
Chapter 1
Generic Aspects of Skyrmion Lattices
in Chiral Magnets

Andreas Bauer and Christian Pfleiderer

Abstract Magnetic skyrmions are topologically non-trivial spin whirls that may not
be transformed continuously into topologically trivial states such as ferromagnetic
spin alignment. In recent years lattice structures composed of skyrmions have been
discovered in certain bulk chiral magnets with non-centrosymmetric crystal struc-
tures. The magnetic phase diagrams of these materials share remarkable similarities
despite great variations of the characteristic temperature, field, and length scales and
regardless whether the underlying electronic state is that of a metal, semiconductor,
or insulator.

1.1 Introduction and Outline

In 1961 British nuclear physicist Tony Skyrme proposed a theoretical model in which
neutrons and protons arise as topological solitons of pion fields, i.e., fermions are
derived from bosonic fields [1–3]. Representing the, perhaps, first example of what is
now broadly referred to as fractionalization, the implications of Skyrme’smodel only
began to be fully appreciated two decades later, when Witten and Adkins demon-
strated its relevance for real experiments [4]. Since the days of this early work many
different variants of Skyrme’s original notion have been worked out in entirely dif-
ferent fields of physics. These states and excitations are now rather generously called
skyrmions. Examples include areas as diverse as particle physics [4–8], the quantum
Hall state at half-filling [9–11], Bose-Einstein condensates [12–14], and liquid crys-
tals [15]. However, in recent years skyrmions are probably most actively investigated
in the area of solid state magnetism, where certain spin textures are referred to as
skyrmions. These magnetic textures display a non-trivial real-space topology, i.e.,
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it is not possible to continuously transform them into conventional (topologically
trivial) forms of spin order such as ferromagnetism or antiferromagnetism.

While skyrmions were theoretically predicted to exist in non-centrosymmetric
magnetic materials with uniaxial anisotropy as early as 1989 [16, 17], it was despite
concerted efforts rather unexpected, when skyrmions in magnetic materials were
identified experimentally for the first time in the cubic transition metal compounds
MnSi [18] and Fe1−xCoxSi [19] in the form of a lattice structure . Since then sim-
ilar topologically non-trivial spin textures have been reported to exist for a rapidly
growing number of rather different bulk and thin film systems. The interest driving
this search for further materials stabilizing skyrmions is quite diverse, ranging from
fundamental questions on the possible break down of Fermi liquid theory [20–22]
all the way to new forms of spintronics applications [23]. From a practical point of
view the most important implication of the non-trivial topology is their emergent
electrodynamics leading to an exceptionally efficient coupling between the spin tex-
tures and spin currents [24, 25]. Further, the very detailed understanding of the spin
excitations achieved to date suggests strongly that tailored microwave devices may
be designed through the combination of different materials [26–30].

A precondition for further advances is a detailed understanding of the magnetic
phase diagramsof these compounds. In turn, this chapter provides a reviewof themost
extensively studied class of skyrmion materials to date, namely cubic chiral magnets
crystallizing in the space group P213. We begin in Sect. 1.2 with a brief introduction
to the basic properties of this class of compounds focusing on the salient properties
of the skyrmion lattice state. This is followed by an introduction to the Ginzburg-
Landaumodel of thesematerials in Sect. 1.3. Themain part of this chapter in Sect. 1.4
is dedicated to an account of the determination of magnetic phase diagrams based
on measurements of thermodynamic bulk properties. Despite great variations of the
characteristic temperature, field, and length scales between the different materials of
interest, the magnetic phase diagrams observed are remarkably similar. This brings
us to a summary of the main consequences that arise from the non-trivial topological
winding of skyrmions in Sect. 1.5, in particular their emergent electrodynamics.
The chapter closes in Sect. 1.6 with a brief account of topologically non-trivial spin
structures as recently discovered in other materials.

1.2 Skyrmion Lattice in Cubic Chiral Magnets

The helimagnetism of the materials reviewed in this chapter is homochiral with a
modulationwavelength that is large as compared to typical lattice constants. The latter
represents an important precondition for the description of the magnetic properties
in a continuum model and the characterization of the topological properties. Well-
known representatives are the (pseudo-)binary B20 transition metal monosilicides
and monogermanides MnSi, Mn1−xFexSi, Mn1−xCoxSi, Fe1−xCoxSi, FeGe, MnGe,
and mixtures thereof, as well as the insulator Cu2OSeO3. All of these compounds
crystallize in the space group P213, which lacks inversion symmetry such that two
crystalline enantiomers stabilize.
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Fig. 1.1 Spin structures of cubic chiral magnets. Typical magnetic phase diagram (center) and
schematic spin structures of the helical, the conical, the paramagnetic, and the field-polarized
state. In a phase pocket (red) in finite fields just below the helimagnetic ordering temperature,
Tc, a regular arrangement of topologically non-trivial spin whirls is observed, a so-called skyrmion
lattice. Schematic depictions by Markus Garst and from [31]

The long-wavelength helimagnetic order observed in these compounds originates
in a well-understood set of hierarchical energy scales, as already pointed out in
Landau-Lifshitz, Vol. VIII, Sect. 52, [32]. On the strongest scale exchange interac-
tions favor parallel spin alignment. On intermediate scales isotropic Dzyaloshinskii-
Moriya spin-orbit interactions arise due to the lack of inversion symmetry of the
crystal structure favoring perpendicular spin alignment [33–35]. In competition with
the stronger exchange a helical modulation is stabilized [36, 37]. The chirality of
the Dzyaloshinskii-Moriya interaction and thus of the helical modulation is fixed
by the enantiomer of the crystal structure [38, 39]. Finally, on the weakest energy
scale higher-order spin-orbit coupling terms, also referred to as crystal electric field
effects or cubic anisotropies, determine the propagation direction of the helical mod-
ulations [40].

The hierarchy of energy scales is directly reflected in a rather universal magnetic
phase diagram, as schematically depicted in Fig. 1.1. As summarized below, the same
phase diagram is observed regardless whether the materials are metals, semiconduc-
tors, and insulators (MnGe is perhaps the only exception as discussed in Sect. 1.6).
In particular, the phase diagram appears to be insensitive to the quantitative values
of the transition temperatures, transition fields, and helix wavelengths, which vary
by roughly two orders of magnitude between different compounds.

At sufficiently high temperatures the magnetic properties are characteristic of
exchange-enhanced paramagnetism with large fluctuating moments [41]. At low
temperatures and zero magnetic field multi-domain helical order is observed with
equal domain populations, where the helical propagation vector is determined by
weak cubic magnetic anisotropies, fourth-order in spin-orbit coupling. Under small
applied magnetic fields the domain population changes, until the helical state under-
goes a spin-flop transition at a transition field Hc1 [42]. The spin-flop phase is broadly
referred to as conical state, with a single-domain state of spin spirals propagating
along themagnetic field direction. The expression conical phase alludes to the notion,
that the spins tilt towards the field direction while twisting helically along to the field
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direction. When increasing the magnetic field further this conical angle closes and
a transition takes place to a field-polarized state above Hc2 [43]. We will return to a
more detailed discussion of the transitions at Hc1 and Hc2 below.

In recent years the perhaps largest scientific interest has been attracted by a small
phase pocket at intermediate fields just below the helimagnetic transition tempera-
ture, Tc. Historically this phase pocket has been referred to as A-phase. The existence
of the A-phase, first discovered in MnSi, had already been reported in the 1970s [44,
45]. However, the detailed microscopic spin structure was only identified in 2008
(publication in 2009), when small-angle neutron scattering established the first real-
ization of a skyrmion lattice in a bulk solid state system [18].

The skyrmion lattice consists of a regular hexagonal arrangement of spin whirls,
that may essentially be described by the phase-locked superposition of three helices
under 120◦ in a plane perpendicular to the appliedmagnetic field in combination with
a ferromagnetic component along the field. Of particular interest is the non-trivial
topology of this spin texture, meaning, it cannot be continuously transformed into
a topologically trivial state such as a paramagnet, ferromagnet, or helimagnet. The
associated winding number of the structure, �, is an integer and the integrated value
of the skyrmion density, φi , per magnetic unit cell, given by

φi = 1

8π
εi jkψ̂ · ∂ j ψ̂ × ∂kψ̂ (1.1)

where, εi jk is the antisymmetric unit tensor and ψ̂ = M(r)/M(r) is the orientation
of the local magnetization. Along the field direction the quasi two-dimensional spin
structure repeats itself, forming skyrmion lines as depicted in the right panel of
Fig. 1.1. Perhaps most intriguing, the interaction of each skyrmion with an electron
spin corresponds to one quantum of emergent flux and an emergent electrodynamics
presented in Sect. 1.5.

Experimentally, the existence of skyrmions was first recognized in the form of the
skyrmion lattice as observed in reciprocal space using small-angle neutron scattering
(SANS) in bulk samples [18, 19, 48–50]. Further detailed SANS studies on MnSi
revealed the presence of weak higher-order scattering, indicating a weak particle-
like character of the skyrmions. The evolution of this higher-order scattering as a
function of temperature and field proved the long-range crystalline nature of the
skyrmion lattice and, in particular, the phase-locked multi-Q nature of the modula-
tion at heart of the non-trivial topological winding [46]. These measurements were
soon followed-up by real-space imaging studies using Lorentz force transmission
electron microscopy (LF-TEM). This method is sensitive to in-plane components
of the magnetic moments. However, it may only be used to study thinned bulk
samples [26, 47, 51, 52], whereas magnetic force microscopy (MFM) allowed the
detection of the stray magnetic field above the surface of bulk samples [31]. As the
most recent achievement of real-space imaging, the spin arrangement in the skyrmion
lattice could even be reconstructed in three dimensions by means of electron holog-
raphy [53].
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Fig. 1.2 Helical and skyrmion lattice state as observed in reciprocal and real space. a–c Helical
state in zero magnetic field. d–f Skyrmion lattice state in finite field. Data from small angle neutron
scattering (SANS) [18, 46],magnetic forcemicroscopy (MFM) [31], andLorentz force transmission
electron microscopy (LF-TEM) [26, 47] are shown. The color-coded in-plane orientation in the LF-
TEM data was obtained by a transport-of-intensity (TIE) analysis

Typical data from SANS, MFM, and LF-TEM recorded on different chiral
magnets are shown for the helical and the skyrmion lattice state in
Fig. 1.2. In the helical state at zero magnetic field SANS experiments show intensity
maxima along the easy axes of the helical propagation vector q, typically either 〈100〉
or 〈111〉 [36, 40]. Real-space images reveal stripy patterns with q perpendicular to
the stripes [54]. The skyrmion lattice state in finite fields in SANS experiments, see
Fig. 1.2d, is characterized by a sixfold scattering pattern in a plane perpendicular to
the applied magnetic field that is only fully revealed if the magnetic field is applied
parallel to the neutron beam. In earlier experiments themagnetic field and the neutron
beam had been applied perpendicular to each other leading to erroneous interpre-
tations [42, 55–57]. Note that the wave vector in the skyrmion lattice has the same
absolute value as in the helical state, q = 2π /λh. Thus, due to the hexagonal pack-
ing of the skyrmions in real space, the distance between neighboring skyrmion cores
is a factor of 2/

√
3 ≈ 1.15 larger than the helix wavelength. In real-space images,

see Fig. 1.2e, f, a hexagonal lattice of objects is observed. The magnetic moments in
their cores are aligned antiparallel to the applied field, cf. blue color in Fig. 1.2e, i.e.,
the spin structure in the cubic chiral magnets in fact consists of anti-skyrmions.
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Interestingly, when the size of bulk samples along the field direction becomes
comparable to the helical modulation length, the skyrmion lattice extents over
increasingly larger parts of the magnetic phase diagram as demonstrated in LF-TEM
studies [51]. In contrast, the magnetic properties of epitaxially grown thin films of
the same chiral magnets, forming equal crystalline domain populations with both
chiralities in the same film, are still debated controversially [58–61]. Here, in addi-
tion to the effects resulting from the heterochirality and the reduced dimensionality,
strain arising from the lattice mismatch with the substrate needs to be taken into
account.

1.3 Theoretical Description

The thermodynamic properties of the cubic chiral magnets may be described
extremely well in the framework of a Ginzburg-Landau model of the free energy
density, see also chapter by Markus Garst. It is convenient to distinguish two con-
tributions, f = f0 + fcub, where the first term accounts for isotropic contributions
and the second term accounts for the effects of magnetic anisotropies. More specifi-
cally, f0 includes ferromagnetic exchange, the Dzyaloshinskii-Moriya interaction as
the highest-order (isotropic) spin-orbit coupling term, and the Zeeman term as the
response on an external magnetic field. It may be written as:

f0 = 1

2
ψ(r − J∇2)ψ + Dψ(∇ × ψ) + u

4! (ψ
2)2 − μ0μψ H (1.2)

We choose the three component order parameter field, ψ , with dimensionless units
yielding a magnetization density M = μψ with μ = μB/f.u., i.e., a single Bohr
magneton per formula unit (μB > 0). The parameter r tunes the distance to the
phase transition, J is the exchange stiffness and u the lowest order mode-coupling
parameter. The second term, Dψ(∇ × ψ), corresponds to theDzyaloshinskii-Moriya
interactionwith the coupling constant D. This term is justified by the lack of inversion
symmetry of the crystal structure. The last term describes the Zeeman coupling to
an applied magnetic field H . An ansatz for a single conical helix is:

ψ(r) = ψ0ψ̂0 + �hel ê
−eiQr + �∗

hel ê
+e−iQr (1.3)

Here,ψ0 is the amplitude of the homogeneous magnetization and�hel is the complex
amplitude of the helical order characterized by the pitch vector Q. The vectors
ê1 × ê2 = ê3 form a normalized dreibein where ê± = (ê1 ± iê2)/

√
2 and Q = Q ê3.

This brings us to the second term of the free energy density, fcub, which contains
spin-orbit coupling of second or higher order breaking the rotation symmetry of f0
already in zero field.
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fcub = Jcub
2

[
(∂xψx )

2 + (∂yψy)
2 + (∂zψz)

2
] + · · · (1.4)

This leading-order term of the cubic anisotropies, where Jcub 	 J , implies that the
easy axis of the helical propagation vector is either a 〈100〉 or a 〈111〉 direction as
explored by Bak and Jensen [40]. As the field is increased the Zeeman term gains
importance and finally overcomes the cubic anisotropies, stabilizing the conical state
with the propagation vector parallel to the magnetic field, in analogy to the spin-flop
transition of a conventional antiferromagnet. In order to account for more subtle
effects, further cubic anisotropies need to be considered consistent with the non-
centrosymmetric space group P213.

While the contributions in f0 and fcub are sufficient to describe the helical, the con-
ical, the field-polarized, and the paramagnetic ground states, specific issues require
consideration of the higher-order spin-orbit coupling terms mentioned above and
other contributions. For instance, for an universal account of the collective spin exci-
tations it is necessary to include dipolar interactions [29]. Moreover, just above the
paramagnetic-to-helimagnetic phase transition at Tc non-analytic corrections to the
free energy functional arise from strong interactions between isotropic chiral fluc-
tuations. These interactions suppress the correlation length and the second-order
mean-field transition resulting in a fluctuation-disordered regime just above Tc and a
fluctuation-induced first-order transition. The scenario relevant for cubic chiral mag-
nets was originally predicted by Brazovskii [62] and recently demonstrated in MnSi
by a study combining neutron scattering, susceptibility, and specific heat measure-
ments [63]. Depending on the strength of the interaction between the fluctuations,
for other chiral magnets an extended Bak-Jensen or a Wilson-Fischer scenario may
be relevant [64–66].

As a hidden agenda the fluctuation-induced first-order transition underscores that
the skyrmion lattice state is stabilized by thermal fluctuations, as depicted in Fig. 1.3a.
The leading-order correction arise from Gaussian fluctuations around the mean-
field spin configurations of the conical and the skyrmion lattice state, respectively.
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Fig. 1.3 Stabilization of the skyrmion lattice. a Theoretical magnetic phase diagram as obtained
from aGinzburg-Landau ansatz. The inset shows that thermal fluctuations already in Gaussian order
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Monte-Carlo simulations [67]
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Interestingly, both short-range and long-range fluctuations favor the skyrmion lattice
for intermediate magnetic fields [18]. Consistently, the skyrmion lattice forms rather
independently from the orientation of the underlying crystalline lattice, where the
cubic anisotropies only lead to a slightly anisotropic temperature and field range of
the skyrmion lattice phase pocket [68, 69] and determine the precise orientation of
the skyrmion lattice [18, 49].

Both the Brazovskii scenario and the stabilization of the skyrmion lattice by
thermal fluctuations have recently been corroborated by classical Monte Carlo sim-
ulations [67]. Here, a fully non-perturbative study of a three-dimensional lattice spin
model, i.e., going beyond Gaussian order, reproduced the thermodynamic signatures
associated with a Brazovskii-type fluctuation-induced first-order phase transition
and, as shown in Fig. 1.3b, the experimental magnetic phase diagram.

All of these recent advances compare and contrast with the seminal studies of Bog-
danov and coworkers, who anticipated the existence of skyrmions in non-centrosym-
metricmaterialswith a uniaxial anisotropy and in the presence of amagnetic field [16,
17]. In particular, based on mean-field calculations ignoring the importance of ther-
mal fluctuations, they concluded for cubic compounds that the skyrmion lattice
would be metastable. Moreover, recently they predicted more complex magnetic
phase diagrams comprising, besides the phases discussed so far, of meron textures
and skyrmion liquids [70, 71]. Putative evidence for such complex phase diagrams
has been reported in FeGe based on susceptibility [72, 73], specific heat [74], and
SANS data [50]. However, as illustrated in Sect. 1.4, all data reported to date for
all cubic chiral magnets are qualitatively extremely similar. Thus, when consistently
inferring the transition fields and temperatures by virtue of the very same conditions,
the magnetic phase diagrams of all compounds including FeGe are highly reminis-
cent of each other supporting strongly a rather universal scenario as described in the
following without evidence of these complexities.

1.4 Magnetic Phase Diagrams

In the following we focus on the determination of the magnetic phase diagrams of
cubic chiralmagnets based onmagnetization, ac susceptibility, and specific heat data,
where the conditions for determining the transition fields are confirmed by micro-
scopic probes, notably extensive neutron scattering. In the first part of this section
we present typical data, explain how transition fields or temperatures are defined,
and illustrate that demagnetization effects may lead to significant corrections. This
is followed in the second part by the presentation of magnetic phase diagrams of the
most-extensively studied stoichiometric compounds MnSi, FeGe, and Cu2OSeO3

as well as the magnetic and compositional phase diagrams of the most extensively
studied doped compounds, namely Mn1−xFexSi and Fe1−xCoxSi.
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1.4.1 Phase Transitions in the Susceptibility
and Specific Heat

The different magnetic states in the cubic chiral magnets and the phase transitions
between them give rise to distinct signatures in various physical properties. Exper-
imentally, the magnetic ac susceptibility and specific heat are easily accessible for
most compounds and allow the determination of a very detailed magnetic phase dia-
gram, based on feature-tracking. This provides the starting point for further studies
and motivated us to concentrate on these quantities in the following. As an overview,
we start with colormaps of the real and imaginary part of the ac susceptibility, Re χac

and Im χac, in Fig. 1.4a, b, where blue shading corresponds to low and red shading to
high values. As an example we show data for a cube-shaped single-crystal sample of
MnSi measured at an excitation frequency of 120Hz and an excitation amplitude of
0.5mT. The field was applied after zero-field cooling along an 〈100〉 axis, i.e., along
the hard direction for the helical propagation vector.

In Re χac the conical state is characterized by a plateau of high and rather con-
stant susceptibility (orange to red shading). The reduced value at low fields is asso-
ciated with the helical state. Just below the helimagnetic ordering temperature, Tc, a
plateau of reduced susceptibility in finite fields is characteristic for a single pocket of
skyrmion lattice state (light blue shading). Just above Tc an area of relatively large sus-
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Fig. 1.4 Typical magnetization, ac susceptibility, and specific heat data of MnSi. a Color map
of the real part of the ac susceptibility. We distinguish the following regimes; helical, conical,
skyrmion lattice (S), fluctuation-disordered (FD), paramagnetic (PM), and field-polarized (FP). A
field-induced tricritical point (TCP) is located at the high-field boundary of the FD regime. b Color
map of the imaginary part revealing considerable dissipation only between the conical and the
skyrmion lattice state. c–e Typical data of the magnetization, the susceptibility calculated from the
magnetization, dM/dH , as well as the real and imaginary part of the ac susceptibility as a function
of field. Note the definitions of the various transition fields. f Electronic contribution to the specific
heat as a function of temperature for several applied magnetic fields. Data has been offset for clarity
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ceptibility (green shading) is associated with the fluctuation-disordered (FD) regime
that emerges as a consequence of the Brazovskii-type phase transition from para-
magnetism to helimagnetism. At high temperatures or high fields, respectively, the
system is in a paramagnetic (PM) or field-polarized (FP) state with low susceptibility
(blue). A broad maximum observed in temperatures sweeps of Re χac (not shown)
marks the crossover between these two regimes [75]. Im χac only shows contributions
at the phase transitions and, in particular, between the skyrmion lattice and conical
state. Here, the finite dissipation suggests a regime of phase coexistence where the
nucleation process of topologically non-trivial skyrmions within the conical phase
and vice versa eventually triggers a first-order transition [31, 68, 76]. In contrast,
at the fluctuation-induced first-order transition between the skyrmion lattice and the
fluctuation-disordered regime as a function of temperature no significant contribution
to Im χac is observed.

In order to define the different transition fields and temperatures, it is instructive
to consider the typical field dependence of the magnetization, M , the susceptibility
calculated from the measured magnetization, dM/dH , and the measured ac suscep-
tibility for a temperature just below Tc as shown in Fig. 1.4c–e. Starting at H = 0,
i.e., in the helical state, with increasing field the material undergoes transitions to
the conical and the skyrmion lattice state before returning to the conical state and
finally reaching the field-polarized state above Hc2. Below Hc2 the magnetization
increases almost linearly as shown in Fig. 1.4c, where the changes of slope at the
different phase transitions are best resolved in the derivative dM/dH depicted as
open symbols in Fig. 1.4d. Here, we compare the measured ac susceptibility, Re χac,
with dM/dH which may be viewed as zero-frequency limit of Re χac.

At the transition between the helical and conical state and in the regimes between
the conical and the skyrmion lattice state dM/dH shows pronounced maxima that
are not tracked by Re χac. In the former case this discrepancy may be attributed to the
slow, complex, but well-understood reorientation of macroscopic helical domains.
In the latter case the discrepancy is accompanied by strong dissipation, which may
be inferred from Im χac in Fig. 1.4e and attributed to regimes of phase coexistence
between the conical and the skyrmion lattice state as expected for first-order phase
transitions. In these regimes both Re χac and Im χac show a pronounced dependence
on the excitation frequency with a characteristic frequency that increases with tem-
perature [68, 77].

We define the helical-to-conical transition at Hc1 as the maximum of dM/dH
that typically coincides with a point of inflection in Re χac. The low-field and high-
field boundary of the skyrmion lattice state, HA1 and HA2, may be fixed by max-
ima in dM/dH . The regimes of phase coexistence between the conical and the
skyrmion lattice state are characterized by dM/dH 
= Re χac and Im χac � 0, where
the corresponding boarders are labeled H±

A1 and H±
A2, respectively. For H < H−

A1 and
H > H+

A2 the constant susceptibility of the conical phase is observed, while in the
skyrmion lattice state for H+

A1 < H < H−
A2 the system displays a plateau of lower

susceptibility. The second-order transition from the conical to the field-polarized
state belonging to the XY universality class is finally indicated by a point of inflec-
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tion in both dM/dH and Re χac. Similar criteria may be used to extract transition
temperatures from data recorded as a function of temperature (not shown) [68].

Important related information on the nature of the phase transitions may be
extracted from measurements of the specific heat. Using a quasi-adiabatic large heat
pulse technique allows to determine transition temperatures with high precision [49,
76]. Figure1.4f shows the electronic contribution to the specific heat, i.e., after sub-
traction of the phononic contribution, divided by temperature, Cel/T , as a function
of temperature for different applied field values. In zero field a sharp symmetric
peak marks the onset of helimagnetic order at the fluctuation-induced first-order
transition at Tc. The peak resides on top of a broad shoulder that displays for small
fields a so-called Vollhardt invariance [78] at T2, i.e., an invariant crossing point
of the specific heat, ∂C/∂ H |T2

= 0, that coincides with a point of inflection in the
magnetic susceptibility, T ∂2M/∂T 2

∣
∣
T2

≈ T H∂2χ/∂T 2
∣
∣
T2

= 0 [75]. At intermedi-
ate fields two symmetric peaks, labeled TA1 and TA2, track the phase boundaries of the
skyrmion lattice state indicating two first-order transitions. In larger fields again one
anomaly, labeled Tc, is observed. Increasing the field further causes a change of the
shape of the anomaly from that of a slightly broadened symmetric delta peak to the
asymmetric lambda anomaly of a second-order transition at a field-induced tricriti-
cal point (TCP). This field-induced change from first to second order is expected in
the Brazovskii scenario, as the interactions between the chiral paramagnons become
quenched under increasing magnetic fields.

In the magnetic phase diagram, see Fig. 1.4a, b, the crossovers between the
fluctuation-disordered and the paramagnetic regime as well as between the para-
magnetic and the field-polarized regime as observed in temperature sweeps of the
susceptibility emanate from this TCP. An analysis of the entropy released at the
phase transitions (not shown) also corroborates the position of the TCP. It suggests
that the skyrmion lattice state possesses an entropy that is larger than the surrounding
conical state, consistent with a stabilization by thermal fluctuations [76]. The latter
is supported by the detailed shape of the phase boundary between the fluctuation-
disordered and the long-range ordered states, where the skyrmion lattice extents to
higher temperatures as compared to the conical state.

Following the detailed description of data recorded inMnSiwith themagnetic field
applied along 〈100〉, we now turn to Fig. 1.5 illustrating typical susceptibility data
as a function of field for different field directions and materials. Figure1.5a shows
data of MnSi for field applied along the major crystallographic axes after zero-field
cooling measured on two cubes, i.e., with unchanged demagnetization effects. In
general, the magnetic behavior is very isotropic. Changing the field direction only
influences the weakest energy scale in the system, the cubic anisotropies, and has two
well-understood consequences for the magnetic phase diagram. First, the helical-to-
conical transition field is smallest for the easy axis of the helical propagation vector
〈111〉 and largest for the hard axis 〈100〉. In addition, the transition is only second-
order if it is symmetry-breaking and otherwise represents a crossover. Second, the
extent of the skyrmion lattice in both temperature and field decreases as the conical
state is favored by the cubic anisotropies, i.e., in MnSi it is largest for field along
〈100〉 and smallest for 〈111〉. It is important to note, that even for field along the easy
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Fig. 1.5 Typical field dependence of the susceptibility for a temperature crossing the skyrmion lat-
tice state. a Real and imaginary part of the ac susceptibility as well as susceptibility calculated from
the magnetization, dM/dH , for MnSi and fields along major crystallographic directions. Besides
well-understood anisotropies of the helical-to-conical transition and the extent of the skyrmion
lattice phase pocket, the magnetic properties of MnSi are essentially isotropic. b–e Susceptibility
for Mn1−xFexSi (x = 0.04), FeGe, Fe1−xCoxSi (x = 0.20), and Cu2OSeO3. Qualitatively very
similar behavior is observed. Data in panel (c) taken from [73]

axis of the helix the skyrmion lattice is observed for all chiral magnets questioning
a stabilization of the skyrmion lattice by cubic anisotropies only. In fact, for doped
compounds such as Fe1−xCoxSi or Mn1−xFexSi the anisotropies are usually less
pronounced or even completely suppressed, presumably due to the large amount of
chemical disorder present in the system [19, 75], and yet the skyrmion lattice state
represents nonetheless a well-defined stable phase.

Figure1.5b–e show typical susceptibility data for Mn1−xFexSi (x = 0.04), FeGe,
Fe1−xCoxSi (x = 0.20), and Cu2OSeO3 highlighting the universal aspects of differ-
ent cubic chiralmagnets. Despite the different temperature, field, length, andmoment
scales the susceptibilities of the different materials are qualitatively highly reminis-
cent. Omitting quantitative information on temperature, field, and susceptibility, even
an expert would struggle to distinguish data between the different materials.

It is finally essential to account for demagnetization effects, for instancewhen data
recorded on samples with different sample shapes are combined in a single magnetic
phase diagram. In general, the internal magnetic field, H int, is calculated as H int =
Hext − NM(Hext) with the externally applied magnetic field Hext and the 3 × 3
demagnetization matrix N that obeys tr {N} = 1 in SI units. While a proper treatment
of the dipolar interactions in the cubic chiral magnets requires to take several matrix
entries into account [29], in most cases consideration of the scalar equation Hint =
Hext − N M(Hext) is sufficient, in which for field along the z-direction the matrix
entry Nzz is referred to as N . Note that for the measured ac susceptibility, χ ext

ac ,
not only the field scale but also the absolute value of the susceptibility depends on
demagnetization effects via the applied excitation field H ext

ac .
From a practical point of view many samples are essentially rectangular prisms

for which effective demagnetization factors for fields applied along the edges may be
calculated following [79]. In addition, in the cubic chiral magnets the susceptibility
assumes essentially a constant value in the conical phase. Using the measured value,
χ ext
con, as a first approximation for the entire helimagnetically ordered part of the

magnetic phase diagram, i.e., for T < Tc and H < Hc2, the magnetization may be
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expressed as M(Hext) = χ ext
conHext = χ int

conHint. Hence, the internal and the externally
applied magnetic fields are related by:

Hint = Hext
(
1 − Nχ ext

con

) = Hext

1 + Nχ int
con

(1.5)

We note that the internal value of the constant susceptibility of the conical state, χ int
con,

is an important dimensionless measure for the effective strength of dipolar interac-
tions in the chiral magnets [29]. If the magnetic properties and a second quantity,
e.g., electrical resistivity, are determined on samples with differing demagnetization
factors, N1 and N2, the formula to calculate the internal field of the second sample
may be written as:

Hint,2 = Hext,2

(

1 − N2
χ ext
con,1

1 − χ ext
con,1(N1 − N2)

)

(1.6)

In the field-polarized state above Hc2 one may, again in first approximation, assume
the magnetization as saturated and thus M(Hext) = χ ext

conH ext
c2 = χ int

conH int
c2 leading to

a constant offset, Hint = Hext − Nχ ext
conH ext

c2 .
Despite the rather crude approximation given above, this treatment proves to be

sufficient to account for the most prominent effects of demagnetizing fields in the
chiral magnets such as the shift of transition fields. Additionally, a smearing of phase
transitions and very broad regimes of phase coexistence between the conical and the
skyrmion lattice state may be observed in samples with large and, in particular,
inhomogeneous demagnetization effects [68]. Such unfavorable sample shapes are,
for instance, thin platelets with their short edge along the field or irregular shapes
in general. Materials with a large absolute value of the susceptibility intensify the
issue.

1.4.2 Magnetic Phase Diagrams for Different Materials

Using the definitions for the transition fields and temperature given in the previous
subsection on susceptibility and specific heat data we have compiled magnetic and
compositional phase diagrams of various cubic chiral magnets as shown in Fig. 1.6.
Data extracted from measurements of the derivative of the magnetization, the ac
susceptibility, and the specific heat are shown as circles, squares, and diamonds,
respectively. Light and dark colors represent data from temperature and field sweeps,
respectively. Magnetic fields were applied after zero-field cooling. All field val-
ues are given on internal field scales, i.e., after correcting for demagnetization
effects. In general the magnetic phase diagrams of the cubic chiral magnets are
qualitatively extremely similar. We distinguish the following six regimes; helical,
conical, skyrmion lattice (S), fluctuation-disordered (FD), paramagnetic (PM), and
field-polarized (FP). In addition, we mark the regime of phase coexistence between
the conical and the skyrmion lattice state by a faint red shading. Solid and dashed lines
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Fig. 1.6 Magnetic phase diagrams of selected cubic chiral magnets. a MnSi. b, c Mn1−xFexSi.
Substitutional doping of MnSi with Fe leads to a suppression of the ordering temperature and
a decrease of the helix wavelength, λh. The magnetic phase diagram, as shown in the inset for
x = 0.04, stays qualitatively similar for x ≤ 0.10.dFeGe. Susceptibility data from [72, 73], specific
heat data from [74], and further information from [42, 80, 81] were analyzed in the same manner
as for all other compounds. e Fe0.8Co0.2Si. f, g Fe1−xCoxSi. As a function of cobalt content x
the characteristic temperature, field, and length scales may be varied over a large range. Values are
taken from [19, 82–87]. h Cu2OSeO3. In contrast to the other materials, this local-moment insulator
displays substantial magnetoelectric coupling. Still, the magnetic phase diagram is unchanged

indicate phase transitions and crossovers, respectively, while dotted lines represent
guides to the eye.

Figure1.6a reproduces the magnetic phase diagram ofMnSi for field along 〈100〉,
i.e., the hard axis for the helical propagation vector, as discussed in the previous
subsection. The inset shows the phase diagram across the entire parameter range
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of long-range helimagnetic order. We note that the helix wavelength, λh, in MnSi
increases from ∼165Å at Tc to ∼180Å at lowest temperatures [36, 57, 63].

Substitutional doping of iron at the manganese sites of MnSi results in a reduction
of the helimagnetic ordering temperature while the critical field values in the zero-
temperature limit change onlyweakly, cf. Fig. 1.6b, c. Themagnetic phase diagram is
qualitatively very similar to pureMnSi for x ≤ 0.10 as shown in the inset of Fig. 1.6b
for Mn1−xFexSi with x = 0.04. The most notable difference concerns the helical
state, which forms in Mn1−xFexSi only properly after zero-field cooling. In addition,
Hc1 becomes essentially isotropic and increases with decreasing temperature. These
effects, however, may be related to the increased amount of disorder present in the
system. The helix wavelength and hence also the skyrmion lattice constant decreases
by up to a factor of roughly 2 resulting in an increase of the skyrmion density by a
factor of 4 [48, 88].

The complex quantum critical behavior that emerges at high iron concentrations,
where static magnetic order is fully suppressed, is the topic of ongoing research
[65, 75]. Doping with iron, cobalt, and nickel leads to an essentially identical mod-
ification of the magnetic behavior if scaled by the number valance electrons per
formula unit [75, 89]. Doping with chromium, i.e., reducing the number of valance
electrons, leads to a suppression of Tc comparable to iron doping [90]. This behavior
is consistent with the notion that the main effects of chemical doping are due to a
rigid shift the Fermi level, as recently inferred from a combined study of ab initio
calculations and the electric transport properties in Mn1−xFexSi [88].

We now turn to FeGe which is rather similar to MnSi, however, with a transition
temperature near room temperature and λh = 700Å. Around 230K the easy direc-
tion of the helical pitch changes from 〈100〉 at high temperatures to 〈111〉 at low
temperatures, where a large thermal hysteresis of ∼35K is observed [81]. Recent
publications [50, 72–74] claimed putative experimental evidence for the formation
of a very complex magnetic phase diagram with multiple pockets and precursor phe-
nomena around the skyrmion lattice state. The authors concluded that these findings
prove that the skyrmion lattice is in fact not stabilized by thermal fluctuations but by
a combination of uniaxial anisotropies and a softened modulus of the magnetization.

In stark contrast, applying accurately the same definitions given in the previous
subsection to the data published in [72–74] provides the phase diagram shown in
Fig. 1.6d. This phase diagram strongly resembles that of the other cubic chiral mag-
nets. The broad regimes of phase coexistencemay be attributed to large demagnetiza-
tion effects as a consequence of the relatively large absolute value of the susceptibility
in FeGe and the shape of the samples used in these studies; we extract χ ext

con = 1.6 and
N ≈ 0.33 from [73] yielding χ int

con = 3.4. Most importantly, however, we observe no
signatures of additional phase pockets or mesophases. We finally note that a temper-
ature discrepancy of the maximum in the specific heat in [73, 74] indicates that care
has to be taken when combining data from different samples or measurement setups.

Figure1.6e–g are dedicated to Fe1−xCoxSi, a pseudo-binary B20 system that dis-
plays helimagnetism in a large composition range, 0.05 � x � 0.8 [82, 85, 91],
albeit the parent compounds FeSi and CoSi are a paramagnetic insulator [92] and a
diamagnetic metal [93], respectively. Starting from the strongly correlated insulator
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FeSi [94], an insulator-to-metal transition takes place around x ≈ 0.02 [84]. How-
ever, due to the comparatively high absolute value of the electrical resistivity and
an upturn at low temperatures helimagnetic Fe1−xCoxSi is typically referred to as a
strongly doped semiconductor [82, 86, 95].

Compared to the stoichiometric helimagnets, Fe1−xCoxSi offers the opportunity to
vary the characteristic parameters of the helimagnetism over a wide range by compo-
sitional tuning while the magnetic phase diagrams stays that of a typical cubic chiral
magnet, cf. Fig. 1.6e. As summarized in Fig. 1.6f, g, the helimagnetic transition tem-
perature reaches up to∼50K, the critical fields assume values up to∼150mT, and the
helix wavelength ranges from about 300Å to more than 2000Å. As for dopedMnSi,
a proper helical state is observed only after zero-field cooling. Fe1−xCoxSi displays
easy 〈100〉 axes that, especially for larger cobalt contents, are less pronounced than
for other cubic chiral helimagnets [87]. For x = 0.20 a helical pitch along 〈110〉 was
identified in [19]. The latter study also revealed the existence of a skyrmion lattice in
Fe1−xCoxSi that is sensitive to the field and temperature history. While the reversible
pocket of skyrmion lattice state is comparable to other systems, field cooling may
result in a metastable extension down to lowest temperatures allowing for concep-
tionally new types of experiments [31]. A similar behavior was later also discovered
in low-quality MnSi samples under applied pressure [96]. Moreover, depending on
the field direction, two Skyrmion lattice domains with different in-plane orientations
were observed leading to a twelvefold small-angle scattering pattern [97].

Figure1.6h finally shows the magnetic phase diagram of copper-oxo-selenite,
Cu2OSeO3. The crystalline structure of this compound is more complex than that of
the B20 transitionmetal systems, but also belongs to space group P213 [98].Magnet-
ically, on the strongest scale Cu2OSeO3 shows local-moment ferrimagnetic order of
the spin- 12 Cu

2+ ions. Here, the ferromagnetically aligned moments on the CuI sites
couple antiferromagnetically to the ions on the CuII sites leading to a 3:1 ratio [99]
with exchange constants JFM = −50K and JAFM = 65K [100]. No breaking of the
ferrimagnetic coupling is observed up to 55T [101]. The ferrimagnetism is superim-
posed by a long-wavelength helical modulation based on the Dzyaloshinskii-Moriya
interaction with λh = 620Å [26]. The resulting magnetic phase diagram is highly
reminiscent of the helimagnetic B20 compounds with an easy 〈100〉 for the helical
propagation vector and a delicate pinning within the skyrmion lattice state [49, 102].
A study using resonant soft x-ray diffraction further suggested that the CuI and CuII

sites may form individual but coupled skyrmion lattices that are rotated by a few
degree with respect to each other giving rise to a moiré pattern [103]. More recent
work reveals, however, that this conjecture may be wrong.

Cu2OSeO3, albeit being a non-polar insulator, possesses a magnetically induced
electrical polarization in finite fields and, in particular, within the skyrmion lattice
state [69]. The polarization resulting from this magnetoelectric coupling may be
described in a d-p hybridization model [104], where the covalency between copper
d and oxygen p orbitals is modulated according to the local magnetization direc-
tion via the spin-orbit interaction leading to a local electric dipole along the bond
direction [69]. Hence, though Cu2OSeO3 is actually a (heli-)ferrimagnetic magneto-
electric, it is often erroneously referred to as a multiferroic. The origin of this notion
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may be seen in the hitherto unique opportunity to manipulate a topologically non-
trivial entity of magnetoelectric nature using various external control parameters, see
for example [28, 105–108].

1.5 Emergent Electrodynamics

Aparticularly exciting consequence of the non-trivial topology of the skyrmions con-
cerns their coupling to spin currents. In the following we focus on the consequences
in metallic compounds and we refer to by Markus Garst for a more detailed account.
The spin structure of the skyrmion, as seen from the point of view of an electron tra-
versing it, gives rise to real-space Berry phases which may be expressed as emergent
magnetic and electric fields, Be

i = �

2 εi jkψ̂ · ∂ j ψ̂ × ∂kψ̂ and Ee
i = �ψ̂ · ∂i ψ̂ × ∂t ψ̂ ,

respectively, with ∂i = ∂/∂ri and ∂t = ∂/∂t [111]. As a consequence an additional
topological contribution to the Hall effect may be observed in the skyrmion lattice
state as illustrated in Fig. 1.7a [109].
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Fig. 1.7 Examples of the efficient coupling of spin currents to the skyrmion lattice. a Topological
Hall contribution, 
ρ

top
xy , in MnSi as a function of field [109]. b Topological Hall contribution,


ρ
top
xy , as a function of hydrostatic pressure in MnSi [96]. The intrinsic size (open symbols) may

only be observed after field-cooling down to the lowest temperatures. The inset shows the pressure-
temperature phase diagram of MnSi highlighting the extended regime of non-Fermi liquid (NFL)
behavior [22, 110]. c, d Anomalous Hall conductivity, σA

xy , and topological Hall constant, Rtop
yx , as a

function of themagneticmoment as varied, e.g., by iron or cobalt doping. First-principle calculations
and experimental data are in excellent agreement [88]. e Drift velocity of the skyrmion lattice, vd‖,
as a function of current density, j . Ultra-low current densities in the order of jc ∼ 106 A/m2 unpin
the skyrmion lattice [24, 111]
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Using the charge carrier spin polarization P and assuming the absence of spin-
flip scattering, while non-spin-flip scattering is captured by the normal Hall constant
R0, the topological Hall contribution may be estimated as 
ρ

top
xy = P R0Beff . The

effective emergent field, Beff , is topologically quantized in the sense that it is given
by the product of the emergent flux quantum that each skyrmion supports, φ0 = h/e,
and the skyrmion density φ. Thus, the sign of the topological Hall contribution
allows to distinguish, in principle, between skyrmions (� = +1) and anti-skyrmions
(� = −1), such as in MnSi, provided the normal Hall constant R0 is sufficient to
express the details of the band structure [109].

In real materials the electronic structure at the Fermi surface may contribute in
different ways and the spin polarization as well as the skyrmion lattice constant
may change as a function of temperature or field. In addition, processes such as
spin-flip scattering may cause a reduction compared to the intrinsic value of 
ρ

top
xy .

For instance, in MnSi the topological Hall contribution in the skyrmion lattice is
of the order of 4 n
 cm whereas an intrinsic topological Hall signal of the order of
50 n
 cm is expected for its emergent field of Beff = −13T [96]. Field-cooling the
skyrmion lattice down to low temperatures allows to reduce the finite temperature
effects, as it is for instance possible in high-pressure studies of MnSi. Here, as
shown in Fig. 1.7b, the intrinsic value of
ρ

top
xy could be inferred which in turn scales

with the charge carrier spin polarization that follows the reduced magnetic moment
mred = m(p)/m(p = 0).

At higher pressures where static helimagnetic order inMnSi is fully suppressed at
pc = 14.6kbar more complex behavior has been observed, cf. inset of Fig. 1.7b [110,
112, 113]. In particular, in a large pressure and field range the standard description
of the metallic state, namely the Fermi liquid (FL) theory, breaks down [20, 114]. In
addition, neutron scattering reveals so-called partial magnetic order in a pocket above
pc [21]. In combination with the lack of observable relaxation in muon data [115],
it has been concluded that the spin correlations of the partial order are dynamic
on a timescale between 10−10 s and 10−11 s. Finally, a clear connection between
the topological Hall effect in the skyrmion lattice at ambient pressure and a large
topological Hall signal that coincides with the non-Fermi liquid (NFL) regime above
pc empirically suggests that spin correlations with non-trivial topological character
drive the breakdown of Fermi liquid theory [22].

Calculations based on density functional theory allow to determine the sign and
themagnitude of the anomalous and the topological Hall effect and, in particular, how
they evolve when the spin polarization changes. Experimentally, the latter may be
realized by substitutional doping of Fe or Co into MnSi, where excellent agreement
between theory and experiment has been observed as shown in Fig. 1.7c, d [88]. These
results provide the quantitative microscopic underpinning that, while the anomalous
Hall effect is due to the reciprocal-space Berry curvature [116], the topological Hall
effect originates in real-space Berry phases. As a theoretical prediction that awaits
further confirmation even contributions arising frommixed phase-spaceBerry phases
have been proposed [96, 117].
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The efficient coupling of spin currents to the magnetic structure, together with the
exceptional long-range order of the skyrmion lattice [46] and the resulting very weak
collective pinning to defects, causes a sizeable response of the magnetic textures at
ultra-low current densities. Above an exceptionally low threshold current density
of the order of jc ∼ 106 A/m2 the skyrmion lattice unpins and begins to drift [24,
118]. Numerical simulations revealed that the skyrmion motion exhibits a universal
current-velocity relation that is (on the scale of the study) unaffected by impurities
and non-adiabatic effects [119]. Flexible shape-deformations of individual skyrmions
and the skyrmion lattice permit to avoid pinning centers.

Theoretically, the spin transfer torques in the cubic chiral magnets may be
accounted for in the framework of a Landau-Lifshitz-Gilbert equation using the
Thiele approach [120, 121]. Here, aMagnus force perpendicular to the current direc-
tion and a dissipative drag force along it are balanced by pinning forces, e.g., due
to defects. The Magnus force represents the effective Lorentz force arising from the
emergent magnetic field Be and leads to a certain angle between the current direc-
tion and the drift direction of the skyrmion lattice. According to Faraday’s law of
induction, a moving skyrmion, which supports exactly one quantum of emergent
magnetic flux, may then induce an emergent electric field Ee that inherits the topo-
logical quantization [122]. These electric fields have been observed directly [111]. A
scaling plot as depicted in Fig. 1.7e reveals a universal relation between the current
density, j , and the drift velocity of the skyrmion lattice, vd‖, where typical pinning
velocities are of the order of 0.1mm/s, i.e., the drift velocity of conduction electrons.

1.6 Conclusions and Outlook

Taken together, cubic chiral magnets with non-centrosymmetric space group P213
represent a class of materials that share a universal magnetic phase diagram. The
skyrmion lattice state occupies a single phase pocket and the entire magnetic phase
diagram is well accounted for by a Ginzburg-Landau approach including the effects
of thermal fluctuations. Depending on the specific material, key parameters such as
the transition temperatures, critical fields, or the helix wavelength may be varied by
two orders of magnitude. With compounds ranging from pure metals to magneto-
electric insulators, this material class provides well-understood model systems for
experiments, theory, and simulations. In recent studies, for instance, aspects were
addressed such as the topological unwinding at the transition to conventional heli-
magnetic order [31] or the collective excitations of the different spin structures [27,
129–131].

Current research activities on topologically non-trivial spin states, however,
are not restricted to cubic chiral magnets. In thin films or monolayers, where
the inversion symmetry is broken by the surface, skyrmions may be stabilized
by the Dzyaloshinskii-Moriya interaction as combined with four-spin exchange
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interactions [132, 133].Another route towards skyrmionic texturesmaybe long-range
magnetodipolar interactions [134]. In such systems, it was already demonstrated
that skyrmions may be created and annihilated individually using spin-polarized
currents of a scanning tunneling microscope [133] or laser pulses [136]. The cre-
ation, manipulation, and the dynamics of skyrmions in thin films, nanowires, and
patterned nanostructures offer great potential for future applications, see for instance
[23, 136–143]. The efficient gyromagnetic coupling, the topological stability, and
the small size of the skyrmions promise devices for ultra-dense information storage
and spintronics [25], while their unique collective excitations may be exploited for
the design of conceptually new microwave devices [28, 29, 144].

In parallel, topologically non-trivial spin states have been identified in a rapidly
growing number of bulk compounds suggesting that these complex magnetic struc-
tures may be in fact rather common. In Fig. 1.8 we summarize three recent exam-
ples. The first material, CoZn, crystallizes in the cubic space group P4132 or P4332,
depending on the handedness, and orders magnetically well above room tempera-
ture [145]. Doping manganese into the system, see Fig. 1.8a, reduces the transition
temperature. Figure1.8b shows themagnetic phase diagram of Co8Zn9Mn3 extracted
from the magnetic susceptibility. It is highly reminiscent to that of the cubic chiral
magnets including a pocket of skyrmion lattice state as identified by LF-TEM and
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Fig. 1.8 Topologically non-trivial spin structures in further bulk materials. a Part of the compo-
sitional phase diagram of the system Co10−xZn10−yMnx+y . Long-wavelength helimagnetic order
with transition temperatures exceeding room temperature has been reported [123].bColormapof the
susceptibility of Co8Zn9Mn3 revealing a skyrmion lattice state and corresponding real-space spin
structure in Co8Zn10Mn2 as obtained by LF-TEM [123]. The behavior is highly reminiscent of the
cubic chiral magnets. c Magnetic phase diagram of GaV4S8 exhibiting a Néel-type skyrmion lattice
and various types of ferroelectric order [30, 124]. d Magnetic phase diagram of MnGe [125–127]
giving rise to a simple cubic lattice of spin whirls as recently observed by LF-TEM [128]
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SANS measurements [123]. Hence, the material system Co10−xZn10−yMnx+y is not
only the first bulk compound with a space group other than P213 that exhibits a
skyrmion lattice state, but also the first compound stabilizing skyrmions above room
temperature.

Another important example is shown in Fig. 1.8c, which depicts the magnetic
phase diagram of the lacunar spinel GaV4S8. This system crystallizes in the cubic
space group F 4̄3m at room temperature. At TJT = 44K GaV4S8 shows a structural
phase transition [146] into the rhombohedral space group R3m driven by Jahn-Teller
orbital order and accompanied by an onset of ferroelectricity (FE). The structural
transition creates a multi-domain state with submicron-thick sheets of the four differ-
ent rhombohedral domains [30]. Below TC = 13K magnetic order sets in [147] and
as a function of temperature and field a rich magnetic phase diagram unfolds with
various magnetically ordered states of multiferroic nature [124]. This phase diagram
hosts a pocket of ferroelectric spin vortices forming a hexagonal skyrmion lattice
as identified by means of force microscopy and SANS [30]. However, in contrast to
the cubic chiral magnets or Co10−xZn10−yMnx+y where Bloch-type chiral skyrmions
are described in terms of spin helices, in GaV4S8 Néel-type non-chiral skyrmions
are addressed in form of a superposition of spin cycloids. Moreover, while in the
cubic chiral magnets the skyrmion lines are always essentially parallel to the applied
magnetic field, in GaV4S8 the vortex cores are confined along an 〈111〉 axis. In com-
bination with the multiferroic nature of this polar magnetic semiconductor new ways
of controlling and manipulating skyrmions may be possible.

Last but not least, we return to MnGe which is isostructural to the cubic chiral
magnets with a magnetic phase diagram that differs from the ones described so
far. In this compound, measurements of the topological Hall effect [125] and the
topological Nernst effect [127] as well as data from SANS [126] and LF-TEM [128]
consistently suggest the formation of a simple cubic lattice of spin whirls in zero
and finite field. The magnetic lattice vectors are oriented along the 〈100〉 axes of the
crystal lattice. The resulting magnetic phase diagram is depicted in Fig. 1.8c, where
the inset schematically shows the spin structure and the upper panel shows the in-
plane distribution of magnetic moments as obtained from LF-TEM. Compared to the
cubic chiral magnets the corresponding lattice period is relatively small and exhibits
a strong increase from 3nm at low temperatures to 6nm close to Tc = 170K. To
what extent this marks the starting point of a new generic understanding of complex
spin textures remains to be seen.
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