”-like
set is also a polyrectangle. See Figure 1.3.

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....................

...............

Γ1

Γ2

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

................................................................................................................................................................................................................................................................................................................................................................................................................................................ .......
.......
.......
.......
.......
.......
.......
.......
...................................................

.......

.......

.......

.......

.......

.......

.......

...................................................
.......
.......
.......
.......
.......
.......
.......
........................................................................................................................................................................................................................................................................................................................................................ .......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................................................................................................................................................................................................................................................................................................................................................................................................................................................

Figure 1.3: Three Polyrectangles

Theorem 1.9 (Liu [137], Polyrectangular Theorem) Let (Γ1,L1,M1) and
(Γ2,L2,M2) be two uncertainty spaces. Then the polyrectangle

Λ =
m⋃
i=1

(Λ1i × Λ2i) (1.45)

on the product uncertainty space (Γ1,L1,M1)×(Γ2,L2,M2) has an uncertain
measure

M{Λ} =
m∨
i=1

M1{Λ1i} ∧M2{Λ2i}. (1.46)

Proof: It is clear that the maximum rectangle in the polyrectangle Λ is one
of Λ1i × Λ2i, i = 1, 2, · · · , n. Denote the maximum rectangle by Λ1k × Λ2k.
Case I: If

M{Λ1k × Λ2k} = M1{Λ1k},

then the maximum rectangle in Λc is Λc1k × Λc2,k+1, and

M{Λc1k × Λc2,k+1} = M1{Λc1k} = 1−M1{Λ1k}.
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Thus
M{Λ1k × Λ2k}+ M{Λc1k × Λc2,k+1} = 1.

Case II: If
M{Λ1k × Λ2k} = M2{Λ2k},

then the maximum rectangle in Λc is Λc1,k−1 × Λc2k, and

M{Λc1,k−1 × Λc2k} = M2{Λc2k} = 1−M2{Λ2k}.

Thus
M{Λ1k × Λ2k}+ M{Λc1,k−1 × Λc2k} = 1.

No matter what case happens, the sum of the uncertain measures of the
maximum rectangles in Λ and Λc is always 1. It follows from the product
axiom that (1.46) holds.

Remark 1.10: Note that the polyrectangular theorem is also applicable to
the polyrectangles that are unions of infinitely many rectangles. In this case,
the polyrectangles may become the shapes in Figure 1.4.
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Figure 1.4: Three Deformed Polyrectangles

1.8 Conditional Uncertain Measure

We consider the uncertain measure of an event A after it has been learned
that some other event B has occurred. This new uncertain measure of A is
called the conditional uncertain measure of A given B.

In order to define a conditional uncertain measure M{A|B}, at first we
have to enlarge M{A ∩ B} because M{A ∩ B} < 1 for all events whenever
M{B} < 1. It seems that we have no alternative but to divide M{A∩B} by
M{B}. Unfortunately, M{A∩B}/M{B} is not always an uncertain measure.
However, the value M{A|B} should not be greater than M{A ∩ B}/M{B}
(otherwise the normality will be lost), i.e.,

M{A|B} ≤ M{A ∩B}
M{B}

. (1.47)
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On the other hand, in order to preserve the duality, we should have

M{A|B} = 1−M{Ac|B} ≥ 1− M{Ac ∩B}
M{B}

. (1.48)

Furthermore, since (A ∩B) ∪ (Ac ∩B) = B, we have M{B} ≤M{A ∩B}+
M{Ac ∩B} by using the subadditivity axiom. Thus

0 ≤ 1− M{Ac ∩B}
M{B}

≤ M{A ∩B}
M{B}

≤ 1. (1.49)

Hence any numbers between 1−M{Ac∩B}/M{B} and M{A∩B}/M{B} are
reasonable values that the conditional uncertain measure may take. Based
on the maximum uncertainty principle (Liu [122]), we have the following
conditional uncertain measure.

Definition 1.12 (Liu [122]) Let (Γ,L,M) be an uncertainty space, and A,B ∈
L. Then the conditional uncertain measure of A given B is defined by

M{A|B} =



M{A ∩B}
M{B}

, if
M{A ∩B}
M{B}

< 0.5

1− M{Ac ∩B}
M{B}

, if
M{Ac ∩B}

M{B}
< 0.5

0.5, otherwise

(1.50)

provided that M{B} > 0.

Remark 1.11: It follows immediately from the definition of conditional
uncertain measure that

1− M{Ac ∩B}
M{B}

≤M{A|B} ≤ M{A ∩B}
M{B}

. (1.51)

Furthermore, the conditional uncertain measure obeys the maximum uncer-
tainty principle, and takes values as close to 0.5 as possible.

Remark 1.12: The conditional uncertain measure M{A|B} yields the pos-
terior uncertain measure of A after the occurrence of event B.

Theorem 1.10 Let (Γ,L,M) be an uncertainty space, and let B be an event
with M{B} > 0. Then M{·|B} defined by (1.50) is an uncertain measure,
and (Γ,L,M{·|B}) is an uncertainty space.

Proof: It is sufficient to prove that M{·|B} satisfies the normality, duality
and subadditivity axioms. At first, it satisfies the normality axiom, i.e.,

M{Γ|B} = 1− M{Γc ∩B}
M{B}

= 1− M{∅}
M{B}

= 1.
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For any event A, if

M{A ∩B}
M{B}

≥ 0.5,
M{Ac ∩B}

M{B}
≥ 0.5,

then we have M{A|B}+ M{Ac|B} = 0.5 + 0.5 = 1 immediately. Otherwise,
without loss of generality, suppose

M{A ∩B}
M{B}

< 0.5 <
M{Ac ∩B}

M{B}
,

then we have

M{A|B}+ M{Ac|B} =
M{A ∩B}
M{B}

+

(
1− M{A ∩B}

M{B}

)
= 1.

That is, M{·|B} satisfies the duality axiom. Finally, for any countable se-
quence {Ai} of events, if M{Ai|B} < 0.5 for all i, it follows from (1.51) and
the subadditivity axiom that

M

{ ∞⋃
i=1

Ai |B

}
≤

M

{ ∞⋃
i=1

Ai ∩B

}
M{B}

≤

∞∑
i=1

M{Ai ∩B}

M{B}
=

∞∑
i=1

M{Ai|B}.

Suppose there is one term greater than 0.5, say

M{A1|B} ≥ 0.5, M{Ai|B} < 0.5, i = 2, 3, · · ·

If M{∪iAi|B} = 0.5, then we immediately have

M

{ ∞⋃
i=1

Ai |B

}
≤
∞∑
i=1

M{Ai|B}.

If M{∪iAi|B} > 0.5, we may prove the above inequality by the following
facts:

Ac1 ∩B ⊂
∞⋃
i=2

(Ai ∩B) ∪

( ∞⋂
i=1

Aci ∩B

)
,

M{Ac1 ∩B} ≤
∞∑
i=2

M{Ai ∩B}+ M

{ ∞⋂
i=1

Aci ∩B

}
,

M

{ ∞⋃
i=1

Ai |B

}
= 1−

M

{ ∞⋂
i=1

Aci ∩B

}
M{B}

,
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∞∑
i=1

M{Ai|B} ≥ 1− M{Ac1 ∩B}
M{B}

+

∞∑
i=2

M{Ai ∩B}

M{B}
.

If there are at least two terms greater than 0.5, then the subadditivity is
clearly true. Thus M{·|B} satisfies the subadditivity axiom. Hence M{·|B} is
an uncertain measure. Furthermore, (Γ,L,M{·|B}) is an uncertainty space.

1.9 Bibliographic Notes

When no samples are available to estimate a probability distribution, we have
to invite some domain experts to evaluate the belief degree that each event
will happen. Perhaps some people think that the belief degree is subjective
probability or fuzzy concept. However, Liu [131] declared that it is usually
inappropriate because both probability theory and fuzzy set theory may lead
to counterintuitive results in this case.

In order to rationally deal with belief degrees, uncertainty theory was
founded by Liu [122] in 2007 and perfected by Liu [125] in 2009 with the
normality axiom, duality axiom, subadditivity axiom, and product axiom of
uncertain measure.

Furthermore, uncertain measure was also actively investigated by Gao
[48], Liu [129], Zhang [268], Peng and Iwamura [185], and Liu [137], among
others. Since then, the tool of uncertain measure was well developed and
became a rigorous footstone of uncertainty theory.
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