
Chapter 2
On the Quantization Problem

2.1 Introduction

In 1925 Max Born and Pascual Jordan set out to give a rigorous mathematical basis
to Werner Heisenberg’s newly born “matrix mechanics”. This led them led to state a
quantization rule for monomials; that rule associates to the product xr ps the operator

OpBJ(xr ps) = 1

s + 1

s∑

k=0

p̂s−k x̂r p̂k (2.1)

where x̂ and p̂ are operators satisfying the canonical commutation relation [̂x, p̂] =
i�. For historical and technical reasons we do not discuss here, Born and Jordan’s
rule was quickly superseded by a more general rule proposed by Hermann Weyl.
Elaborating on the Fourier inversion formula

a(x, p) = 1

2π�

∫
e

i
�

(x0x+p0 p) Fa(x0, p0)dp0dx0

Weyl defined the operator OpW(a) associated to an observable (or “symbol”) a by
formally replacing x and p by x̂ and p̂ in the formula above:

OpW(a) = 1

2π�

∫
e

i
�

(x0 x̂+p0 p̂)Fa(x0, p0)dp0dx0. (2.2)

McCoy showed in [15] Weyl’s rule leads to the formula

OpW(xr ps) = 1

2s

s∑

k=0

(
s

k

)
p̂s−k x̂r p̂k (2.3)

which is different from Born and Jordan’s rule as soon as r, s ≥ 2 (they however
coincide when r = s = 1, leading in both cases to the operator 1

2 (̂x p̂ + p̂x̂)).
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10 2 On the Quantization Problem

The Weyl rule was rediscovered and developed in the 1970s by mathematicians
working on the theory of pseudo-differential operators and partial differential equa-
tions. It turns out that the Weyl quantization rule is mathematically speaking: is very
attractive because of its simplicity; in addition it enjoys a very interesting symmetry
property (symplectic covariance; i.e. covariance under linear canonical transforma-
tions). It is also intimately related to the Wigner transform, which allows a phase
space representation of quantum mechanics. The resulting “Weyl–Wigner” formal-
ism is a well-studied topic in both mathematics and quantum mechanics. So far so
good. However, an inconsistency arises when Weyl quantization is used. It comes
from the following fact: it is conventional wisdom in physics that the Schrödinger and
Heisenberg pictures of quantum mechanics are equivalent (the Schrödinger picture
is based on Schrödinger’s equation which predicts the time-evolution of the quantum
state, and the Heisenberg picture views states as constant in time, and considers the
observable to evolve). But, and this has been unnoticed, for this equivalence to hold
wemust use the Born–Jordan scheme, and this because theHeisenberg picture breaks
down if we use any other quantization rule. That is, the Schrödinger and Heisenberg
pictures are inequivalent if one usesWeyl quantization (or any other ordering rule for
that). We are thus left with only one possible conclusion, which might be unwelcome
for many physicists: the right quantization rule for observables is that proposed in
1925 by Born and Jordan.

Fromamathematical point of view, theBorn–Jordan pseudo-differential operators
are obtained as follows. There are infinitely many ways to associate an operator to
a given symbol (or “classical observable”) a. For instance, one can use the Kohn–
Nirenberg prescription

AKNψ(x) = (
1

2π�

)n
∫∫

e
i
�

p(x−y)a(x, p)ψ(y)dn pdn y

which is very popular among mathematicians working in the theory of partial differ-
ential equations, or in time-frequency analysis. Or one can use theWeyl prescription,
which is given in pseudo-differential form by the formula

AWψ(x) = (
1

2π�

)n
∫∫

e
i
�

(x−y)pa( 12 (x + y), p)ψ(y)dn pdn y;

the latter is very popular among physicists for the reasons discussed above. There
is also the anti-normal ordering, which we just mention in passing (it is not widely
used). And then, there is the so-called Shubin prescription: for every real number τ
one associates a pseudo-differential operator Aτ to the symbol a by the formula

Aτψ(x) = (
1

2π�

)n
∫∫

e
i
�

(x−y)pa(((1 − τ )x + τ y), p)ψ(y)dn pdn y.

Obviously, choosing τ = 1 one recovers the Kohn–Nirenberg operator AKN, and
choosing τ = 1

2 one recovers the Weyl operator AW, so the Shubin operators are just
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a generalization of known schemes. Now, we define the Born–Jordan operator ABJ

with symbol a as the average

ABJ =
1∫

0

Aτ dτ

of all Shubin operators Aτ on the interval [0, 1]; this formula should be interpreted as

ABJψ(x) =
1∫

0

Aτψ(x)dτ

for ψ ∈ S(Rn). This definition leads to a completely new pseudo-differential cal-
culus, whose properties are different from those of the operators Aτ (and hence, in
particular, from those of the Weyl operator ÂW). For instance, as opposed to what
happens with Weyl or Shubin calculus, it is not obvious that every continuous opera-
tor S(Rn) −→ S ′(Rn) can be represented as a Born–Jordan operator ABJ; the usual
argument using Schwartz kernel theorem does not work here (put differently “there
might be quantum observables which have no classical analogue”). It also turns out
that in Born–Jordan quantization the zero operator can correspond to a non-zero
symbol; this particularity raises concerns about the uniqueness of “dequantization”;
these matters will be studied in detail.

2.2 The Ordering Problem

Already in the early days of quantum mechanics physicists were confronted with
the ordering problem for products of observables (i.e. of symbols, in mathematical
language). While it was agreed that the correspondence rule

x j −→ x j , p j −→ −i�∂/∂x j

could be successfully be applied to the position andmomentumvariables, thus turning
the Hamiltonian function

H =
n∑

j=1

1

2m j
p2

j + V (x1, .., xn) (2.4)

into the partial differential operator

Ĥ =
n∑

j=1

− �
2

2m j

∂2

∂x2
j

+ V (x1, .., xn) (2.5)
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it quickly became apparent that these rules lead to ambiguities when applied to more
general observables involving products of the variables x j and p j . For instance, what
should the operator corresponding to the magnetic Hamiltonian

H =
n∑

j=1

1

2m j

(
p j − A j (x1, .., xn)

)2 + V (x1, .., xn) (2.6)

be? Even in the simple case of the product x j p j = p j x j the correspondence rule led
to the a priori equally good answers−i�x j∂/∂x j and−i�(∂/∂x j )x j which differ by
the quantity i�; things became even more complicated when one came (empirically)
to the conclusion that the right answer should in fact be the “average rule”

x j p j −→ − 1
2 i�

(
x j

∂
∂x j

+ ∂
∂x j

x j

)
(2.7)

corresponding to the splitting x j p j = 1
2 (x j p j + p j x j ). To better understand the

issue, we have to go back a few years in time, to 1925. That year Heisenberg wrote
a seminal paper [13] which defined what we today call “matrix mechanics”; in an
attempt to understand Heisenberg’s ideas, and to put them on a firm mathematical
basis, Born and Jordan [1] wrote a comprehensive paper where they addressed the
ordering problem: assume that some quantization process associated to the canonical
variables x (position) and p (momentum) two operators x̂ and p̂ satisfying Max
Born’s canonical commutation rule x̂ p̂ − p̂x̂ = i�. A natural and simple choice (but
of course not the only possible one) is to choose the unbounded operators on R

n

x̂ = x, p̂ = −i�∂/∂x j .

What should then the operatorars (̂x, p̂) associated to themonomialars(x, p) = xr ps

be? Born and Jordan’s answer was

ars (̂x, p̂) = 1

s + 1

s∑

k=0

p̂s−k x̂r p̂k . (2.8)

They subsequently addressed the multi-dimensional case in a joint work [2] with
Heisenberg himself. In [8] we have analyzed in detail Born and Jordan’s argument,
and shown that their approach to Heisenberg’s matrix mechanics becomes effective
if and only if one uses the quantization rule (2.8) for monomials. Born and Jordan’s
derivation has actually been discussed by many authors (see for instance Fedak and
Prentis [10], Castellani [3], Crehan [5]), but to the best of our knowledge none has
taken up the logical need for the rule (2.8). Approximately at the same time Hermann
Weyl had started to develop his ideas about how to quantize the observables of a
physical system, and communicated them to Max Born and Pascual Jordan (see
Scholz [17] for a historical account). His basic ideas of a group theoretical approach
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were published twoyears later [19, 20].Avery interesting novelty inWeyl’s approach
was that he proposed to associate to an observable of a physical systemwhatwewould
call today a pseudo-differential operator inWeyl form. In fact, writing the observable
as an inverse Fourier transform

a(x, p) =
∫

ei(ps+xt) Fa(s, t)dsdt (2.9)

he defined its operator analogue by the formal substitution x −→ x̂ , p −→ p̂, which
yields

a(̂x, p̂) =
∫

ei( p̂s+x̂ t)Fa(s, t)dsdt; (2.10)

this is essentially the modern definition of a pseudo-differential operator in terms
of Heisenberg operators. Now, Weyl’s theory immediately yields the symmetrized
quantization rule

a(̂x, p̂) = 1

2
(̂x p̂ + p̂x̂)

(as does Born Jordan’s algebraic constructions) and one finds that more generally
(McCoy [15], 1932)

ars (̂x, p̂) = 1

2s

s∑

k=0

(
s

k

)
p̂s−k x̂r p̂k (2.11)

for a monomial ars(x, p) = xr ps .
We now make an essential observation. It turns out that Weyl’s quantization rule

(2.11) for monomials is a particular case of the so-called “τ -ordering” introduced by
Shubin [18]: for any real number τ one defines the operator

aτ
rs (̂x, p̂) =

s∑

k=0

(
s

k

)
(1 − τ )kτ s−k p̂s−k x̂r p̂k (2.12)

which is identical to Weyl’s prescription when one chooses τ = 1
2 . When τ = 0

one gets the “normal ordering” x̂r p̂s familiar from the elementary theory of partial
differential equations while τ = 1 yields the “anti-normal ordering” p̂s x̂r . We now
make the following fundamental observation: the Born–Jordan prescription (2.8) is
obtained by averaging (2.12) on the interval [0, 1]. In fact, noting that

1∫

0

(1 − τ )kτ s−kdτ = k!(s − k)!
(s + 1)!
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we get
1∫

0

aτ
rs (̂x, p̂)dτ = 1

s + 1

s∑

k=0

p̂s−k x̂r p̂k (2.13)

which is precisely (2.8).
In physics as well as in mathematics, the question of a “good” choice of quantiza-

tion is more than just academic. For instance, different choices may lead to different
spectral properties. The following example is due to Crehan [5]. Consider the Hamil-
tonian function

H(z) = 1
2 (p2 + x2) + λ(p2 + x2)3.

The term that gives an ordering problem is evidently (p2 + x2)3; Crehan then
shows that the most general quantization invariant under the substitution (x, p) �−→
(p,−x) is

Ĥ = 1

2
( p̂2 + x̂2) + λ( p̂2 + x̂2)3 + λ(3α�

2 − 4)( p̂2 + x̂2).

It is easy to see that the eigenfunctions of Ĥ are those of the harmonic oscillator
Ĥ0 = 1

2 ( p̂2 + x̂2) (they are thus the Hermite functions) and do not depend on the
choices of the parameters λ and α. However the corresponding eigenvalues do: they
are the numbers

EN = (N + 1
2 )� + λ�(2N + 1)3 + λ�(2N + 1)(3α�

2 − 4)

for N = 0, 1, 2, ..., which clearly shows the dependence of the spectrum on the
parameters α and λ, and hence of the chosen quantization. This example clearly
shows that the choice of a quantization is not just an academic problem, but has deep
consequences when one looks for the correct spectra in physics. There are more
subtle issues associated with the choice of quantization, and these will be discussed
later on in this book.

We note that the ordering problem for monomials is still not closed, as witnessed
by recent research (see for instance Domingo and Galapon [9]).

2.3 What Is Quantization?

In physics “quantization” refers to a mathematical procedure designed to describe a
quantum system using its formulation as a classical system. We have been loosely
talking about “quantization” as a process which allows one to associate an operator
acting on some function space to a function; the latter is supposed to represent a
dynamical variable, for instance energy, or position, or momentum; for a detailed
and interesting discussion of the historical development of quantization, see Mehra
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and Rechenberg’s treatise [16]. In the case of monomials the approach seems to be
more abstract, because we associate to expressions like xr ps a formal product of
operators x̂ and p̂. It would therefore be useful to have a solid working mathematical
definition of the notion of quantization. Let us immediately note that there is no
consensus in the literature about what a “good” definition should be. We are going
to give below a definition of quantization which is rather minimalistic, but sufficient
for our purposes (and probably also the most reasonable from a physical point of
view). But let us first explain what properties a quantization cannot satisfy; this will
give us the opportunity of debunking what we called “urban legends” in [8]. The first
of these properties is the so-called Dirac rule: any quantization a ↔ Op(a) should
satisfy the relation

[Op(a),Op(b)] = i�Op({a, b}) (2.14)

where {a, b} is the Poisson bracket of the two observables a, b. It is however well-
known (the Groenewold–van Hove theorem, see [11, 12]) that (2.14) cannot hold
for polynomials with degree > 2. Kauffmann gives in [14] an excellent analysis
of Dirac’s correspondence, and in [3] Castellani analyzes the (non-)existence of
quantization rules satisfying (2.14). The second quantization rule that cannot be
satisfied is von Neumann’s condition

Op(aN ) = (Op(a))N . (2.15)

In fact, Cohen [4] has proven that this condition would prohibit the existence of a
quasi-probability distribution ρ(x, p) satisfying the marginal conditions

∫
ρ(x, p)dn p = |ψ(x)|2,

∫
ρ(x, p)dn x = |Fψ(p)|2 (2.16)

and the average value formula

〈g(Op(a))ψ|ψ〉 =
∫

g(a)(x, p)ρ(x, p)dpdx . (2.17)

This would, among other unwanted consequences, prohibit the existence of the
Wigner distribution and of a Weyl type phase space quantum mechanics.

So, now that we know what a quantization cannot be, let us list a few properties
we would like a quantization to have.

Let us denote by Class(n) the vector space of all (real or complex) functions
defined on phase space R

2n; we do not assume any particular smoothness property
for the elements of Class(n) (which we call “observables”, or “symbols”). We will
denote by Quant(n) the complex vector space of all continuous linear operators
Â : S(Rn) −→ S ′(Rn). We call quantization any linear mapping

Op : Class(n) −→ Quant(n)



16 2 On the Quantization Problem

having the following properties:

• Triviality axiom:

Op(1) = Id, Op(x j ) = x̂ j , Op(p j ) = p̂ j

(Id the identity operator);
• Self-adjointness: if a = a(x, p) is real, thenOp(a) is self-adjoint;more generally:

Op(a∗) = Op(a)†

where a∗ is the complex conjugate of a.

These two first properties are well-known, and very “reasonable”; the third axiom
seems a little bit artificial, but helps maintain a relatively small class of possible
quantizations:

• Reduced Dirac correspondence:

[x̂ j ,Op(a)] = i�Op({x j , a})
[ p̂ j ,Op(a)] = i�Op({p j , a})

for every a ∈ Class(n) and j = 1, ..., n.

It turns out that, at least as far as monomials or polynomials are concerned, the
property above allows one to give very explicit expressions for Op(a); in particular
one can prove the existence of a function f such that f (0) and

Op(xr ps) =
min(r,s)∑

j=0

f ( j)(0)

(
s

j

)(
r

j

)
j !� j p̂s− j x̂ r− j (2.18)

(see Domingo and Galapon [9]). This property makes it easy to connect quanti-
zation—in the general case—with the theory of the Cohen classes, which plays an
essential role in phase space quantum mechanics (and in its cousin, time-frequency
analysis). We will come back to this property in Chap.3.

A quantization scheme satisfying these three properties is called by some authors
a “generalized Weyl correspondence”; we will not use this terminology because it
gives the impression that the Weyl correspondence plays a privileged and central
role in quantization. While it is true that the Weyl correspondence is in a sense the
simplest quantization scheme, and that other quantization schemes can be studied in
terms of it, it is not necessarily the best one in physics, as our discussion below will
show.

http://dx.doi.org/10.1007/978-3-319-27902-2_3
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2.4 Motivation for Born–Jordan Quantization

As shortly argued above there are many reasons to believe that the Born–Jordan
ordering, which leads to the Born–Jordan pseudo-differential calculus is the correct
physical quantization scheme. We have shown in [7, 8] that the equivalence of the
Schrödinger and Heisenberg pictures of quantum mechanics (which is taken for
granted in quantum physics) requires that the “ observables” be quantized using
the Born–Jordan rule. In fact, close scrutiny of Born and Jordan’s argument shows
that their quantization rule (2.13) is not only sufficient, but also necessary for their
definitions to be mathematically consistent.

In the Schrödinger picture of quantummechanics (wavemechanics), the operators
are constant (unless they are explicitly time-dependent), and the states evolve in time:
ψ(t) = U (t, t0)ψ(t0) where

U (t, t0) = ei HS (t−t0)/� (2.19)

is a family of unitary operators (the propagator); the time evolution of ψ is thus
governed by Schrödinger’s equation

i�
∂ψ

∂t
= HSψ; (2.20)

HS is an operator associated with the classical Hamiltonian function H by some
“quantization rule”. In the Heisenberg picture (matrix mechanics), the state vectors
are time-independent operators that incorporate a dependency on time, while an
observable AS in the Schrödinger picture becomes a time-dependent operator AH(t)
in the Heisenberg picture; this time dependence satisfies the Heisenberg equation

i�
d AH

dt
= i�

∂ AH
∂t

+ [AH, HH]. (2.21)

Schrödinger [6] (and, independently, Eckart [5]) attempted to prove shortly after
the publication of Heisenberg’s result that wave mechanics and matrix mechanics
were mathematically equivalent. Both proofs contained flaws, and one had to wait
until von Neumann’s [7] seminal work for a rigorous proof of the equivalence of both
theories. We will not bother with the technical shortcomings of Schrödinger’s and
Eckart’s approaches here, but rather focus on one, perhaps more fundamental, aspect
which seems to have been overlooked in the literature. We observe that it is possible
to go from the Heisenberg picture to the Schrödinger picture (and back) using the
following simple argument: a ket

|ψS(t)〉 = U (t, t0)|ψS(t0)〉 (2.22)



18 2 On the Quantization Problem

in the Schrödinger picture becomes, in the Heisenberg picture, the constant ket

|ψH〉 = U (t, t0)
†|ψS(t)〉 = |ψS(t0)〉 (2.23)

whereas an observable AS becomes

AH(t) = U (t, t0)
†ASU (t, t0); (2.24)

in particular the Hamiltonian is

HH(t) = U (t, t0)
†HSU (t, t0). (2.25)

Taking t = t0 this relation implies that HH(t0) = HS ; now in the Heisenberg picture
energy is constant, so the Hamiltonian operator HH(t) must be a constant of the
motion. It follows that HH(t) = HS for all times t and hence both operators HH
and HS must be quantized using the same rules. A consequence of this property is
that if we believe that Heisenberg’s “matrix mechanics” is correct and is equivalent
to Schrödinger’s theory, then the Hamiltonian operator appearing in the Schrödinger
equation (2.20) must be quantized using the Born–Jordan rule, and not, as is usual
in quantum mechanics, the Weyl quantization rule.

Now, why should we then choose the Born–Jordan quantization scheme, and
not, for instance, the Weyl correspondence? It turns out that Born and Jordan’s
argument only works if one uses the quantization scheme that they proposed. We
have explained this in detail in [8]; for completeness we reproduce here the argument
(with some simplifications). A close scrutiny of the arguments in Born and Jordan
[1] and its follow-up [2] by Born et al. shows that the key to their approach lies
in the differentiation rule for products of non-commuting variables. They actually
give two definitions, and prove thereafter that both coincide if and only if one makes
an essential assumption on the ordering of the quantization of monomials. The first
definition is algebraic: if

y =
s∏

m=1
y�m = y�1 y�2 · · · y�s (2.26)

is a product of non-commuting variables y� then, if k ∈ {�1, �2, ..., �s}, the derivative
of y with respect to yk is given by what they call a “differential quotient of first type”:

(
∂y

∂yk

)

1

=
s∑

r=1

δ�r k

s∏
m=r+1

y�m

r−1∏
m=1

y�m (2.27)

(δ�r k the Kronecker delta). In words: pick a factor xk in (2.26) and form the product
of all the following factors, and thereafter the product of the preceding factors (in
that order). When y is a monomial p̂s x̂r this rule yields
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(
∂

∂ p̂
( p̂s x̂r )

)

1

=
s−1∑

�=0

p̂s−1−� x̂r p̂� (2.28)

(
∂

∂ x̂
( p̂s x̂r )

)

1

=
r−1∑

j=0

x̂r−1− j p̂s x̂ j . (2.29)

The second definition (explicitly given in formula (3) of [2]) is similar to that of an
ordinary partial derivative:

(
∂y

∂yk

)

2

= lim
α→0

f (· · ·, yk + α, · · ·)
α

. (2.30)

With this definition formulas (2.28) and (2.29) become

(
∂

∂ p̂
( p̂s x̂r )

)

2

= s p̂s−1 x̂r

(
∂

∂ x̂
( p̂s x̂r )

)

2

= r p̂s x̂r−1.

Their next step consists in identifying both notions of partial derivative; more specifi-
cally they want that the quantization Ĥ (still to be defined) of a Hamiltonian function
satisfies the equalities

(
∂ Ĥ

∂ p̂

)

1

=
(

∂ Ĥ

∂ p̂

)

2

,

(
∂ Ĥ

∂ x̂

)

1

=
(

∂ Ĥ

∂ x̂

)

2

. (2.31)

They thereafter show quite explicitly (in the footnote (1) of [2]) that these equations
hold if the quantization Ĥ of H = ps xr is the self-adjoint operator given by

Ĥ = 1

r + 1

r∑

j=0

x̂r− j p̂s x̂ j = 1

s + 1

s∑

�=0

p̂s−� x̂r p̂�. (2.32)

They do not, however, show that it is the only possibility leading to a self-adjoint
operator Ĥ . This is however the case, as we have shown in [8].

To be complete, let us explain why Born and Jordan needed these constructions.
They assumed that the equations of motion for p̂ and x̂ are formally the same as in
Hamiltonian mechanics, namely

dx̂

dt
= ∂ Ĥ

∂ p̂
,

d p̂

dt
= −∂ Ĥ

∂ x̂
. (2.33)
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Pursuing this classical analogy, they require in addition that the Hamilton equations,
written in terms of Poisson brackets

dx

dt
= {x, H}, dp

dt
= {p, H}

should be replaced with the operator relations

dx̂

dt
= [̂x, Ĥ ], d p̂

dt
= [ p̂, Ĥ ];

to be consistent with the Hamilton equations (2.33) one must thus have

[̂x, Ĥ ] = i�
∂ Ĥ

∂ p̂
, [ p̂, Ĥ ] = i�

∂ Ĥ

∂ x̂
. (2.34)

This last step in Born and Jordan’s construction also requires that the operator Ĥ
must be given by the rule (2.32) above.
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