Preface

Control Theory and Control Systems Design has a history of over sixty years and
covers a wide range of topics, many of which have relevance to Control
Engineering practice and the process of education and training. Iterative Learning
Control (ILC for short) is an area of control theory and applications that has risen in
its relevance and popularity over the past 30 years. It is seen, for example, in
applications of control where a machine is required to complete a specific tracking
task over a finite time interval [0, 7] to a high degree of accuracy. The accuracy
required is taken to be beyond the practical capabilities of feedback control. The
additional features of the system that makes improved accuracy possible are the
assumptions that the task is repeated an indefinite number of times, so that (possibly
large) errors are tolerable in the first few repetitions and that information on pre-
viously seen tracking errors, inputs and other signals can be measured and stored.

Systems with these properties include manufacturing and rehabilitation robotics
and systems for mechanical testing of components and component assemblies in the
automotive and related industries. In the automotive arena, this includes the testing
of whole car performance using laboratory test rigs to replicate accurately road or
track conditions. The words Iterative Control are used to describe the repetitive
nature of the system behaviour and the need for control action. The word iterative is
chosen by analogy with iteration in numerical analysis where the repetition is used to
sequentially (iteration to iteration) reduce the error in obtaining the solution of, say, a
set of algebraic equations. The natural choice of the name “repetitive control” was
rejected by the community as this has been used previously to describe feedback
control design for the tracking of periodic reference signals of known period.

ILC is naturally a branch of control theory and control systems’ design but
differs from its more traditional counterparts owing to the need to include both
times during the repetition (iteration or trial) and the iteration index in data
descriptions. This is done by setting f;(¢) to be the value of a signal f at time “#” on
iteration “k”. The control problem therefore has two independent variables (¢, k).
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Control of the system not only requires proper and effective control during an
iteration (using normal classical criteria for control performance on [0, 77) but also
includes the need to control performance over successive iterations with indices k =
0,1,2,3,4,.... The aim is to improve performance from iteration to iteration. The
ultimate aim is to provide highly accurate tracking which, in the mathematical limit
as “k” tends to infinity becomes perfect tracking. ldeally, this property will be
retained in the presence of modelling errors.

The mechanism for achieving this perfect tracking is the transfer of data from
iteration to iteration. This transfer of data is similar to the process of “learning”
from experience. Hence the subject title “Iterative Learning Control”. Control
design in ILC is the choice of control algorithm to generate an input signal mag-
nitude 1 (¢) at time ¢ on iteration & such that the application of this signal over the
interval 7 € [0, T] leads to improved tracking as described above. In more details,
design requirements include:

1. Stability during each iteration.
2. Asymptotic convergence of the tracking error to zero as k — oo.
3. Acceptable behaviour of the tracking error from iteration to iteration by,

a. achieving reasonable improvement within a few iterations and
b. ensuring acceptable convergence and performance despite plant modelling
errors.

4. Implementation options that range from advanced control to simpler forms.

A control theory for ILC is hence at least as rich as that seen in classical control
with opportunities for feedback and feedforward structures, consideration of output
feedback and state feedback strategies, the possibilities for time domain and fre-
quency domain design tools, adaptive and predictive algorithms, optimal control
and many more. This is not to mention the need for linear, nonlinear and hybrid
systems versions of the theories! A single text covering the whole spectrum of
possibilities is not feasible and, indeed, many of these problems are not yet fully
analysed and solved to produce design strategies. For this reason the text examines
one particular coherent body of knowledge within the current ILC spectrum with
the aim of, first, bringing the work together in an integrated whole for researchers,
students and interested users and, second, presenting new results, algorithms and
insights to add value to the literature.

More precisely, this text concentrates on one particular paradigm and focusses
on linear systems, although it is noted that extensions to cover the case of some
nonlinear systems are possible using, for example, linearization-based methodolo-
gies. Motivated by the natural desire to systematically reduce the tracking error
from iteration to iteration, the chosen paradigm is that of the use of optimization as
a tool for algorithm design. The text covers several model types including both
single-input, single-output (SISO) and multi-input, multi-output (MIMO)
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continuous and discrete time, state-space systems. There is some emphasis on
discrete systems as the essentials of the theory and algorithm development are more
easily derived and understood in this format. It is also consistent with the likely
implementation using digital control hardware and software and notionally provides
an insight into the continuous time case by letting the sampling rate become infinite.
Those reading the text will understand that the continuous time case introduces
many additional mathematical complexities that need to be addressed for technical
completeness. Much of this “infinite dimensional” material is included but the
author believes that it is neither necessary for an understanding of the basic con-
cepts nor, indeed, relevant to many applications.

Optimization is used as the paradigm for algorithm development because of its
proven ability to guarantee, in the absence of modelling errors, monotonic reduc-
tions in a norm of the tracking error time series from each iteration k to the next
iteration k 4 1 . This reduction has many interpretations, the simplest being the
reduction of the “energy” in the tracking error. The energy interpretation is related
to the use of the mean square error as the norm. The consequences of this simple
observation are the subject of this text which, following a discussion of some of the
relevant history and applications of ILC algorithms in the introductory chapter,
explores the known consequences and design options available. The rest of the text
is divided into several parts:

1. The design of algorithms might be expected to be model dependent. This is true
but the construction of algorithms and the derivation of their properties is most
easily seen using an operator description of the model and regarding input,
output and other signals as elements of appropriate Hilbert spaces. This level of
abstraction is analogous to the use of transfer function descriptions of linear
systems. As an aid to study, the reader is provided with a chapter of mathe-
matical methods which provides a summary of the essential properties of
operators between Hilbert spaces and the geometrical interpretation of signals
and their relationships. This is followed by material that looks closely at the
structure of discrete time, state space models and the use of the (matrix)
supervector description.

2. Many of the ideas and algorithms apply widely. The overview and formulation
of ILC is constructed using the language of operator theory and recursive
relationships of the typical form e;y; = Leg, k>0 in a Hilbert space % .
Convergence of the solution sequence {ex};-, to a limit is related to the
spectrum of the operator L : % — % . If % is finite dimensional, the results are
familiar from matrix theory but the case when % is infinite dimensional is more
complex. Fortunately, for the purposes of optimization, only the case of L being
self adjoint is relevant to this text. This case is however important for continuous
time systems for example.
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. Although not obviously connected to optimization concepts, a fairly detailed

examination of so-called inverse model algorithms is then provided. This
approach assumes the existence of a left or right inverse to the plant operator
and motivates a set of Iterative Control algorithms that provide simple mono-
tonic error convergence at a rate described by a single gain parameter. This has
practical value but its real value in the following optimization approaches lies in
robustness analysis. The robustness theory presented in this text underpins the
need for positive real multiplicative modelling errors. The results can be con-
verted into frequency domain tests when the model has a discrete time,
state-space form. By the end of the text, the reader will have made the surprising
observation that this robustness theory applies, with suitable modification, to
many of the algorithms described.

. The first step towards the optimization paradigm is made in the consideration of

gradient or steepest descent algorithms motivated by familiar numerical opti-
mization methods. The gradient is naturally described by the adjoint plant
operator and provides a link to the co-state equations that appear in optimal
control theory. Similar algorithm analyses are provided together with a
robustness analysis which again has a frequency domain form for discrete time
state space systems that reappears for more complex algorithms later in the text.

. The central section of the text contains the basic concepts of Norm Optimal

Iterative Learning Control (NOILC) This algorithm has strong connections to
linear quadratic optimal control theory and proceeds by minimization of a
sequence of quadratic objective functions. For discrete state-space systems, it
has a realization using either feedforward computations or familiar feedback
structures based on solutions of time dependent matrix Riccati equations. The
algorithm is a benchmark algorithm in the sense that monotonic error conver-
gence is always guaranteed with convergence rates being influenced by the
relative weighting of error and input terms. Greater insight into the behaviour is
obtained using eigenvalue/singular value analysis and approximate eigenvectors
constructed from frequency domain considerations. A robustness analysis is
presented that has close links to inverse model and gradient results, probably
because the NOILC paradigm can be regarded as being both a descent algorithm
and an approximation to an inversion process.

. The power of the NOILC philosophy and the use of operator descriptions are

demonstrated by the descriptions of natural extensions of the algorithm. These
include intermediate point control problems, tracking for multi-rate sampled
systems and systems where the initial condition on each iteration can be varied.
The concept of Multi-task Algorithms unifies these control problems as a mix
of these and similar variations. All of these variations are described by the
NOILC relationships but differ in form when converted from the operator
description to more familiar state-space equations.

In all of these cases, the performance of the control can be enhanced by
including one or both of two important features:
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a. by searching for a solution to the tracking problem that also minimizes an
additional Auxiliary Objective Function representing additional control
objectives and/or

b. improving convergence rates by basing computations on a multi-model that
enhances performance using optimization problems incorporating predic-
tions of future errors. This resultant Predictive Norm Optimal Iterative
Learning Control algorithm, when applied to state-space systems, can again
be implemented using either feedforward computations or feedback real-
izations using the Riccati matrix and states of the multi-model.

In all cases, the robustness theory needed has a very similar structure to that of

inverse model and gradient algorithms.

8.

10.

The apparent “perfection” of the NOILC approach is, however, misleading as
proofs of convergence do not provide full information about rates of conver-
gence. This is convincingly demonstrated by a consideration of
non-minimum-phase discrete, state-space systems. For inverse model control,
practical problems will then occur as the inverse system is unstable. For gradient
and NOILC algorithms, the problem appears as a plateauing/flatlining effect
where, after a period of fast error norm reduction, a long period of extremely slow
convergence (represented by infinitesimal changes in error and error norm) can
occur. In practical terms, the algorithm may fail to achieve acceptable tracking
accuracy in the desired number of iterations despite the theoretical proof of
ultimate convergence. The magnitude of the problem is assessed and shown to
depend on the time interval length and the structure of the initial error ¢ .

The operator theory approach has great power but does not easily make pos-
sible, for example, the inclusion of constraints. The chapters on Successive
Projection methodologies provide ways forward. They are equivalent to
NOILC and its variants in the absence of constraints but, being based on
projection onto closed, convex sets, allow many convex constraints to be
included whether they be input and output constraints or constraint objectives
for auxiliary variables. The geometry of the approach is used to create accel-
erated algorithms using extrapolation mechanisms. An interesting interpreta-
tion of the ideas is given in the section on Loop Management Algorithms
where, rather than using ILC as an automated control algorithm, it can be used
as a decision support aid for the human operators who are supervising the
iteration process.

One, particularly interesting, algorithm that further demonstrates the potential
of successive projection is the introduction of the new Notch Algorithm which
uses successive projection onto sets defined by modified plant dynamics. The
modification is parameterized by a single parameter o that can be related to a
property of Approximate Annihilation of spectral components in the error close
to that value. By varying o from iteration to iteration, different parts of the
spectrum are reduced substantially producing rapid convergence in a systematic
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way that resembles an approximate inverse algorithm. Robustness may how-
ever be reduced if the choices of o2 are not constrained.

The final chapter examines the idea of Parameter Optimal Iterative Learning
Control (POILC) by replacing optimization over input signals by optimization
over the parameters in a linear input update equation containing only known
error data and a finite number of free parameters. This reduces the dimension
of the optimization problem and defines the required parameter values using
formulae and off-line computation. The approach has close links to NOILC
(when the number of parameters is “large”) but, more generally, retains the
property of monotonic error norm reduction and simplifies both the control
implementation and its associated computations. The choice of parameteriza-
tion is free for the user to choose but can be suggested by the previous chapters
in the form of approximations to inverses, gradients and norm optimizers. An
examination of the inverse model and other cases suggests that the approach
will be robust provided that gains are “low” and a positive real condition is
again satisfied.

The material in the text has been chosen and ordered to tell a story rather than

reflect the historical development of the ideas. Emphasis is placed on providing
rigour with understanding with the aim of informing and preparing readers for their
own studies, research or applications. The text has many sections that hopefully
help readers find, quickly, the issues that interest them. The reader should note the
following declarations:

1.

Although based on optimization concepts, many of the results and algorithms
presented are new to the literature. For those algorithms that have been pub-
lished in the open literature, the text provides a more detailed analysis of their
properties and includes new, previously unreported robustness characterizations
and methodologies.

. The author has aimed for consistency in notation but has had to deal with the

finite nature of the alphabet and the need for extensive use of subscripts and
superscripts. For example, the subscript y; will typically denote the signal on
iteration j but it may also denote the jzh element in the column matrix y. It is the
author’s view that the context of the use of the symbol will provide the right
interpretation.

. The reader should understand that the text is motivated by the perceived practical

needs of the subject when used in applications but also has the important
objective of addressing what are thought to be important scientific issues asso-
ciated with the topic, some of which are speculative. Applications of the ideas in
controlled laboratory conditions has, to date, provided evidence that the ideas can
translate into practically convergent procedures and this positive outcome has
been supported by a number of industrial tests (subject to commercial, in con-
fidence, agreements). However, it must be recognized that real-world systems
present a whole spectrum of problems that the theory has not considered. No
attempt will be made to list these problems exhaustively but they clearly include
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the presence of severe nonlinearity, substantial noise, unrepeatable/unpredictable
disturbances and time variation of parameters. In addition, hardware issues of a
poor experimental setup or combinations of plant dynamics, parameter choices
and reference signals that maximize the sensitivity of the approaches to such
problems will also often need to be addressed. In view of these comments, the
reader uses the ideas and algorithms at his or her own risk. The author has made
every effort to ensure that the text is both accurate and understandable. He
believes that the methods have both scientific and engineering merit but, given
the uncertainties, he accepts no responsibility for any unacceptable outcomes
arising from the use of the ideas or algorithms described in this text.

Sheffield, UK David H. Owens
April 2015
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