
Chapter 2
Fractional-Order Darwinian PSO

Abstract As presented in Chap. 1, Darwinian particle swarm optimization (DPSO)
presented by Tillett et al. (Darwinian particle swarm optimization, 2005) is an
evolutionary algorithm that extends the PSO using natural selection, or survival of
the fittest, to enhance the ability to escape from local optima. Despite its superior
performance when compared to its nonevolutionary counterpart, the DPSO also
exhibits a key drawback: its computational complexity. This chapter proposes a
method for controlling the convergence rate of the DPSO using fractional calculus
(FC) concepts (Pires et al., Journal on Nonlinear Dynamics, 61(1–2), 295–301,
2010). The fractional-order optimization algorithm, denoted fractional-order
Darwinian particle swarm optimization (FODPSO), is then tested using several
well-known functions and the relationship between the fractional-order velocity and
the convergence of the algorithm is observed.
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2.1 Fractional Calculus

Fractional calculus (FC) has attracted the attention of several researchers (Sabatier
et al. 2007), being applied in various scientific fields such as engineering, com-
putational mathematics, and fluid mechanics, among others. FC can be considered
as a generalization of integer-order calculus, thus accomplishing what integer-order
calculus cannot. As a natural extension of the integer (i.e., classical) derivatives,
fractional derivatives provide an excellent instrument for the description of memory
and hereditary properties of processes.

The concept of the Grünwald–Letnikov fractional differential is presented by the
following definition.

Definition 2.1 (Machado et al. 2010) Let C be the gamma function defined as

C kð Þ ¼ k � 1ð Þ!: ð2:1Þ
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The signal Da x tð Þ½ � given by

Da x tð Þ½ � ¼ lim
h!0

1
ha

Xþ1

k¼0

�1ð ÞkC aþ 1ð Þx t � khð Þ
C k þ 1ð ÞC a� k þ 1ð Þ

" #
; ð2:2Þ

is said to be the Grünwald–Letnikov fractional derivative of order a, a 2 C, of a
generic signal x tð Þ.

An important property revealed by Eq. (2.2) is that although an integer-order
derivative just implies a finite series, the fractional-order derivative requires an
infinite number of terms. Therefore, integer derivatives are “local” operators
whereas fractional derivatives have, implicitly, a “memory” of all past events.
However, the influence of past events decreases over time.

The formulation in (2.2) inspires a discrete time calculation presented by the
following definition.

Definition 2.2 (Machado et al. 2010) The signal Da x t½ �½ � given by

Da x t½ �½ � ¼ 1
Ta

Xr

k¼0

�1ð ÞkC aþ 1½ �x t � kT½ �
C k þ 1½ �C a� k þ 1½ � ; ð2:3Þ

where T is the sampling period and r is the truncation order, is the approximate
discrete time Grünwald–Letnikov fractional difference of order a, a 2 C, of the
generic discrete signal x t½ �.

The series presented in Eq. (2.3) can be implemented by a rational fraction
expansion that leads to a superior compromise in what concerns the number of
terms versus the quality of the approximation. Nevertheless, because this study
focuses on the convergence of robots toward a given solution considering past
events, the simple series approximation is adopted.

That being said, it is possible to extend an integer discrete difference, that is,
classical discrete difference, to a fractional-order one, using the following
definition.

Definition 2.3 (Ostalczyk 2009) The classical integer “direct” discrete difference of
signal x t½ � is defined:

Ddx t½ � ¼
x t½ �; d ¼ 0
x t½ � � x t � 1½ �; d ¼ 1
Dd�1x t½ � � Dd�1x t � 1½ �; d[ 1

8
<
: ð2:4Þ
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where d 2 N0 is the order of the integer discrete difference. Hence, one can extend
the integer-order Ddx t½ � assuming that the fractional discrete difference satisfies the
following inequalities,

d � 1 \ a \ d: ð2:5Þ

The features inherent to fractional calculus make this mathematical tool well suited
to describe many phenomena, such as irreversibility and chaos, because of its
inherent memory property. In this line of thought, the dynamic phenomena of
particles’ trajectories configure a case where fractional calculus tools fit adequately.

2.2 FODPSO

Considering the inertial influence of Eq. (1.1) as w ¼ 1, for a specific swarm s, one
would obtain:

vsn t þ 1½ � ¼ vsn t½ � þ
X2

i¼1

qiri v
s
in t½ � � xsn t½ �

� �
: ð2:6Þ

This expression can be rewritten:

vsn t þ 1½ � � vsn t½ � ¼
X2

i¼1

qiri v
s
in t½ � � xsn t½ �

� �
: ð2:7Þ

Hence, vsn t þ 1½ � � vsn t½ � corresponds to the discrete version of the fractional dif-
ference of order a ¼ 1, that is, the first-order integer difference Ddvsn t þ 1½ �.
Assuming T ¼ 1 and based on Definition 2.2, yields the equation:

Da vsn t þ 1½ �� � ¼
X2

i¼1

qiri v
s
in t½ � � xsn t½ �

� �
: ð2:8Þ

Based on the FC concept and Definition 2.3, the order of the velocity derivative can
be generalized to a real number 0 \ a \ 1, thus leading to a smoother variation
and a longer memory effect. Therefore, considering the discrete-time fractional
differential presented in Definition 2.2, one can rewrite Eq. (2.8) as

vsn t þ 1½ � ¼ �
Xr

k¼1

�1ð ÞkC aþ 1½ �vsn t þ 1� kT½ �
C k þ 1½ �C a� k þ 1½ �

þ
X2

i¼1

qiri v
s
in t½ � � xsn t½ �

� �
: ð2:9Þ
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The DPSO is, therefore, a particular case of the FODPSO for a ¼ 1 (without
“memory”).

2.2.1 Benefits

The FODPSO is, in simple terms, the same as having multiple PSOs, wherein
particles strive to find the best solution for their own “survival”, with the perk of
intrinsically having a memory of past decisions. This new architecture handles the
first drawback pointed out for the traditional PSO: the premature convergence of a
swarm. The FODPSO, as does the traditional DPSO (Tillett et al. 2005), discards
swarms that prematurely converge toward a solution that may, or may not, be
optimal. At the same time, it fosters the creation of new swarms formed by particles
that may “genetically” share some of the knowledge already retrieved by other
particles. Additionally to this, each FODPSO particle is considerably “smarter” than
PSO and DPSO particles due to the fractional-order extension that improves the
balance between exploration and exploitation (see Sect. 2.3). This allows running
the FODPSO algorithm with a smaller population when compared to the DPSO
algorithm, thus reducing the computational complexity, and still expecting the same
end result. This book repeatedly compares the FODPSO with alternatives, including
the PSO and DPSO, and clearly depicts its superiority in every aspect.

2.2.2 Drawbacks

Compared to the other PSO-based alternatives, from which the traditional PSO and
the DPSO algorithms are used as references, the FODPSO presents two drawbacks:
(i) its memory complexity and (ii) the addition of a new coefficient a.

As opposed to most PSO-based approaches that only require memorizing the
previous iteration, as one can observe from Eq. (2.9), computing a new velocity at
time t þ 1 requires memorizing the previous r iterations. Therefore, one needs to
ensure a proper r, being large enough to ensure an improved convergence of
particles toward the solution when compared to the alternatives, while at the same
time small enough not to increase the cost of the algorithm significantly.

Preliminary experimental tests on the algorithm presented similar results for � 4
(Couceiro et al. 2012). Furthermore, the computational requirements increase lin-
early with r; that is, the FODPSO presents an O rð Þ memory complexity. Hence,
using only the first r ¼ 4 terms of differential derivative given by (2.3), Eq. (2.9)
can be rewritten as (2.10):
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vsn t þ 1½ � ¼avsn t½ � þ
1
2
a 1� að Þvsn t � 1½ �

þ 1
6
a 1� að Þ 2� að Þvsn t � 2½ �

þ 1
24

a 1� að Þ 2� að Þ 3� að Þvsn t � 3½ �

þ
X2

i¼1

qiri v
s
in t½ � � xsn t½ �

� � ð2:10Þ

Although this new equation incorporates the concept of FC, the difficulty of
understanding the influence inherent to the fractional coefficient a still remains:
what should be the most adequate value for a?

As described in Yasuda et al. (2008) and Wakasa et al. (2010), a swarm behavior
can be divided into two activities: (i) exploitation and (ii) exploration. The first one
is related to the convergence of the algorithm, thus allowing a good short-term
performance. However, if the exploitation level is too high, then the algorithm may
be stuck on local solutions. The second one is related to the diversification of the
algorithm, which allows exploring new solutions thus improving the long-term
performance. However, if the exploration level is too high, then the algorithm may
take too much time to find the global solution. As first presented by Shi and
Eberhart (2001), the trade-off between exploitation and exploration in the classical
PSO has been commonly handled by adjusting the inertia weight. A large inertia
weight improves exploration activity whereas exploitation is improved using a
small inertia weight. Because the FODPSO presents a FC strategy to control the
convergence of particles, the coefficient a needs to be defined in order to provide a
high level of exploration while ensuring the global solution of the mission.
Therefore, the FODPSO is experimentally evaluated in the next section using
Eq. (2.10) for all particles in all swarms.

2.3 Benchmarking Functions

This section presents experimental results of the proposed FODPSO. In order to
compare this approach with the Pires et al. approach (Pires et al. 2010), the same
test functions and parameters are considered as depicted in Table 2.1. Table 2.1 also
shows the specific parameters of the FODPSO algorithm.

The median of the fitness evolution of the best global particle is taken as the
system output: for each value in the set a ¼ f0; 0:1; . . .; 1g. In Figs. 2.1, 2.2, 2.3,
2.4 and 2.5, the results can be seen for the adopted optimization functions
fj; j ¼ f1; . . .; 5g.

Experimental results show that the convergence of the algorithm depends upon
the fractional order a. However, contrary to the FOPSO presented in Pires et al.
(2010), the Darwinian algorithm easily avoids being stuck in local solutions
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independently of the value of α (because it is a particularity of the traditional
DPSO). Moreover, one can observe that, in most situations, a faster optimization
convergence is obtained for a fractional coefficient α in the range [0.5, 0.8].
Therefore, to evaluate the FODPSO further, let us then systematically adjust the
fractional coefficient a between 0.5 and 0.8, according to the expression:

a tð Þ ¼ 0:8� 0:3
t

200
: ð2:11Þ

Once again, the median of the fitness evolution of the best global particle is taken as
the system output. In Fig. 2.6, the results can be seen for the adopted optimization

Table 2.1 Parameters of the algorithm and optimization functions

Min Initial Max

Number of simulations – 201 –

Number of iterations – 200 –

Coefficients q1 ¼ q2 – 0.8 –

Swarm population 3 4 5

Number of swarms 1 2 3

Stagnancy threshold – 10 –

Optimization functions fj (Van Den Bergh
and Engelbrecht 2006)

Bohachevsky 1

Colville

Drop wave

Easom

Rastrigin
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Fig. 2.1 Evolution of the Bohachevsky 1 function changing α
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functions fj; j ¼ f1; . . .; 5g, while comparing the FODPSO with the FOPSO
proposed by Pires et al. (2010) using Eq. (2.11). Observing Fig. 2.6, one can
conclude that, despite both FOPSO and FODPSO revealing a similar behavior, the
combination of FC and Darwin’s principles contributes to an improved conver-
gence dynamics.
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Fig. 2.3 Evolution of the drop wave function changing α
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Fig. 2.4 Evolution of the Easom function changing α
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Fig. 2.5 Evolution of the Rastrigin function changing α
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Fig. 2.6 Evolution of the fitness function, with variable α for FOPSO and FODPSO
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2.4 Summary

The search for an algorithm capable of dealing with most optimization problems
without being very time-consuming and computationally demanding has been a
subject of research in several scientific areas such as control engineering and
applied mathematics. Fractional calculus has appeared as a tool to enhance the
performance of conventional mathematical methods.

This chapter presented a new optimization algorithm based on the Darwinian
particle swarm optimization (DPSO) using the concept of the fractional derivative
to control the convergence rate.

Experimental results show that, although the speed of convergence of the
fractional order DPSO (FODPSO) depends on the fractional order a, the herein
presented algorithm outperforms the traditional DPSO and PSO¸ as well as the
FOPSO previously presented in the literature.
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