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Abstract This paper proposed an automated three-dimensional (3D) lumbar
intervertebral disc (IVD) segmentation strategy from Magnetic Resonance Imaging
(MRI) data. Starting from two user supplied landmarks, the geometrical parameters
of all lumbar vertebral bodies and intervertebral discs are automatically extracted
from a mid-sagittal slice using a graphical model based template matching
approach. Based on the estimated two-dimensional (2D) geometrical parameters, a
3D variable-radius soft tube model of the lumbar spine column is built by model
fitting to the 3D data volume. Taking the geometrical information from the 3D
lumbar spine column as constraints and segmentation initialization, the disc seg-
mentation is achieved by a multi-kernel diffeomorphic registration between a 3D
template of the disc and the observed MRI data. Experiments on 15 patient data sets
showed the robustness and the accuracy of the proposed algorithm.

1 Introduction

Intervertebral disc (IVD) degeneration is a major cause for chronic back pain and
function incapacity [1]. Magnetic Resonance Imaging (MRI) has become one of the
key investigative tools in clinical practice to image the spine with IVD degeneration
not only because MRI is non invasive and does not use ionizing radiation, but more
importantly because it offers good soft tissue contrast which allows visualization of
the disc’s internal structure [2].

MRI quantification has great potential as a tool for the diagnosis of disc
pathology but before quantifying disc information, the IVDs need to be extracted
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from the MRI data. IVD extraction from MRI data comprises two key steps. Firstly,
all IVDs have to be detected from the images and secondly, the regions belonging
to IVDs have to be segmented. Manual extraction methods [3, 4] as well as
automated extraction methods [5–11] have been presented before. Since manual
extraction is a tedious and time-consuming process which lacks repeatability,
automated methods are preferred.

There are different approaches for automatizing the extraction of IVDs from
medical images such as graphical model [5], probabilistic model [6], Random
Forest regression and classification [12, 13], watershed algorithm [7], atlas regis-
tration [8], statistic shape model [10], graph cuts [9], and anisotropic oriented flux
[11]. But stable and accurate IVD segmentation remains a challenge.

In this paper we propose an automated 3D lumbar IVD extraction method with
minimal user interaction from MRI data sets. The main contribution of our method
is a combination of graphical model-based spine column localization with a
multi-kernel diffeomorphic registration-based segmentation. The motivation of the
proposed strategy to first identify the spine column structure and then carry out the
IVD segmentation stems from the following observation:

The IVD geometries are highly constrained by the geometry of the spine column. If the
geometrical parameters of the spine column and each individual vertebral body can be
estimated accurately from the observed images, then they can provide both geometrical and
appearance information about the intervertebral discs, which helps to improve the accuracy
and robustness of the IVD segmentation.

The work flow of the proposed algorithm consists of the following three steps:

Initialization Two user supplied landmarks on a user selected mid-sagittal slice
are required to indicate the centers of L1 and L5 vertebral bodies.

Lumbar spine column identification and modeling Starting from the user ini-
tialization, the 3D geometry of the lumbar spine column is automatically extracted
from the 3D data sets, which is achieved as a sequential 2D + 3D model fitting
procedure. The outputs of the lumbar spine column modeling procedure are the 3D
geometric information of each individual vertebral body of L1–L5 and a soft-tube
model that fits the outer surface of the lumbar spine column.

Lumbar disc segmentation The extracted lumbar spine column can provide
reliable prior information for the initialization and constraints of the disc segmen-
tation such as positions, sizes and image appearance of discs. The disc segmentation
is finally achieved as a 3D multi-kernel diffeomorphic registration between a disc
template and the observed data.

The paper is organized as follows. Section 2 describes details of the method,
followed by experimental results in Sect. 3. Discussions and conclusions are pre-
sented in Sect. 4.

26 X. Dong and G. Zheng



2 Methods

2.1 Data Sets

All datasets used in this paper were generated from a 1.5 T MRI scanner (Siemens
medical solutions, Erlangen, Germany). Dixon protocol was used to reconstruct
four aligned high-resolution 3D volumes during one data acquisition: in-phase,
opposed-phase, water and fat images, as shown in Fig. 1. Each volume has a
resolution of 2 mm × 1.25 mm × 1.25 mm and the data set size is 40 × 512 × 512.
The advantage of working with such datasets is that different channels provide
complementary information for our disc segmentation task. In our proposed seg-
mentation strategy, we always first extract either intensity or feature information
about different tissues on each of the 4 channels and then combine the 4 channel
data into a single dataset as explained later.

2.2 Initialization

On the mid-sagittal slice, two landmarks are picked to indicate the centers of L1 and
L5 vertebral bodies as shown in Fig. 2a.

2.3 Lumbar Spine Column Identification

Based on the initialization, we first carry out a 2D vertebral body and disc iden-
tification to localize vertebrae L1–L5 and the 5 target discs from the mid-sagittal
slice. The geometrical information of the 2D identification is then used to guide a
further 3D lumbar spine column modeling.

Fig. 1 The four aligned channels of a patient data, left to right in-phase, opposed-phase, water and
fat images (for visualization purpose, we only show the middle sagittal (mid-sagittal) slice of each
channel)

Automated 3D Lumbar Intervertebral … 27



2.3.1 2D Vertebral Body and Disc Identification

Solutions for spine location and disc labeling include feature-based bottom-up
methods, statistical model-based methods and graphical model-based solutions. For
a detailed review of the existing methods, we refer to [14, 15]. In this paper, the 2D
vertebral body and disc identification is achieved using a graphical model based
strategy introduced in [14]. Compared with the graphical models in [5, 6], the
advantage of the graphical model in [14] is that both the low level image obser-
vation model and the high level vertebra context potentials need not to be learned
from training data. Instead they are capable of self-learning from the image data
during the inference procedure. The basic idea is to model both the vertebral bodies
and discs in the mid-sagittal slice as parameterized rectangles, where the parameters
are used to describe the geometries of these rectangles including their centers,
orientations and sizes. The graphical model based spine column identification can
be understood as matching the parameterized models with the observed images
while also considering the geometrical constraints between neighboring vertebral
bodies and discs. The exploration of geometrical constraints between vertebral
components helps to enhance the identification robustness.

1. The graphical model: The graphical model used in this work to represent the
lumbar spine column is given in Fig. 3. In this model each node Vi represents a
connected disc-vertebra-disc chain of the spine column, whose geometrical
parameters are given by Xi. On this graphical model we define

• The component observation model p(I|Xi) of a single component Vi repre-
senting the probability that the configuration Xi of the node Vi match the
observed images I.

Fig. 2 Initialization and 2D lumbar spine column detection. a User initialization by picking two
landmarks indicating the centers of L1 and L5 in the middle sagittal slice. b Probability assignment
(displayed as grey values) of the bone tissue in the mid-sagittal slice for 2D lumbar spine column
detection. c 2D lumbar spine column detection result using the graphical model based detection
algorithm, blue and green rectangles representing the vertebral bodies and IVDs respectively
(Color figure online)
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• The potentials p(Xi, Xj) between neighboring components Vi and Vj encoding
the geometrical constraints between components which are defined by the
anatomical structure of the spine column.

The identification of the spine column from the mid-sagittal slice can then
be formalized as to find the optimal configurations of {Vi}, X = {Xi} that
maximize

Fig. 3 Graphical model for the 2D lumbar spine column detection. a A node Vi represents a
disc-vertebra − disc (Di−1 − Bi − Di) chain of the lumbar spine and both the discs and vertebrae are
modeled as parameterized rectangles. b The observation model p(I|Xi) of each node Vi and
potentials p(Xi, Xj) between nodes Vi, Vj defined on the graphical model
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PðXjIÞ / PipðIjXiÞPi;jpðXi;XjÞ ð1Þ

with

pðIjXiÞ ¼ pIðIjXiÞpGðIjXiÞ ð2Þ

and

pðXi;XjÞ ¼ pSðXi;XjÞpOðXi;XjÞpDðXi;XjÞ ð3Þ

pI(I|Xi) and pG(I|Xi) stand for the probabilities that the observed image intensity
and image gradient distributions match the geometrical parameters Xi respec-
tively. pS(Xi, Xj), pO(Xi, Xj) and pD(Xi, Xj) are the geometrical constraints on the
sizes, orientations and distances between neighboring components. All the
observation models and constraints can be designed according to the observed
data and prior anatomical knowledge of the spine structure. For detailed
formulation of these terms, we refer to [14].

2. Preprocessing of the 4 channel data: In order to achieve the model fitting
simultaneously on the 4 data channels, we need a preprocessing to combine the
information from different data channel. As shown in the introduction of the
graphical model, in the component observation model p(I|Xi), both the image
intensity and gradient information are used by pI(I|Xi) and pG(I|Xi) respectively.
In order to combine the information of the 4 channels, we firstly observe that
besides the positions of L1 and L5, the two user selected landmarks and the
mid-sagittal slice also provide intensity distribution information of the bony
tissue in the 4 channel volumes. For the intensity information, by fitting a
Gaussian distribution N(μi, σi), i = 1, 2, 3, 4 to a small neighbourhood of the
initialization landmarks on each data channel, we can estimate the intensity
distribution of the bone region of that data channel and accordingly assign to
each pixel at position (l, k) with intensity value xi

(l,k) of the mid-sagittal slice a

value pl;ki ¼ 1ffiffiffiffiffi
2r2i

p expð�ðxðk;lÞi �liÞ2
2r2i

Þ indicating the probability that the pixel belongs
to the vertebral body. The combined bone assignment probability information of
the 4 channels can then easily be obtained by an equally weighted averaging of
the 4 channels as pk;l ¼ 1

4

P
i p

l;k
i . Similarly we can also combine the gradient

information of the 4 data channels by simply averaging the gradient amplitude
of each channel. The combined intensity and gradient information are then used
in the intensity and gradient local observation model components, pI(I|Xi) and
pG(I|Xi), of the graphical model. Figure 2b shows an example of the bone tissue
probability assignment on the mid-sagittal slice computed from the user supplied
2 landmarks (Figs. 2a and 4 channel volume data (see Fig. 1 for an example).
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3. Optimization: The optimization is achieved as an inference on the graphical
model, which is essentially a particle based nonparametric belief propagation on
the graphical model as described in Algorithm 1. The outputs are then the 2D
geometrical parameters of the spine column which best fit the observed
mid-sagittal slices of all the 4 data channels.

4. Detection results: Fig. 2c gives the 2D lumbar column detection result. It can be
observed that the centers, sizes and orientations of the vertebral bodies and IVDs
are correctly identified.

Algorithm 1 Graphical model based inference for 2D lumbar spine column detection

Input: Bone region assignment map (Fig. 2b) from mid-sagittal slices of the 4 data channel,
landmarks from user initialization
Output: 2D geometrical parameters of the lumbar vertebral bodies (L1 − L5) and discs between
L1 − S1
Initialization: Roughly estimate the possible configuration regions of the positions, sizes and
orientations of each vertebral body and disc according to the user initialization and prior
anatomical information of the lumbar spine.
Start: t = 0, draw N random samples configurations of {Xi

n(t), n = 1, …, N} of each model node
Vi from the estimated parameter space.
while not converge do

1. Compute the belief of each particle Xi
n(t) by the local observation model as bi

n(t) ∝ p(I|Xi
n(t)).

2. Run belief propagation till converge on the chain graphical model using the potentials
pðXn

i ;X
n0
j Þ among nodes to update the belief of each particle Xi

n(t) to obtain updated believes

f�bni ðtÞg, which are the approximations of the marginal probabilities P(Xi
n|I) given in

(1) obtained by the belief propagation.
3. Re-sample the particles according to the updated believes f�bni ðtÞg to obtain new samples �Xn

i ðtÞ
of each node.

(continued)

Fig. 4 3D lumbar spine column detection and modeling. a The 3D soft-tube model of the lumbar
spine column; b segmented lumbar spine column image; c–d segmented disc candidate regions in
sagittal slices; e–f segmented disc candidate regions in coronal slices. Although all tasks are
conducted in 3D, here we show the results in 2D slices for visualization purpose
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(continued)

Algorithm 1 Graphical model based inference for 2D lumbar spine column detection

4. Update the configuration of each sample �Xn
i ðtÞ by a Gaussian random perturbation on the

parameters to obtain new particles {Xi
n(t + 1)}.

5. t = t + 1.

end while
For each node Vi, the parameters of the particle with the highest belief are selected as the
configuration of that node and therefore the geometrical parameters of the vertebral bodies and
discs are estimated.

2.3.2 3D Lumbar Spine Column Modeling

The above explained 2D lumbar spine column model only provides an incomplete
information of the spine column. Therefore, in order to accurately localize the
lumbar column and the geometrical parameters of each vertebral body and disc, a
3D lumbar spine model is needed. To achieve this, we model each lumbar vertebral
body as an elliptical cylinder and the lumbar spine column as a variable-radius soft
tube. Details of the modeling procedure are described as follows:

• 3D modeling of each vertebral body

(a) If we approximately model the vertebral body as a cylinder, then from the
2D vertebral body identification results, the position, hight, radius and
orientation of each vertebral body and the image intensity distribution of
the bone region in each data channel (also modeled as a Gaussian distri-
bution) can be estimated.

(b) Given the estimated bone tissue intensity distribution of each data channel,
then for each voxel in the neighbourhood of the estimated cylinder model
of the vertebra body, we can assign the probability if this voxel belongs to
the bone tissue. We can also integrate the information of 4 channels in the
same way as explained in the 2D model fitting procedure to obtain the
combined bone tissue probability assignment pk,l,m for a voxel at position
(k, l, m).

(c) From the bone tissue probability assignment of voxels around each verte-
bral body, we can further refine the 3D modeling of the vertebral bodies. To
achieve this, we further model the vertebral body as an elliptical cylinder.
Then a least-squares geometric fitting to the voxels which are assigned with
a high enough probability (pk,l,m > 0.8) of belonging to the bone tissue can
extract the 3D geometry of each vertebral body, including the center,
height, orientation and the major radius and minor radius of the elliptical
cylinder model.
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• 3D modeling of the spine column Given the 3D model of each vertebral body,
we can further construct the 3D lumbar column model. We model the lumbar
column as a variable-radius soft tube that best fits the outer surfaces of all the
extracted vertebral bodies. Given the 3D models of L1–L5 vertebral bodies, the
central axis and the variable-radius of the soft tube can be obtained by a linear
interpolation on the centers and radii of the extracted 3D models of vertebral
bodies. This results of this 3D variable-radius soft-tube spine column model is
shown in Fig. 4a.

Obviously given the 3D soft-tube lumbar spine column model, the spine column
region can be extracted from the observed data sets (Fig. 4b). By further eliminating
the bony tissue region using the 3D models of vertebral bodies, the candidate region
for each target disc can be localized as shown in Fig. 4c–f. The following 3D IVD
segmentation is then carried out on the extracted candidate IVD regions.

2.4 3D Disc Segmentation

We solve the 3D disc segmentation as a template based registration between a
geometrical disc template and the observed data.

• The IVD template is set as a thin elliptical cylinder. Considering the anatomical
structure of the spine column, i.e., each IVD must fall between its neighbouring
vertebral bodies, the initial geometries (center, radii, orientation, hight) of the
IVD cylinder template can be estimated using the 3D spine column model and
the geometries of its neighboring vertebral bodies, which are all available from
the previous 3D lumbar spine column modeling procedure.

• For the segmentation of a specific IVD, the correspondent observed data to be
matched is just the extracted candidate IVD region as shown in Fig. 4c–f.

• For the registration algorithm we choose the multi-kernel diffeomorphic image
matching in the Large Deformation Diffeomorphic Metric Mapping (LDDMM)
framework as described in [16] and related literatures [17–20].

2.4.1 Multi-kernel LDDMM Registration

LDDMM framework [19] is one of the two main computational frameworks in
computational anatomy [17]. Existing works show that LDDMM is a general solution
for nonrigid image registration with a high flexibility and accuracy. In [16, 18, 21]
multi-scale LDDMM registration algorithms were investigated. Compared with the
LDDMM registration with a single kernel, multi-kernel LDDMM has the capability
to optimize the deformation in multiple spatial scales [16].
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Following the general idea of LDDMM framework, we formalize the
multi-kernel image registration between two images I0 and I1 as an optimization
problem to find the optimal time dependent velocity field v(t) that minimizes a cost
function EðfvkðtÞgÞ as the sum of a deformation energy term and an image simi-
larity term formalized as

EðfviðtÞgÞ ¼ 1
2

XK
i

wi
Z1

0

kviðtÞk2Vidt þ kI0 � /�1
v ð1Þ � I1k2L2 ð4aÞ

@

@t
/vðtÞ ¼ vðtÞ � /vðtÞ ð4bÞ

vðtÞ ¼
XK
i

viðtÞ ð4cÞ

/vð0Þ ¼ Id ð4dÞ

where kviðtÞkVi ¼ hviðtÞ; viðtÞi12Vi is the norm induced by the inner product

hu; viVi ¼ hLViu; LViviL2 defined on the ith scale. fKVi ¼ ðLþViLViÞ�1g; i ¼ 1; . . .;K
are the K kernels which essentially are used to encode the image deformation
energy at different spatial scales and wi is the weighting factor of the deformation
energy of the ith kernel. ϕv(t) is the time-dependent deformation computed as the
integration of the velocity field v(t) and I0 · ϕv

−1(t) is the transformed image of I0 by
the deformation ϕv(t).

Using the optimal control based approach introduced in [22, 23], we get the
Euler-Poincare equation (EPDiff) (5a)–(5f) of the optimal velocity fields {vk(t)},
k = 1, 2, …, K for the multi-kernel LDDMM registration algorithm.

_IðtÞ ¼ �rIðtÞ � vðtÞ ð5aÞ
_PðtÞ ¼ �rðPðtÞ � vðtÞÞ ð5bÞ

vðtÞ ¼
XK
k¼1

vkðtÞ ð5cÞ

vkðtÞ ¼ �ðwkÞ�1KVkIðPðtÞrIðtÞÞ; k ¼ 1; . . .;K ð5dÞ

Pð1Þ ¼ �ðIð1Þ � I1Þ ð5eÞ

Ið0Þ ¼ I0 ð5fÞ
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The registration algorithm is given as follows:
For more details on the computation routine and the performance of the multi-

kernel LDDMM registration algorithm, we refer to [19, 22, 23].

2.4.2 Disc Segmentation by Diffeomorphic Registration

The IVD segmentation is achieved as a template based registration between the thin
cylinder IVD template and the correspondent candidate disc region as shown in
Fig. 4.

In order to explore both intensity and feature information to enhance the accu-
racy and robustness of the segmentation, we consider a simultaneous registration of
two pairs of images, I0

I /I1
I and I0

E/I1
E, which stand for the image intensity and edge

information template/observation pairs respectively. Accordingly in the cost func-
tion of the LDDMM registration (4a), the image similarity term includes two
components kII0 � /�1

v ð1Þ � II1k2L2 þ bkIE0 � /�1
v ð1Þ � IE1 k2L2 with I0

I /I1
I and I0

E/I1
E as

explained below.

Algorithm 2 Multi-Kernel LDDMM registration

Input: Images to be registered I0, I1
Output: Time dependent velocity field v(t), t 2 [0, 1] whose integration gives the optimal
matching process I(t), t 2 [0, 1] which represents a smooth deformation from I0 to I1.
Initialization: I(0) = I0, v

k(t) = 0, t 2 [0, 1], k = 1, 2, …, K
while not converge do

1. Compute I(t), t 2 [0, 1] by (5a), (5b), (5f).
2. Compute P(1) by (5e).
3. Update P(t), t 2 [0, 1] by solving (5c) in the inverse direction.
4. Update vi(t), t 2 [0, 1], i = 1, 2, …, K by (5d).

end while

Intensity information The template intensity image I0
I is just the initialized disc

template, i.e., a binary 3D image with the interior region of the disc template set as
1. The correspondent target image I1

I is constructed by a three-step procedure.

1. Based on the 3D spine column model, for each vertebra disc, we can determine a
region that belongs to the interior region of the disc with high confidence as
explained in Fig. 5.

2. From the extracted high confidence disc voxels, we can estimate the image
intensity distribution of the disc tissue in each data set by assuming a Gaussian
intensity distribution N(ui, σi), i = 1, 2, 3, 4, i.e., to estimate the values {ui, σi},
i = 1, 2, 3, 4 for each channel volume.

3. Accordingly in each channel volume Ii
MRI, i = 1, 2, 3, 4, each voxel vi

j 2 Ii
MRI in the

candidate disc region with an intensity value Ii
j can be assigned a probability
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p j
i ¼ 1ffiffiffiffiffiffiffi

2pr2i
p expð� ðI ji �uiÞ2

2r2i
Þ indicating whether voxel vi

j belongs to the disc region

using the correspondent Gaussian distribution model N(ui, σi), i = 1, 2, 3, 4. The
image I1

I that contains the intensity information of the 4 channel data is then
constructed as an average of the probabilities of the 4 data sets {Pi = {pi

j}, vi
j 2

Ii
MRI, i = 1, 2, 3, 4} as II1 ¼ ðQPiÞ

1
4. Figure 6c–f show an example of the intensity

template and the computed correspondent target image.

Edge information For the edge information, the template image I0
E can be

regarded as the outer surface of the disc template as shown in Fig. 6g–h. The target
image I1

E can be obtained by summing up and normalizing the gradient amplitudes
of the 4 data set, see Fig. 6i–j.

An example of the template images and the correspondent target images and the
time dependent registration procedure is shown in Fig. 6.

By registering the disc template to the observed 3D data volume, the final
segmented IVD can then be obtained as the deformed template achieved by the
multi-kernel LDDMM registration.

3 Experiments

The proposed algorithms are verified on MRI datasets of 15 patients obtained with
the Dixon protocol. In all the data sets, based on the two landmarks obtained from
the initialization step, both the 2D lumbar spine column and the 3D spine column

Fig. 5 Determination of the high confidence disc region using the spine column model. Left to
right The spine column region extracted using the spine column model shown in a sagittal and a
coronal slice; The central region of the spine column obtained by shrinking the radius of the spine
column model by a factor 0.5 shown in the same two slices; The detected high confidence disc
regions by further cutting out the bone tissue using the spine column model
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models are correctly extracted. The computational time of each data set varies
between 10–15 min depending on the initialization and converge speed with a
MATLAB implementation. Examples of the disc segmentation results on 4 patient
data sets are shown in Fig. 7.

We also carried out quantitative evaluation of our algorithm. To do this, we
manually segmented all datasets (we only need to segment one channel for each

Fig. 6 3D IVD segmentation by multi-kernel LDDMM registration. Left side the data used in
diffeomorphic registration based 3D lumbar disc segmentation. Although the task was performed
in 3D, we show results on 2D slices for visualization purpose. Also be aware that in the target
images, the bone tissue regions are extracted using the spine column model. a, b 3 sagittal/coronal
slices of the candidate disc region (disc L4–L5 in Fig. 2) c, d the intensity disc template in 3
sagittal/coronal slices; e, f intensity information extracted from MRI data sets in 3 sagittal/coronal
slices; g, h the edge disc template in 3 sagittal/coronal slices; i, j edge information computed from
MRI data sets in 3 sagittal/coronal slices; Right side the time-dependent deformation of the disc
template during the multi-kernel diffeomorphic registration for a L4–L5 disc segmentation. Left to
right the deformations of the template at 6 time slots t = 0, 0.2, 0.4, 0.6, 0.8, 1. t = 0 means the
initial template and t = 1 gives the final registration results; from top row to bottom row: the
evolution of the template visualized in 6 different slices

Automated 3D Lumbar Intervertebral … 37



patient as all four channel volumes are aligned according to Dixon imaging pro-
tocol) and took the binary volumes from the manual segmentation as the ground
truth to verify the accuracy of the present algorithm. We computed the Dice
coefficient D which is usually used to measure the overlap between two binary
images:

D ¼ 2� jA\Bj
jAj þ jBj � 100 ð6Þ

Table 1 shows the average dice coefficients of the 5 discs on all 15 patients when
the automated segmentation was compared to the manual segmentation. The highest
average dice coefficient was found for patient #8 (87.9 %) and the lowest average
dice coefficient was found for patient #9 (80.5 %). We also computed the average
dice coefficients for all discs and the results are presented in Table 2. We note that
Neubert et al. [10] reported a mean Dice of 76–80 % in their 3D IVD segmentation
paper.

Fig. 7 3D intervertebral disc segmentation results on 4 patients. For visualization purpose, we
display the results on 2D slices. For each image, the left three columns are sagittal slices and the
right three are coronal slices

Table 1 Average dice coefficients (%) of the 5 discs between the manual segmentation and the
proposed algorithm on different patients

Patient P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Dice 86.1 81.9 82.6 86.3 86.8 83.6 87.6 87.9 80.5 84.1 86.3 85.4 86.9 87.7 83.1
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4 Conclusions

In this paper we proposed an automated lumbar intervertebral disc segmentation
strategy, whose key components include a graphical model based spine column
identification algorithm and a multi-kernel LDDMM registration algorithm to
achieve the disc segmentation. By identifying the lumbar spine column structure
before carrying out the segmentation, we acquire geometrical and appearance
information about the spine column. These information can be used to accurately
locate the candidate disc region and provide constraints to enhance the performance
of the disc segmentation. By converting the segmentation problem as a template
based diffeomorphic registration, we can explore both the intensity and edge
information of the observed data while keeping a smooth deformation of the
template so that the final segmented discs will possess smooth surfaces. The
experiments on 15 patient data sets verified the robustness and accuracy of our
method. We also noticed that for abnormal cases, such as with missing/additional
vertebrae or the scoliosis case, the automated lumbar column identification may not
be reliable although the graphical model can handle the unknown vertebra number
as shown in [14]. A possible solution for these extreme cases is to ask the user to
indicate the center of each vertebra body during the initialization step. Once the
centers are known, the particle filtering based inference can still achieve a reliable
2D lumbar column identification and the following up 3D lumbar column modeling
and disc segmentation.

References

1. Modic M, Ross J (2007) Lumbar degenerative disk disease. Radiology 1:43–61
2. Parizel P, Goethem JV, den Hauwe LV, Voormolen M (2007) Degenerative disc disease. In

Van Goethem J (ed) Spinal imaging—diagnostic imaging of the spine and spinal cord.
Springer, Berlin, pp 122–133

3. Tsai M, Jou J, Hsieh M (2002) A new method for lumbar herniated intervertebral disc
diagnosis based on image analysis of transverse sections. Comput Med Imaging
Graph 26:369–380

4. Niemelainen R, Videman T, Dhillon S, Battie M (2008) Quantitative measurement of
intervertebral disc signal using MRI. Clin Radiol 63:252–255

5. Schmidt S, Kappes JH, Bergtholdt M, Pekar V, Dries S, Bystrov D, Schnorr C (2007) Spine
detection and labeling using a parts-based graphical model. In: Karssemeijer N, BL (ed) IPMI
2007. Springer, Berlin, pp 122–133

Table 2 Average dice coefficients (%) between the manual segmentation and the proposed
algorithm on different discs on all 15 data sets

Disc L1–L2 L2–L3 L3–L4 L4–L5 L5–S1

Dice 81.2 87.1 88.2 86.5 82.7

Automated 3D Lumbar Intervertebral … 39



6. Corso J, Alomari R, Chaudhary V (2008) Lumbar disc localization and labeling with a
probabilistic model on both pixel and object features. In: Metaxas D (ed) MICCAI 2008.
Springer, Berlin, pp 202–210

7. Chevrefils C, Cheriet F, Aubin C, Grimard G (2009) Texture analysis for automatic
segmentation of intervertebral disks of scoliotic spines from MR images. IEEE Trans Inf
Technol Biomed 13:608–620

8. Michopoulou S, Costaridou L, Panagiotopoulos E, Speller R, Panayiotakis G, Todd-Pokropek
A (2009) Atlas-based segmentation of degenerated lumbar intervertebral discs from MR
images of the spine. IEEE Trans Biomed Eng 56:2225–2231

9. Ayed IB, Punithakumar K, Garvin G, Romano W, Li S (2011) Graph cuts with invariant
object-interaction priors: application to intervertebral disc segmentation. In: Szekely G, HH
(ed) IPMI 2011. Springer, Berlin, pp 221–232

10. Neubert A, Fripp J, Schwarz R, Lauer L, Salvado O, Crozier S (2012) Automated detection,
3d segmentation and analysis of high resolution spine MR images using statistical shape
models. Phys Med Biol 57:8357–8376

11. Law M, Tay K, Leung A, Garvin G, Li S (2013) Intervertebral disc segmentation in MR
images using anisotropic oriented flux. Med Image Anal 17:43–61

12. Glocker B, Feulner J, Criminisi A, Haynor D, Konukoglu E (2012) Automatic localization and
identification of vertebrae in arbitrary field-of-view CT scans. In Ayache N (ed) MICCAI
2012. Springer, Berlin, pp 590–598

13. Glocker B, Zikic D, Konukoglu E, Haynor D, Criminisi A (2013) Vertebrae localization in
pathological spine CT via dense classification from sparse annotations. In Mori K
(ed) MICCAI 2013. Springer, Berlin, pp 262–270

14. Dong X, Lu H, Sakurai Y, Yamagata H, Zheng G, Reyes M (2010) Automated intervertebral
disc detection from low resolution, sparse MRI images for the planning of scan geometries. In:
Wang F, Yan P, Suzuki K, Shen D (eds) MLMI2010. Springer, Berlin, pp 10–17

15. Dong X, Zheng G (2015) Automated 3D lumbar intervertebral disc segmentation from MRI
data sets. In: Yao J, Glocker B, Klinder T, Li S (eds) Recent advances in computational
methods and clinical applications for spine imaging. Lecture notes in computational vision and
biomechanics, vol 20. Springer, Berlin, pp 131–142

16. Risser L, Vialard FX, Wolz R, Murgasova M, Holm DD, Rueckert D (2011) Simultaneous
multiscale registration using large deformation diffeomorphic metric mapping. IEEE Trans
Med Imaging 30:1746–1759

17. Grenander U, Miller MI (1998) Computational anatomy: an emerging discipline. Q Appl Math
4:617–694

18. Sommer S, Nielsen M, Lauze F, Pennec X (2011) A multi-scale kernel bundle for LDDMM:
towards sparse deformation description across space and scales. In: Szekely G, HH
(ed) IPMI2011. Springer, Berlin, pp 624–635

19. Beg MF, Miller MI, Trouv A, Younes L (2005) Computing large deformation metric
mappings via geodesic flow of diffeomorphisms. Int J Comput Vision 61:139–157

20. Miller MI, Trouv A, Younes L (2006) Geodesic shooting for computational anatomy. J Math
Imaging Vision 24:209–228

21. Bruveris M, Gay-Balmaz F, Holm DD, Ratiu TS (2011) The momentum map representation of
images. J Nonlinear Sci 21:115–150

22. Hart GL, Zach C, Niethammer M (2009) An optimal control approach for deformable
registration. In: CVPR2009, pp 9–16

23. Vialard FX, Risser L, Rueckert D, Cotter CJ (2012) Diffeomorphic 3d image registration via
geodesic shooting using an efficient adjoint calculation. Int J Comput Vision 97:229–241

40 X. Dong and G. Zheng



http://www.springer.com/978-3-319-23481-6


	2 Automated 3D Lumbar Intervertebral Disc Segmentation from MRI Data Sets
	Abstract
	1 Introduction
	2 Methods
	2.1 Data Sets
	2.2 Initialization
	2.3 Lumbar Spine Column Identification
	2.3.1 2D Vertebral Body and Disc Identification
	2.3.2 3D Lumbar Spine Column Modeling

	2.4 3D Disc Segmentation
	2.4.1 Multi-kernel LDDMM Registration
	2.4.2 Disc Segmentation by Diffeomorphic Registration


	3 Experiments
	4 Conclusions
	References


