
Chapter 2
Topological Solid State Systems:
Conjectures, Experiments and Models

Abstract This chapter reviews the ten classes of topological insulators and super-
conductors and presents their classifying table. The two complex classes of the table,
which are the focus of our work, are then discussed in depth. The emphasis is on the
physical properties, experimental achievements and the conjectures put forward by
the physics community. The bulk-boundary correspondence principle is exemplified
using exactly solvable models in arbitrary dimensions. The chapter also introduces
the generic classes of physical models which incorporate the effect of an external
magnetic field and disorder. It elaborates the main assumptions and summarizes the
behavior of various physical quantities of interest. The reader will find here several
technical results from functional analysis used in our work.

2.1 The Classification Table

Hereafter, a crystal will be said to be insulating in the bulk if the direct bulk resistivity
diverges as the temperature is taken to zero. In what concerns the electron-electron
interaction, all insulators mentioned in this work are well described by mean-field
approximations, hence the analysis is always carried out in the independent electron
picture. Then, a strong topological insulator is a crystal which is insulating in the
bulk, but becomes metallic when an edge or a surface (called boundary hereafter)
is cut to the crystal. This definition automatically implies that boundary spectrum
emerges at the Fermi level and, since disorder is unavoidable in real samples, it also
implies that this spectrum is immune to Anderson localization, at least in the regime
of weak disorder. For superconductors, the fermionic quasiparticle excitations are
assumed to bewell describedwithin the Bogoliubov-deGennes approximation. Then
a strong topological superconductor has gapped fermionic quasiparticle excitations
in the bulk, but supports gapless excitations modes along any boundary cut to the
system. There are other effects appearing in topological insulators, e.g. the existence
of zero modes attached to defects, but this is not in the focus of the present work
(except in Chap.1).

One of the first efforts to classify the strong topological insulators and supercon-
ductors was undertaken by Schnyder, Ryu, Furusaki, and Ludwig in [192]. The first
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accomplishment of their work was to realize that the classification should be per-
formed inside the universality classes. Focussingmainly on randommatrices, Altland
and Zirnbauer [5, 232] argued that there are ten classes which cover both Fermionic
systems of electrons with conserved particle number and systems of the Bogoliubov-
de Gennes type. These classes are listed in Table2.1. Each class is characterized by
the transformations of their elements, i.e. the quantum systems themselves, under
three generic symmetries, namely, the time-reversal (TRS), particle-hole (PHS) and
chiral (CHS) symmetries. The TRS and PHS can square to plus or minus the iden-
tity, leading to a total of precisely ten distinct choices. Note that the combination
of a TRS and a PHS results in a transformation of CHS type, and this aspect needs
to be taken into account when counting the universality classes. As explained in
Ref. [232], these classes are closely connected to Cartan’s symmetric spaces, which
explains the Cartan labels assigned to them (e.g. A, AIII, etc.). The separation in
universality classes applies to random matrices and disordered metals and insulators
alike. Ref. [192] then went systematically over these ten classes for bulk insulators
in dimension d ≤ 3, by performing an analysis of the localized/delocalized character
of the boundary states in the presence of disorder. This analysis was based on the
classification of the one- and two-dimensional disordered Dirac Hamiltonians by
Bernard and LeClair [24] and on a complementary field-theoretic argument based
on the replica trick, both of which rely on effective theories involving saddle-point
approximations (the non-linear sigmamodels). The final conjecture of Ref. [192]was
that all topological phases for d ≤ 3 (those with a non-vanishing entry in Table2.1)
display delocalized boundary spectrum which fills the bulk gap entirely. For the

Table 2.1 Classification table of strong topological insulator and superconductors

j TRS PHS CHS CAZ d = 0, 8 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

0 0 0 0 A Z Z Z Z

1 0 0 1 AIII Z Z Z Z

0 +1 0 0 AI Z 2Z Z2 Z2

1 +1 +1 1 BDI Z2 Z 2Z Z2

2 0 +1 0 D Z2 Z2 Z 2Z

3 −1 +1 1 DIII Z2 Z2 Z 2Z

4 −1 0 0 AII 2Z Z2 Z2 Z

5 −1 −1 1 CII 2Z Z2 Z2 Z

6 0 −1 0 C 2Z Z2 Z2 Z

7 +1 −1 1 CI 2Z Z2 Z2 Z

Each row represents a universal symmetry class, defined by the presence (1 or ±1) or absence
(0) of the three symmetries: time-reversal (TRS), particle-hole (PHS) and chiral (CHS), and by
how TRS and PHS transformations square to either +1 or −1. Each universality class is identified
by a Cartan-Altland-Zirnbauer (CAZ) label. The strong topological phases are organized by their
corresponding symmetry class and space dimension d = 0, . . . , 8. These phases are in one-to-one
relation with the elements of the empty, Z2, Z or 2Z groups. The table is further divided into the
complex classes A and AIII (top two rows), which are the object of the present study, and the real
classes AI, …, CI (the remaining 8 rows)
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unitary chiral AIII class it is now known that the conjecture is not entirely true, as
disorder can localize the entire boundary spectrum except at the Fermi level [65],
which for AIII class in pinned at E = 0, and magnetic fields can even open spectral
gaps in the boundary spectrum. Ref. [192] also introduced a higher winding num-
ber for chiral systems in dimension d = 3 allowing to distinguish so-called strong
topological insulators. The possible values of this invariant and its analogues in other
dimensions and universality classes appear in Table2.1. For example, the Z for class
A systems in d = 2 is the well-known Chern number of quantum Hall systems.

The structure of the classifying table reported in Ref. [192] differed from the one
seen in Table2.1. The latter displays an obvious flow-pattern and periodicity with
the space dimension and, because of these characteristics, the table is also called the
periodic table of topological insulators and superconductors. These features were
pointed out by Kitaev [115], who noted that the systems with (without) TRS and
PHS are classified by the real (complex) K-theories. Then Bott periodicity alone
can explain the patterns seen in Table2.1, as it is nicely explained in Refs. [111,
143, 203, 207] for the real classes. See also [77] for an index-theoretic approach
which holds in the regime of strong disorder. In the complex case, there are only
two available K-groups, the K0 and K1 groups, and they classify the two complex
classes A and AIII, respectively. One can move between the two groups using the
suspensions maps, the θ -map and the Bott map (see Sect. 4.1.4), which effectively
increase the space dimension by one. As such, to any strong topological insulator
from class A one can associate a strong topological insulator from class AIII using
Bott map and by doubling the dimension of the fiber to accommodate for the chiral
symmetry; and to each topological system from AIII class one can associate a strong
topological insulator fromclassAusing the θ -map.Repeating this procedure, starting
from d = 0 where K0 � Z, one can get an understanding of the flow-pattern,
the periodicity and the counting of the strong complex topological phases listed in
Table2.1. Let us mention that Table2.1 is adopted from Ref. [190], which relied on
the same classifying criterium andmethods as Ref. [192]. Further let us point out that
the 2Z entries in Table2.1 express that the invariants for the corresponding systems
are always even [77, 190].

The complex K-groups of the algebras of bulk observables, in the presence of
disorder and magnetic fields, are listed in Sect. 4.2 and, as one can immediately see
from Table2.1, the strong topological insulators account only for a fraction of these
groups. As discussed in Sect. 4.2.3, the strong topological systems are generated by
the top generators of the K-groups, while the rest of the generators generate the so-
called weak topological insulators. The same is true for the real classes. An example
of weak topological insulator is the quantum Hall effect in three space dimensions
[120]. As we shall see, the bulk-boundary principle applies to the weak topological
insulators too, but with two important modifications: (1) The principle does not work
for all boundaries. In other words, boundaries cut along specific crystallographic
planes do not carry topological boundary states (see [225] for explicit examples).
(2) Their bulk and boundary invariants (see Sects. 5.3 and 5.2) do not satisfy index
formulas and for this reason the bulk invariants cannot be formulated in the regime of
strong disorder and the delocalization of the topological boundary spectrum cannot

http://dx.doi.org/10.1007/978-3-319-29351-6_4
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be established by the present methods. The latter remains an important open issue
because, in certain circumstances, the weak topological insulators were shown to
display metallic boundary states in the presence of disorder [15, 118, 140, 186] and
robust conducting channels along line-defects [93]. We want to mention that new
mathematical tools, targeting precisely this issue, were put forward in Ref. [165].

Lastly, let us point out that there are additional classes of topological insulators
which received substantial attention from both theoretical and experimental physics
communities. These are the crystalline topological insulators [9, 69], which are sta-
bilized by the TRS and a space point-symmetry of the crystal, and furthermore the
spin-orbit and TRS free topological insulators [6], which are stabilized just by a space
point-symmetry. By stabilized we mean that interesting topological classifications
of phases emerges when these constraints are enforced, at least in the periodic case.

2.2 The Unitary Class

The systems in the unitary class have no symmetry constraints except for the require-
ment that the time evolution is unitary. As a consequence, the generators of the time
evolution, which are theHamiltonians if the discussion is about the quantum systems,
are self-adjoint operators. This means, for example, that open or dissipative quantum
systems are excluded from the unitary class or, putted differently, the topological
characteristics associated with the unitary class may brake down when unitarity is
lost. As such, the self-adjoint property of the Hamiltonians can be regarded as a
“symmetry” which, like all the other symmetries in the classification table, stabilizes
the topological properties of the systems from class A. In this section we introduce
themodels and their physical characteristics, both for bulk and half-space.We formu-
late the bulk-boundary principle for periodic systems and demonstrate this principle
using an exactly solvable model in arbitrary dimensions. The existing experimental
results are briefly surveyed.

2.2.1 General Characterization

The most general translation invariant (i.e. 1-periodic) lattice model from the unitary
class in d space dimensions takes the form:

H : CN ⊗ �2(Zd) → C
N ⊗ �2(Zd) , H =

∑

y∈Zd

Wy ⊗ Sy, (2.1)

where Sy is the shift operator by y on �2(Zd) given by Sy|x〉 = |x + y〉, and the N ×N
matrices Wy, called tunneling or hopping matrices, satisfy only the constraint

W ∗
y = W−y ,
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ensuring that H is self-adjoint. Throughout, we denote the space of N × N matrices
with complex entries by MN (C). Also, tr will denote the trace of matrices, such as
those from MN (C), or more general the trace over finite dimensional Hilbert spaces.
The trace over infinite Hilbert spaces, such as �2(Zd) orCN ⊗�2(Zd), will be denoted
as usual by Tr.

The dimension N of the fiber is determined by the number of molecular orbitals
per unit cell of the material included in the model, and the larger this number the
more precise the model is. Let us make it clear from the beginning that (2.1) are not
toy models, but rather the models of choice in materials science. Given a concrete
material, such lattice Hamiltonians can be generated empirically by fitting avail-
able experimental data or using first-principle calculations [132, 150, 221, 230]. The
main tool for generating lattice models from first principles continuous model cal-
culations is the maximally localized Wannier basis set. The reader can find in [136]
impressive demonstrations of how effective and accurate this tool can be. Even when
working empirically, the lattice models can be finely tuned to accurately reproduce a
broad range of experiments and, once such fine tuning is achieved, the models can be
used for predictions. An example of this sort is the discovery of the first topological
insulator [26]. The quantitative predictions based on a lattice model made in [26]
were later shown to be extremely accurate by the experiment [121].

Typically, the hopping matrices Wy in (2.1) decay rapidly with y and in practice
the summation over y is restricted to a finite number R ⊂ Z

d of terms, and this will
be done from now on. We refer to such Hamiltonians as having finite hopping range.
If adequate conditions are imposed on the fall-off of Wy in y, the case R = Z

d can
be also managed with some further technical effort, but it will not be pursued here.
For the periodic models, one can use the Bloch-Floquet decomposition

FHF∗ =
∫ ⊕

Td

dk Hk (2.2)

over the Brillouin torusTd , to reduce the analysis to that of a smooth family of N ×N
matrices

Hk : CN → C
N , Hk =

∑

y∈R
ei〈y|k〉Wy .

Throughout, 〈 , 〉 will denote the Euclidean scalar product. Examining the classifi-
cation table, we see that the topological phases in the unitary class are conjectured
to occur only in even space dimensions, and for each such dimension there is an
infinite sequence of topological phases. It is also conjectured that these phases can
be distinguished from one another by tagging them with just one integer number. In
the bulk, this number is given by the top even Chern number, which is a measurable
physical coefficient (see Chap. 7) and takes the form [13]

Chd(PF) = (2π i)
d
2

( d
2 )!

∑

ρ∈Sd

(−1)ρ
∫

Td

dk

(2π)d
tr

(
PF(k)

d∏

j=1

∂PF(k)

∂kρj

)
, (2.3)

http://dx.doi.org/10.1007/978-3-319-29351-6_7
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for the periodic crystals. Throughout, Sd will denote the group of permutations and
i = √−1. In (2.3),

PF(k) = χ(Hk ≤ μ)

is the spectral projection onto the energy bands below the Fermi levelμ. The standard
terminology for it is the Fermi projection. Because we are dealing with insulators,
the Fermi level is assumed to be located in a spectral gap of H. Throughout, χ(A)

will denote the characteristic function of a set A. We will present an explicit topo-
logical model shortly, but let us mention at this point that the periodic models with
Chd(PF) 
= 0 are ubiquitous. For example, if one generates the hopping matrices
Wy randomly, assuming R and N large, then the chances of obtaining a topological
system are far greater than the chances of obtaining a trivial one.

Our analysis, while limited to lattice models, will include uniformmagnetic fields
and disorder. The presence of a uniform magnetic field is incorporated in the lattice
models using the Peierls substitution [157], which amounts to replacing the ordinary
shift operators with the dual magnetic translations

1 ⊗ Sy �→ Uy
sym = 1 ⊗ e

i
2 〈y|B|X〉Sy = 1 ⊗ Sye

i
2 〈y|B|X〉 . (2.4)

Here, B is a real anti-symmetric d × d matrix representing the magnetic field and
X is the position operator on �2(Zd). The label “sym"indicates that the so-called
symmetric gauge has been used above.After the substitution, the latticeHamiltonians
take the form

Hsym =
∑

y∈R
Wy ⊗ Uy

sym =
∑

y∈R

∑

x∈Zd

e
i
2 〈y|B|x〉 Wy ⊗ |x〉〈x − y| . (2.5)

The Hamiltonian (2.5) is no longer invariant to the ordinary lattice translations.
Nevertheless, Hsym is invariant relative to the magnetic translations

V x
sym Hsym (V x

sym)∗ = Hsym , V x
sym = 1 ⊗ e− i

2 〈x|B|X〉Sx = 1 ⊗ Sxe− i
2 〈x|B|X〉 ,

(2.6)
written here also in the symmetric gauge.

A Landau gauge can be defined so that no Peierls phase is generated when the
lattice is shifted in the d-th direction. While the symmetric gauge is more convenient
for the bulk analysis, the Landau gauge is obviously more convenient for systems
with a boundary in the d-th direction. The dual and the direct magnetic translations in
the Landau gauge can be obtained from the symmetric ones via the transformations

Uy = e− i
2 〈y|B+|y〉 e

i
2 〈X|B+|X〉 Uy

sym e− i
2 〈X|B+|X〉 = Syei〈y|B+|X〉 (2.7)

and
V x = e

i
2 〈x|B+|x〉 e

i
2 〈X|B+|X〉 V x

sym e− i
2 〈X|B+|X〉 = ei〈X|B+|x〉Sx , (2.8)
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where B+ is the lower triangular part of B. Note that, indeed, if x and y are strictly
along the d-th direction, bothUy and V x reduce to ordinary shifts. By the conjugation
of (2.5)with the local unitary operator e

i
2 〈X|B+|X〉 (namely, by a gauge transformation),

the Hamiltonian becomes

H = e
i
2 〈X|B+|X〉 Hsym e− i

2 〈X|B+|X〉 =
∑

y∈R
e

i
2 〈y|B+|y〉 Wy ⊗ Uy . (2.9)

It is unitarily equivalent to (2.5) and satisfies V xH(V x)∗ = H. As a consequence, H
in (2.9) is periodic in the d-th direction. We will refer to (2.9) as the representation
of the Hamiltonian in the Landau gauge.

A homogeneous disorder will be described by a dynamical system (Ω, τ,Zd,P).
Here, Ω is a compact metrizable topological space representing the disorder config-
uration space and τ is a homeomorphic action ofZd onΩ , describing the behavior of
the disorder configurations under the lattice translations. FurthermoreP is an invariant
and ergodic probability measure on Ω w.r.t. τ , which defines the disorder averag-
ing procedure. A more detailed description of the space of disorder configurations
is given in Sect. 2.4.1. If disorder is present, all the coefficients in the Hamiltonian
develop a random component and its generic form becomes

Hsym,ω =
∑

y∈R

∑

x∈Zd

Wy(τxω) ⊗ |x〉〈x|Uy
sym (2.10)

=
∑

y∈R

∑

x∈Zd

e
i
2 〈y|B|x〉 Wy(τxω) ⊗ |x〉〈x − y| ,

in the symmetric gauge. The hopping matrices Wy are now continuous functions
over Ω with values in MN (C). The models with disorder are no longer invariant to
the magnetic translations, but this property is replaced by the following covariance
relation:

V x
sym Hsym,ω (V x

sym)∗ = Hsym,τxω , x ∈ Z
d . (2.11)

The Landau representation is obtained by conjugating (2.10) by e
i
2 〈X|B+|X〉, which

gives

Hω =
∑

y∈R

∑

x∈Zd

e
i
2 〈y|B+|y〉Wy(τxω) ⊗ |x〉〈x|Uy , (2.12)

and the covariance relation becomes

V x Hω (V x)∗ = Hτxω , x ∈ Z
d . (2.13)

The bulk-boundary analysis will be carried in the Landau gauge, hence we will
primarily work with the Hamiltonian (2.12).
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Since the origin of the lattice is completely arbitrary and will change every time
a crystal is put down and picked up again in the lab, the model of the disordered
crystal must include the whole family of covariant Hamiltonians H = {Hω}ω∈Ω . The
notation is appropriate because in the absence of disorder, the entire family consists
of just one element, the H itself. Systems with the covariance property (2.13) are
called homogeneous and have remarkable properties. As we shall see later, there
exists a Fourier calculus for them which can be used to define a (non-commutative)
differential calculus. Also, any such covariant family F = {Fω}ω∈Ω posses the self-
averaging property that for P-almost every configuration ω one has

lim
V →∞

1
|V | Tr

(
�V Fω �∗

V

) =
∫

Ω

P(dω′) tr(�0 Fω′ �∗
0) , (2.14)

where�V : CN ⊗�2(Zd) → C
N ⊗�2(V ∩Z

d) is a partial isometry onto the quantum
states |α〉 ⊗ |x〉 with x located inside V . In particular, �0 is the partial isometry onto
the quantum states |α〉⊗|0〉. Identity (2.14) follows directly from Birkhoff’s ergodic
theorem [27]. The quantity on the l.h.s. of (2.14) is called the trace per volume of the
covariant observable F. It is hence, with probability one, independent of the disorder
configuration and is equal to the disorder average of the trace of its matrix elements
computed at the origin (or any other point of the lattice). In the following we will use
the notation T(F) for the trace per volume of a family covariant observables. The top
even Chern number can be formulated for the generic models (2.10) or (2.12) using
a real-space representation and the trace per volume [169]

Chd(PF) = (2π i)
d
2

d
2 !

∑

ρ∈Sd

(−1)ρ T
(

Pω

d∏

i=1

(
i[Pω, Xρi ]

))
. (2.15)

Here,
PF = {Pω}ω∈Ω = {χ(Hω ≤ μ)}ω∈Ω

is the covariant family of spectral projections onto the energy spectrum belowμ, that
is, the family of Fermi projections. The top even Chern number, as defined in (2.15),
is known to remain quantized, non-fluctuating from one disorder configuration to
another, and be homotopically stable as long as the Fermi level resides in a region
of Anderson-localized spectrum [20, 169]. These statements will be re-examined in
Chap.6.

To model a boundary, the physical space and the models are restricted to the
half-space Zd−1 × N. The half-space Hamiltonian Ĥ then acts on the Hilbert space
C

N ⊗ �2(Zd−1 × N). For the moment being, it can just be thought of as the restric-
tion of H which corresponds to Dirichlet boundary conditions. In Sect. 2.4.3 other
allowed boundary conditions will be described. When the bulk Chern number Chd

does not vanish, the energy spectrum of the half-space Hamiltonian Ĥ extends inside
the bulk insulating gap, covering it completely [58, 172]. The electron states corre-

http://dx.doi.org/10.1007/978-3-319-29351-6_6


2.2 The Unitary Class 27

sponding to the spectrum inside the bulk insulating gap are exponentially localized
near the boundary, hence the terminology boundary states and boundary spectrum
(see Sect. 2.4.3 for an explicit example). For periodic crystals with a planar boundary,
say xd ≥ 0, the spectrum can be represented as energy bands rendered as functions
of the momentum k ∈ T

d−1 parallel to the boundary. The hallmark feature of the
topological phases from the unitary class is the existence of boundary energy bands
that connect the bulk valence and conduction bands. For d > 2, the boundary bands
display one or more singularities called Weyl points. Around a Weyl point, denoted
by kW ∈ T

d−1 in the following, the spectrum and the states are well described by a
Weyl operator

d−1∑

j=1

vj(kj − kW
j )σj, (2.16)

where σ = (σ1, . . . , σd−1) are the generators of an irreducible representation of the
odd complex Clifford algebra Cld−1 and v = (v1, . . . , vd−1) are the non-vanishing
slopes of the bands in different directions parallel to the boundary, which can be
positive or negative.

Remark 2.2.1 In the literature, the singular points (2.16) are sometimes also called
Dirac points, which is not appropriate for the following reasons. In 4 dimensions, for
example, the zeromassDirac operator takes the form 〈k, γ 〉 andhas a chiral symmetry
w.r.t. the product γ1 · · · γd . This splits it into two chiral sectors and, in each of those
chiral sectors, one gets the classical Weyl operator 〈k, σ 〉 when the “time” direction
is separated out. Here, γ and σ denote the Dirac and Pauli matrices. This pattern
can be recognized in any dimension, and in general, the Weyl operator involves an
odd number of Clifford generators and does not have a chiral symmetry, but rather a
chirality that will be introduced below. Throughout, we will be consistent and use the
notation σ (γ ) for the generators of the odd (even) complex Clifford algebras, and
refer to the operators 〈k, σ 〉 (〈k, γ 〉) as Weyl (Dirac) operators when the dimension
of k is odd (even), respectively. �

Now, suppose that all the Weyl singularities have been identified from the bound-
ary band spectrum and that the asymptote (2.16) of the Hamiltonian has been
extracted for each singularity (dimension d = 2 is special in this respect, see below).
Then the chirality of a Weyl point

νW =
d−1∏

j=1

sgn(vj) ∈ {−1, 1}, (2.17)

is a well defined topological invariant, provided the Weyl point remains separated
from the rest. The central conjectures for the unitary class is the following bulk-
boundary principle [172]

Chd(PF) = χ
∑

νW , (2.18)
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where the sum on the left goes over all Weyl points. In other words, under defor-
mations of the model, the Weyl singularities will move and possibly collide and
annihilate, yet the sum of their chiralities remains the same and equal to the bulk
invariant. Above, χ is a sign factor which depends on the normalization (or the sign
convention) of the bulk invariant and on the specific representation σ of the odd d −1
dimensional Clifford algebra (recall that there are two inequivalent representations).

In dimension d = 2, the chiralities are given by the signs of the slopes of the
boundary bands traversing the bulk insulating gap. The slopes are computed at a
fixed (but arbitrarily chosen) energy level. If a slope of a band happens to be zero,
then this band is excluded. The bulk-boundary principle (2.18)was first demonstrated
by Hatsugai [87] for the special case of the Harper operator with rational magnetic
field. In higher dimension, the bulk-boundary principle will be exemplified on an
exactly solvable model in Sect. 2.2.4. A proof of (2.18) will be given in Sect. 5.5,
combined with the evaluation of the boundary invariants for periodic systems in
Sect. 5.3.

One of the main goals of the present work is to formulate
∑

νW as a boundary
topological invariant which makes sense in the presence of disorder and magnetic
fields, and to derive an index theorem for it. In dimension d = 2, this was achieved
in [107] and will be reviewed and expanded in Chap.7. The boundary invariant and
the bulk-boundary equation takes the form

2π T̃
(
J‖ ρ(Ĥ)

) = Ch2(PF) , (2.19)

where T̃ is the trace per length, taken in the direction parallel with the boundary, J�

is the current operator along the boundary and ρ is a distribution which integrates
to one and has support inside the bulk insulating gap, but is otherwise arbitrary.
As above, the Hamiltonian Ĥ describes the system with a boundary. Physically, the
invariant on the l.h.s. of (2.19) gives the charge current spontaneously carried by the
boundary states when they are populated with the distribution ρ. If the bulk invariant
Ch2(PF) is nonzero, (2.19) automatically ensures that the boundary spectrum cannot
display gaps or be localized by disorder. This statement will be generalized to higher
dimensions in this work.

2.2.2 Experimental Achievements

The prototypical example of a topological condensed matter system from the unitary
class is the two-dimensional electron gas subjected to a perpendicular uniform mag-
netic field for which the integer quantumHall effect (IQHE) is observed [117]. In this
case, the Chern number Ch(PF) equals the Hall conductance of the system and all
the characteristics described above have been mapped experimentally with amazing
precision. We have been careful not to use the word “material” because this topo-
logical state of matter is stabilized by a magnetic field which needs to be externally

http://dx.doi.org/10.1007/978-3-319-29351-6_5
http://dx.doi.org/10.1007/978-3-319-29351-6_5
http://dx.doi.org/10.1007/978-3-319-29351-6_7
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maintained. It was Haldane [80] who first realized that two-dimensional materials
can display characteristics similar to IQHE without the need of an external magnetic
field. The minimal yet not sufficient requirements for this to happen is a unit cell
containing two (chemically active) molecular orbitals and complex tunneling matri-
ces between these molecular orbitals. The decisive step towards the experimental
realization of a topological material from the unitary class were taken in 2013 in the
series of works [40, 41] where a thin film of (Bi,Sb)2Te3, which in the pristine bulk
phase is a time-reversal symmetric topological insulator, was doped with chromium
magnetic atoms to induce a gapped ferromagnetic ground state. In the short period
since then, there have been quite a number of experimental refinements [16, 44, 95,
97, 125, 126], notably the achievement of the quantum critical regime at the transition
between the presumed topological and trivial phases [42]. The scaling analysis with
the temperature revealed the existence of the critical point and confirmed beyond
any doubt that a new topological state of matter was indeed achieved (see also [227]
for numerical simulations and discussion). Other materials [131] and experimental
paths have been explored. For example, a topologically non-trivial state was realized
in a system of one-dimensional array of optical guides which implemented literally
the one-dimensional Aubry-Andre model [127, 212]. The condensed matter system
proposed by Haldane [80], in its exact form, was finally realized experimentally with
ultra-cold fermions in a periodically modulated optical honeycomb lattice [96]. Here
the complex tunneling matrices were tuned using time-modulated pulses. Strong
two-dimensional topological insulators were also theoretically predicted [81, 175]
and then realized in photonic crystals [215]. Furthermore, they were also theoreti-
cally predicted [170, 218, 219, 224] and then realized in phonon or acoustic crystals
[144]. Lastly, we should mention that driving a condensed matter systems with time-
periodic potentials [116, 133, 177] or by considering incommensurate potentials
[128, 167] opens the possibility of experimental realizations of topological states
which mimic topological insulators in space dimensions higher than three. Such a
system will be discussed in details in Sect. 7.5.

2.2.3 Conventions on Clifford Representations

To give a firm meaning to the invariants and also to the index theorems presented in
Chap.6, the following conventions will be adopted throughout.

Conventions on the Clifford representations (CCR). Since only the complex
classes of topological insulators are investigated, we will only be dealing with the
complex Clifford algebras Cln. They are defined by n generators obeying the com-
mutation relations

νiνj + νjνi = 2 δi,j 1 , ν∗
i = νi , i, j = 1, . . . , n . (2.20)

http://dx.doi.org/10.1007/978-3-319-29351-6_7
http://dx.doi.org/10.1007/978-3-319-29351-6_6
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As previously mentioned, when the parity of n is important, we will use for the
generators the symbols σ (n odd) and γ (n even) but, if the parity is not important
and the discussion can be carried in parallel for the two cases, then we will use the
symbol ν. The commutation relations (2.20) are invariant to the operations

ν ′
i = uνiu

−1 , ν ′
i =

∑

j

Ai,jνj , (2.21)

and their combinations, where u is any unitary element from the Clifford algebra and
A is an orthogonal matrix form Mn×n(R), that is AAT = AT A = 1. Below, we list our
conventions.

(i) The orientation of the physical space is fixed once and for all. In other words,
one is allowed to redefine the space directions using only proper orthogonal
transformations. For example, the reflections are excluded.

(ii) The orientation of the generators νi is also fixed once and for all. This means
that all systems of generators can be connected to a reference one using the
transformations in (2.21) with A a proper orthogonal matrix.

(iii) Once the previous convention is adopted, we can unambiguously define a chiral
element (up to a harmless unitary conjugation), forwhichweadopt the following
normalization

ν0 = (−i)[
n
2 ] ν1ν2 · · · νn , ν∗

0 = ν0 , ν2
0 = 1 .

(iv) For n = 2k + 1, the commutation relations accept two inequivalent irreducible
representations on C2k

. In this odd case, the chiral element commutes with the
entire Cl2k+1, hence in an irreducible representation it will be sent to a matrix
proportional to unity. Our convention is that ν0 is sent exactly into the identity.
In other words, our odd representations are uniquely defined (up to proper
isomorphisms) by the previous conventions and by

σ1σ2 · · · σ2k+1 = ik 1 . (2.22)

For example, the Pauli matrices obey this convention.
(v) For n = 2k, the commutation relations accept a unique irreducible representa-

tions onC2k
. In this case, the chiral element anti-commutes with the generators,

hence it provides a grading, which we spell again below

γ0 = (−i)kγ1γ2 · · · γ2k , γ ∗
0 = γ0 , γ 2

0 = 1 . (2.23)

Example 2.2.2 Awell-known particular sequence of irreducible representations can
be constructed inductively, starting from the one dimensional representation of Cl1
given by σ1 = 1. Then, for Cl2,
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γ1 =
(
0 1
1 0

)
, γ2 =

(
0 −i
i 0

)
, γ0 =

(
1 0
0 −1

)
,

and then one can continue iteratively by building the representation of Cl2k+1 from
the one of Cl2k via

σi = γi for i ≤ 2k , σ2k+1 = γ0 ,

and the representation of Cl2k+2 from the one of Cl2k+1 by

γi =
(
0 σi

σi 0

)
for i ≤ 2k + 1 , γ2k+2 = i

(
0 −1
1 0

)
, γ0 =

(
1 0
0 −1

)
.

These representations satisfy the normalizations (2.22) and (2.23). �

2.2.4 Bulk-Boundary Correspondence in a Periodic
Unitary Model

We present here a simple model from the unitary class in even dimension d which
displays a rich phase diagram and yet can be explicitly solved in the bulk and with a
boundary. Consider the irreducible representation of Cld from Example 2.2.2 and let
ej be the generators of Zd and Sj the associated shifts on �2(Zd). The Hilbert space

of the model is C2
d
2 ⊗ �2(Zd) and the bulk Hamiltonian is translation invariant and

takes the form

H = 1
2i

d∑

j=1

γj ⊗ (Sj − S∗
j ) + γ0 ⊗

(
m + 1

2

d∑

j=1

(Sj + S∗
j )

)
. (2.24)

The Fermi level is assumed at μ = 0. The Bloch-Floquet decomposition gives

Hk =
d∑

j=1

γj sin(kj) + γ0

(
m +

d∑

j=1

cos(kj)
)

.

As (Hk)
2 is proportional to the identity, there are just two eigenvalues of Hk

E±
k = ±

√√√√
d∑

j=1

sin2(kj) +
(

m +
d∑

j=1

cos(kj)
)2

, (2.25)

hence the model displays two d
2 -fold degenerate energy bands, arranged symmetri-

cally relative to E = 0. There is a spectral gap at the Fermi level, except whenm = 0,
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±2, . . ., ±d. These are precisely the points where the topological transitions take
place. Due to the simplicity of the spectrum, the Fermi projector can be computed
explicitly

Pk = (E+
k − E−

k )−1(E+
k − Hk),

and the top even Chern number can be evaluated using Eq. (2.3). An analytical cal-
culation is feasible by counting its jumps at the critical values of m where the bulk
gap closes. This analysis has been carried out in [74], see also [172], and is sketched
in the following. At the critical values, the band spectrum displays a set of Dirac
singularities.

Remark 2.2.3 Since the discussion is now about the bulk Hamiltonian, therefore in
even d space dimensions, near the singular points the Hamiltonian takes the form
of a Dirac operator rather than a Weyl operator. Hence, the appropriate terminology
here is Dirac points rather than Weyl points. �

Both the critical m values and the location of the Dirac points can be derived from
(2.25) by imposing the gap closing condition

d∑

j=1

sin2(kj) = 0 and m +
d∑

j=1

cos(kj) = 0 .

These equations have the following solutions:

m0
c = −d , kD = (0, 0, . . . , 0) ,

m1
c = −d + 2 , kD = (π, 0, 0, . . . , 0) plus

(
d
1

)
permutations ,

m2
c = −d + 4 , kD = (π, π, 0, . . . , 0) plus

(
d
2

)
permutations ,

...

md−1
c = d − 2 , kD = (π, . . . , π, 0) plus

(
d

d−1

)
permutations ,

md
c = d , kD = (π, . . . , π) .

The jumps of the Chern number at the gap closings can be explicitly evaluated [74,
172], allowing us to ultimately compute the actual Chern numbers. Indeed, when
the gap is closed, there will be a number of Dirac singularities in the band spectrum,
and the jumps of the bulk invariant result entirely from these Dirac points. When the
bulk gap is nearly closed, i.e. m = mc + ε, |ε| � 1, and near such Dirac singularity,
the Bloch Hamiltonian takes an asymptotic form,

Hk =
d∑

j=1

αD
j (k − kD)jγj + ε γ0 + O(k2) ,

where αD
j = ±1 if kD

j = 0, π , respectively. It will convenient to make the change of
variables αD

j (k − kD)j → ξj, in which case
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Hk = 〈ξ, γ 〉 + ε γ0 .

The contribution to the Fermi projector coming from the band spectrum near the
Dirac singularity is

P(ξ) = 1

2
− 1

2

〈ξ, γ 〉 + ε γ0√
ξ 2 + ε2

.

To compute the contribution I of the band spectrumnear kD to the total Chern number,
we plug P(ξ) into (2.3)

I = (2π i)
d
2

( d
2 )!

−1

2d+1

d∏

i=1

αD
i

∑

ρ∈Sd

(−1)ρ
∫

dk

(2π)d
tr

⎛

⎝ ε γ0√
ξ 2 + ε2

d∏

j=1

γρj√
ξ 2 + ε2

⎞

⎠ ,

where the simplifications are solely due to the properties of the γ matrices. The
factor

∏d
i=1 αD

i represents the Jacobian produced by the change of the variable made
above. Up to a factor, the integrand converges to the Dirac-delta distribution, hence
the domain of integration can be extended to R

d , in which case the integral can be
explicitly evaluated and, with our conventions on γ ’s, the result is

I = χ

2

ε

|ε|
d∏

i=1

αD
i , χ = (−1)

d
2 +1 .

When ε is varied from negative to positive values, Iwill jump by twice this quantity,
leading to a total jump of χ

∑
D

∏d
i=1 αD

i for the bulk invariant, at the gap closing.
Here it is assumed that m increases and the sum is over all Dirac singularities present
in the boundary band spectrum. Using the information provided above about the
number and locations of the Dirac points, we see that the change of the Chern
number at a critical value mn

c is

ΔnChd(PF) = χ(−1)n

(
d

n

)
.

Finally, one can check that Chd(PF) = 0 for m < m0
c by sending m to −∞. Hence

for m ∈ (−d + 2n,−d + 2n + 2) with n = 0, . . . , d − 1,

Chd(PF) = χ

n∑

j=0

(−1)j

(
d

j

)
= χ(−1)n

(
d − 1

n

)
, (2.26)

and Chd(PF) = 0 for m /∈ [−d, d].
Let us now consider the case with a boundary. Specifically the Hamiltonian is

restricted to the Hilbert spaceC2
d
2 ⊗�2(Zd−1×N)with Dirichlet boundary condition

at xd = 0. As before, this restriction is denoted Ĥ. The Hamiltonian Ĥ remains
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translationally invariant in the first d − 1 direction, hence one can perform a partial
Bloch-Floquet decomposition:

FĤF∗ =
∫ ⊕

Td−1
dk Ĥk , Ĥk : C2

d
2 ⊗ �2(N) → C

2
d
2 ⊗ �2(N) ,

with

Ĥk =
d−1∑

j=1

sin(kj) γj ⊗1 + 1
2iγd ⊗ (̂S − Ŝ∗) + γ0 ⊗

(
m +

d−1∑

j=1

cos(kj)+ 1
2 (̂S + Ŝ∗)

)
.

Here, Ŝ is the unilateral shift operator on �2(N). For Êk inside the bulk insulating
gap, the solutions to the Schrödinger equation Hkψk = Êkψk must be sought in the
form

ψk(x) = ξk ⊗ (λk)
x , |λk| < 1 , ξk ∈ C

2
d
2

.

Writing the Schrödinger equation for generic xd > 0 and at xd = 0 with the Dirichlet
boundary condition, leads to two independent constraints:

[ d−1∑

j=1

sin(kj)γj + λk − λ−1
k

2i
γd +

(
m +

d−1∑

j=1

cos(kj) + λk + λ−1
k

2

)
γ0

]
ξk = Êkξk ,

and

[ d−1∑

j=1

sin(kj)γj + λk

2i
γd +

(
m +

d−1∑

j=1

cos(kj) + λk

2

)
γ0

]
ξk = Êkξk .

Taking the difference of these equation, we obtain the simpler constraints

(iγd + γ0)ξk = 0

and
[ d−1∑

j=1

sin(kj)γj +
(

m +
d−1∑

j=1

cos(kj) + λk

)
γ0

]
ξk = Êkξk .

It is not difficult to see that these two constraints can be simultaneously satisfied only
if the coefficient of γ0 in the last constraint is identically zero. The conclusion is that
ξk ⊗ (λk)

x solves the Schrödinger equation with the Dirichlet boundary condition at
xd = 0 if and only if

(iγd + γ0)ξk = 0 and λk = −
(

m +
d−1∑

j=1

cos(kj)
)

.
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This implies that ξk is a common eigenvector for two commuting matrices:

[ d−1∑

j=1

sin(kj)γj

]
ξk = Êkξk ,

and
− i γ0γdξk = − (−i)

d
2 +1 γ1 · · · γd−1ξk = ξk . (2.27)

For d = 2, the condition (2.27) is equivalent to γ1ξk = ξk , hence ξk is the unique
eigenvector corresponding to the positive eigenvalue of γ1, denoted by ξ+ in the
following (no dependence on k = k1). The Schrödinger equation Ĥkψk = Êkψk then
admits a unique solution inside the insulating gap:

Êk = sin(k) , ψk(x) = ξ+ ⊗ (λk)
x

√
2
(
1 − (λk)2

) , λk = −(m + cos(k)) ,

which leads to an edge state provided the constraint |λk| < 1 is satisfied. As one can
see, there are no singular points in the boundary band spectrum and Êk ≈ ±k near
E = 0. The sign depends on where the band crosses the E = 0 mark, which can be
at k = 0 or π . The chirality νW of the edge band is determined by the constraint
|λk| < 1 which is equivalent to

cos(k) ∈ [−m − 1,−m + 1] ∩ [−1, 1] . (2.28)

If |m| > 2, the constraint (2.28) cannot be fulfilled and consequently there are no
edge bands. If m ∈ (−2, 0), then k = 0 does satisfy (2.28), but k = π does not.
Hence, the slope of the edge band is positive when it crosses the E = 0 level, hence
the chirality νW is positive. If m ∈ (0, 2), then k = π does satisfy (2.28), but k = 0
does not. Hence, the slope of the edge band is negative when it crosses the E = 0
level, hence the chirality is negative. These and the values of the Chern number given
in (2.26) confirm the bulk-boundary correspondence (2.18) in two space dimensions.

For d > 2, note that the matrix on the l.h.s. of (2.27) is Hermitean and commutes
with all γ1, . . . , γd−1.Hence, the constraint (2.27) reduces the algebra of γ1, . . . , γd−1

to an irreducible representation of the complex odd Clifford algebra Cld−1. Indeed,
the dimension of the linear subspace L ⊂ C

d
2 spanned by the ξ ’s satisfying (2.27)

is 2
d−2
2 , and this subspace is invariant for the matrices γ1, . . . , γd−1. Hence we can

define the linear operators:

σ̂j : L → L , σ̂j = γj �L , j = 1, . . . , d − 1 ,

which satisfy the Clifford relations σ̂iσ̂j + σ̂jσ̂i = 2δi,j for i, j = 1, . . . , d − 1, and
the CCR convention σ̂1 · · · σ̂d−1 = i

d−2
2 1L.
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We can now draw the conclusions for d > 2:

(i) ξk’s are eigenvectors of a reduced Hamiltonian which is a Weyl-type operator

[ d−1∑

j=1

sin(kj)σ̂j

]
ξk = Êkξk .

(ii) The band spectrum inside the insulating gap is given by

Ê±
k = ±

√√√√
d−1∑

j=1

sin2(kj) . (2.29)

The ± branches are connected at a singular point which occurs at E = 0.
This singularity is the Weyl point mentioned earlier. The bands are 2

d−4
2 -fold

degenerate. This degeneracy can be lifted by a small perturbation except at
E = 0 where the bands will remain connected via a singularity. It is, however,
possible to move the singularity both in k-space and in energy.

(iii) The 2
d−4
2 eigenstates corresponding to Ê±

k , respectively, are all of the form

ψk(x) = ξ±
k ⊗ (λk)

x

√
2(1 − (λk)2)

, λk = −
(

m +
d−1∑

j=1

cos(kj)
)

.

(iv) Generically, the boundary bands are not defined over the entire Brillouin zone,
but only over the domain determined by the implicit condition |λk| < 1. By
examining (2.25) and (2.29), one can see that if k is at the edges of this domain,
then Ê+

k is aligned with min
kd

(E+
k,kd

), and Ê−
k is aligned with max

kd

(E−
k,kd

), where

E±
k,kd

are the bulk eigenvalues (2.25). These identities are not generic though as
it may happen that edge spectrum overlaps bulk spectrum.

(v) From (2.29), one sees that the coordinates of the Weyl points are restricted to

kW
j ∈ {0, π}, j = 1, . . . , d − 1 .

For k in a neighborhood of a Weyl point, the reduced Hamiltonian can be
approximated by an exact Weyl operator

d−1∑

j=1

αj(kj − kW
j )σ̂j , (2.30)

where the sign factors αj = ±1 are determined by the exact location of theWeyl
point in theBrillouin zone. For example, if kW

j = 0 then sin(kj) ≈ kj−kW
j , while

for kW
j = π rather sin(kj) = −(kj−kW

j ).We recall that the signs of a pair (αi, αj)
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can always be flipped by a continuous rotation in the (ki, kj) plane. As such,
if (2.30) contains an even number of negative αj’s, then (2.30) is homotopic
with +〈(k − kW )|σ̂ 〉 and will have a positive chirality. If (2.30) contains an odd
number of negative αj’s, then (2.30) is homotopic with −〈(k − kW )|σ̂ 〉 and will
have a negative chirality.

(vi) There can be more than one Weyl point. The condition which determines how
many Weyl points are there and where are they exactly located is

|λkW | < 1 ⇐⇒
d−1∑

j=1

cos(kW
j ) ∈ [−1 − m, 1 − m] ∩ [−d + 1, d − 1] .

Now we can demonstrate the bulk-boundary principle (2.18) for this particular
model. Indeed, let m ∈ (−d +2n,−d +2n+2). Then there is only one combination
(modulo permutations) of d−1 numbers equal to+1 or−1, representing the cos(kW

j )

appearing in the last equation, such that their sum belongs to the interval (−1−m, 1−
m). Indeed, since

(−1 − m, 1 − m) ⊂ (d − 2n − 1, d − 2n + 1) ,

n of these numbers have to be −1 and (d − 1− n) of them have to be +1. There are(d−1
n

)
permutations of these signs, corresponding to as many distinct locations of the

Weyl points. Furthermore, precisely n of the coordinates kW
j are equal to π while the

remaining are zero, hence the chirality of all Weyl points is the same and equal to
(−1)n. The conclusion is that the boundary invariant is

∑
νW = (−1)n

(
d − 1

n

)
, m ∈ (−d + 2n,−d − 2n + 2) ,

and hence,whenmultiplied by the sign factorχ , it equals the bulk evenChern number
given in (2.26).

2.3 The Chiral Unitary Class

The solid state systems from the chiral unitary class have a unitary time evolution
semi-group and a sub-lattice symmetry to be described in great length below. Fol-
lowing the same format as for the previous section, we introduce the models and
their physical characteristics, both for bulk and for half-space. We formulate the
bulk-boundary principle for periodic systems and demonstrate this principle using
an exactly solvable model in arbitrary odd dimension. The existing experimental
results are briefly surveyed.
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2.3.1 General Characterization

The lattice models for insulators from the chiral unitary class are defined over the
Hilbert space C

2N ⊗ �2(Zd), as the dimension of the fiber is necessarily an even
integer. A Hamiltonian H displays chiral (or sublattice) symmetry if there exists a
symmetry J onC2N satisfying J∗ = J and J2 = 12N and having eigenspaces of equal
dimension, such that

(J ⊗ 1) H (J ⊗ 1) = − H . (2.31)

Throughout, we work with a basis of C2N such that J takes a diagonal form

J =
(

1N 0
0 −1N

)
, (2.32)

We will also write J instead of J ⊗ 1. The Fermi level is pinned at 0 for the chiral
unitary symmetry class which is a point of reflection symmetry of the spectrum of
H by (2.31). Since we deal with insulators, the Fermi level will also be assumed to
be in a spectral gap of the bulk Hamiltonian. In this situation the Fermi projection
PF = 1

2 (1 − sgn(H)) is given in terms of a unitary UF on C
N ⊗ �2(Zd) because

(2.31) implies

sgn(H) =
(

0 U∗
F

UF 0

)
. (2.33)

Wewill refer toUF as the Fermi unitary operator, in analogywith the Fermi projection
for the unitary class. It encodes the Fermi projection PF = χ(H ≤ 0) of a chiral
Hamiltonian via

PF = 1

2

(
1 −U∗

F−UF 1

)
. (2.34)

Let us begin by looking at periodic models with vanishing magnetic field. The
Hamiltonian H : C2N ⊗ �2(Zd) → C

2N ⊗ �2(Zd) is given by (2.1) together with the

chirality constraint, which implies Wy =
(

0 wy

w∗−y 0

)
with N × N matrices wy so that

H =
∑

y∈Zd

(
0 wy

w∗−y 0

)
⊗ Sy . (2.35)

Its Bloch-Floquet decomposition (2.2) has fiber Hamiltonians

Hk =
∑

y∈Zd

(
0 ei〈y|k〉wy

e−i〈y|k〉w∗
y 0

)
.

By examining the classification table, we see that the topologically non-trivial phases
are conjectured to occur only in odd space dimensions. Furthermore, for each such
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dimension, there is an infinite sequence of topological phases and the phases can be
distinguished from one another by tagging them with just one integer number. In the
bulk, this number is given by the top odd Chern number [190, 193]:

Chd(UF) = i(iπ)
d−1
2

d!!
∑

ρ∈Sd

(−1)ρ
∫

Td

dk

(2π)d
Tr

( d∏

j=1

U∗
F(k)

∂UF(k)

∂kρj

)
, (2.36)

where UF(k) is the N × N matrix appearing in the Bloch-Floquet decomposition
FUFF

∗ = ∫ ⊕
Td dk UF(k) of the Fermi unitary operator. As we shall see in Chap.7,

the bulk topological invariant for chiral symmetric solid state systems is a physically
measurable coefficient.

Remark 2.3.1 We will use the same notation for the bulk invariants, but it will be
always understood that Chd refers to (2.3) (and its extensions) when d is even, and
to (2.36) (and its extensions) when d is odd. �

Next, let us write out the generic chiral models with a magnetic field and disorder.
In the symmetric gauge, the systems are again described by covariant families of
Hamiltonians of the form (2.10), but with the chirality constraint (2.31):

Hsym,ω =
∑

y∈R

∑

x∈Zd

(
0 wy(τxω)

w−y(τxω)∗ 0

)
⊗ |x〉〈x| Uy

sym (2.37)

=
∑

y∈R

∑

x∈Zd

e
i
2 〈y|B|x〉

(
0 wy(τxω)

w−y(τxω)∗ 0

)
⊗ |x〉〈x − y| .

The representation in theLandaugauge,whichwill be primarily used in the following,
is similarly obtained from (2.12):

Hω =
∑

y∈R

∑

x∈Zd

e
i
2 〈y|B+|y〉

(
0 wy(τxω)

w−y(τxω)∗ 0

)
⊗ |x〉〈x| Uy . (2.38)

Here wy are continuous functions on the space of disorder configurations Ω . The top
odd Chern number has a real-space representation [139, 171], which can be applied
to models like (2.38). With the notation introduced in the previous section,

Chd(UF) = i(iπ)
d−1
2

d!!
∑

ρ

(−1)ρ T
( d∏

i=1

U∗
ω i[Uω, Xρi ]

)
, (2.39)

where UF = {Uω}ω∈Ω is the covariant family of Fermi unitary operators. The invari-
ant Chd(UF) is known to remained quantized, non-fluctuating from one disorder
configuration to another, and be homotopically stable as long as the Fermi level
resides in a region of dynamically localized spectrum, see [171] and Chap.6.

http://dx.doi.org/10.1007/978-3-319-29351-6_7
http://dx.doi.org/10.1007/978-3-319-29351-6_6
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When a chiral symmetry preserving boundary is present and Chd(UF) 
= 0, the
energy spectrum extends inside the bulk insulating gap. The boundary spectrum
does not necessarily cover the entire insulating gap. A situation when this doesn’t
happen is when a magnetic field perpendicular to the surface of a three-dimensional
crystal breaks the boundary spectrum into a Hofstadter pattern. The case d = 1 is
special and, since it was already discussed in Chap. 1, it will be excluded from the
following discussion. For periodic crystals with a planar boundary, say xd ≥ 0, and
in the absence of magnetic fields, the boundary states can be determined as a function
of momentum k parallel to the boundary. The hallmark feature is the existence of
boundary energy bands displaying Dirac singularities at E = 0 [90, 192]. Around a
Dirac point kD, the spectrum and the states are well described by a Dirac operator

d−1∑

j=1

vj(kj − kD
j )γj , (2.40)

where γ are the generators of the irreducible representation of the complex even
Clifford algebra Cld−1 (fixed by our conventions) and vj are the slopes of the bands
at E = 0. Now a chirality νD = ∏d−1

j=1 sgn(vj) can be defined for each Dirac point,
just as for the Weyl points in Sect. 2.2. The central conjecture for the chiral unitary
class is the following bulk-boundary principle [190]:

Chd(UF) = χ
∑

νD , (2.41)

where the sum carries over all Dirac singularities located at E = 0 of the boundary
band spectrum, and χ is again a sign which depends on the representations of the
Clifford algebras and normalization of the bulk invariant. One conclusion that can
be drawn from this principle is that, as long as Chd(UF) 
= 0, there will always be
boundary bands at E = 0. Hence, unavoidably, the insulator becomes metallic when
a boundary is present. Similarly as for the unitary class, it is one of the main goals of
the present work to formulate

∑
νD as a boundary topological invariant whichmakes

sense in the presence of magnetic fields and disorder, to derive an index theorem for
it and to establish (2.41). Among other things, this will enable us to demonstrate that
the boundary energy spectrum at E = 0 remains extended in the presence of disorder
whenever Chd(UF) 
= 0.

We now come to the extremely important point of choosing the unit cell of the
crystal. This determines which states are regrouped in the fibers C

2N and which
are the hopping matrices in the Hamiltonian (2.38). It is well-known in the physics
community that the value of the bulk invariant for the chiral class depends on this
process. We will carry out the discussion on a model in dimension d = 1 which
describes a chain with two different atoms (as in [92], p. 22, for example). Figure2.1
shows two alternatingmolecular states (or two alternating atoms) and two alternating
hoppingmatrices (the horizontal links). Each of the choices (a), (b) and (c) of the unit
cell lead to a different chiral unitary operator U(a)

F , U(b)
F and U(c)

F , respectively. For

http://dx.doi.org/10.1007/978-3-319-29351-6_1
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Fig. 2.1 Graphical representation of the model (1.1) as a molecular chain containing two species
of atoms with alternating hopping amplitudes. Panels a–c show various possibilities to choose the
unit cell. Panels d–e show the unique unit cells compatible with the given boundaries

adequate fixed values of the parameters, one finds Chd(U
(a)
F ) = 0, Chd(U

(b)
F ) = 1

and Chd(U
(c)
F ) = 2, respectively. Furthermore, [208] showed that, using certain

isomorphisms defined inmomentum space, one can change Chd by any even number.
In the real space representation, one such isomorphism corresponds to redefining the
unit cell in panel (a) into the unit cell in panel (c). This arbitrariness is very puzzling
at first sight for, given a concrete problem, how are we going to predict the physical
surface properties from the bulk invariant? The issue has a very simple resolution:
The boundary itself dictates which unique unit cell is to be used in the computation
of the bulk invariant. Thus the rule is that the boundary never cuts through a unit
cell, which mathematically means that the fiber subspaces are either erased or kept,
entirely, but never split. For example, if the boundary is as in panel (d), then only the
unit cell shown in panel (a) obeys this rule, and if the boundary is as in panel (e), then
only the unit cell shown in panel (b) obeys the rule. The unit cells of the type shown
in panel (c) will always be cut through by a boundary, hence they can be dropped
from the beginning. These conclusions apply also in higher space dimensions where
one needs d boundaries to uniquely determine the bulk unit cell and hence the Fermi
unitary as well as its Chern number.

2.3.2 Experimental Achievements

We should make clear from the start that the chiral symmetry is never exact in
solid state systems. After all, the non-relativistic Schrodinger operators are bounded
from below and the spectrum extends all the way to +∞. The chiral symmetry
should be sought in the electron spectrum near the Fermi level, which determines
most of the electronic properties of materials. Moreover, it will be shown below
that for approximate chiral systems, namely those obtained by a sufficiently small
perturbation of an exact chiral system, one can still define a Fermi unitary and its
Chern number. Hence non-trivial odd Chern numbers do not require exact chiral
symmetry, but in such conditions the delocalized character of the boundary states is
lost, in general. There are, however, several materials where chiral symmetry can be

http://dx.doi.org/10.1007/978-3-319-29351-6_1
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assumed virtually exact. The prototypical examples of strong topological materials
from the chiral unitary class are the one-dimensional conducting polymers, with
poly-acetylene as the prominent representative [14]. TheSu-Schrieffer-Heegermodel
[205] used in our introductory Chap.1 was developed precisely for the description of
poly-acetylene. The conducting polymers areπ -conjugated organicmolecular chains
which in the absence of lattice distortions would have extended π -molecular orbitals
and would display a metallic character. The systems, however, are unstable to Peierls
lattice distortions which double the original repeating cells [14]. These distortions
open small gaps at the Fermi level and drive these systems into an insulating chiral
topological phase. There is a tremendous interest in these materials, not because of
their topological properties, but because these polymers can become again metallic
when doped with strong oxidizing or reducing agents [43], thus paving the way for
conducting plastics [43].

Graphene [148, 149] is a two-dimensional crystal which also displays the chiral
symmetry. The band spectrum of graphene is gapped everywhere except at two
special points of the Brillouin zone, hence graphene can be considered as a special
case of weak topological material from the chiral class. Its honeycomb lattice can be
cleaved along the zigzag, the bearded or the arm-chair edges, all of which preserve
the chiral symmetry. Using a partial Bloch-Floquet transformation in the momentum
k parallel with the boundary, one obtains families of k-dependent one-dimensional
chiral symmetric Hamiltonians. Excepting two k values, these Hamiltonians are
gapped and hence one can compute the bulk invariant [88]. Whenever the invariant
takes a non-trivial value, boundary states occur at E = 0 which ultimately lead to
dispersionless boundary bands. It is known that such dispersionless edge states exists
along the zigzag edge [72]. The bearded edge is unstable for graphene, but it was
engineered in photonic crystals and the dispersionless edge states were confirmed
[161]. There are no edge states along the armchair edge. The different behaviors are
due to the fact that the unit cell changes from one boundary to another (cf. discussion
above). Alternatively, these characteristics of graphene can be explained directly
using the boundary invariant [88].

In a recent development, Kane and Lubensky [98] have discovered that, within
the harmonic approximation, any isostatic mechanical lattice has a built-in chiral
symmetry. They also demonstrated, theoretically, the mechanical analog of the one
dimensional Su-Schrieffer-Heeger model and constructed weak chiral symmetric
topological mechanical materials in two and three dimensions. These theoretical
predictions have recently been confirmed in the lab [155].

So far, we have only mentioned the weak topological insulators in higher dimen-
sions. The search for the strong topological materials with exact (or weakly broken)
chiral symmetry is vigorously underway. For example, there are several feasible pro-
posals to realize such systems with cold atoms trapped in optical lattices [216, 217].
Our Sect. 7.4 should be a helpful theoretical contribution to this search.

http://dx.doi.org/10.1007/978-3-319-29351-6_1
http://dx.doi.org/10.1007/978-3-319-29351-6_7
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2.3.3 Bulk-Boundary Correspondence in a Periodic
Chiral Model

Here we present a simple model from the chiral unitary class which displays a rich
phase diagram and yet can be explicitly solved in the bulk and with a boundary.
Let γ be the generators of the irreducible representation of Cld+1 from Example
2.2.2. Using the same notations as in Sect. 2.2.4, the bulk Hamiltonian acting now

on C2
d+1
2 ⊗ �2(Zd) is

H = 1
2i

d∑

j=1

γj ⊗ (
Sj − S∗

j

) + γd+1 ⊗
(

m + 1
2

d∑

j=1

(Sj + S∗
j )

)
.

It has the required chiral symmetry γ0Hγ0 = −H. Its Bloch-Floquet fibers

Hk =
d∑

j=1

sin(kj)γj +
(

m +
d∑

j=1

cos(kj)
)
γd+1

have just two eigenvalues

E±
k = ±

√√√√
d∑

j=1

sin2(kj) +
(

m +
d∑

j=1

cos(kj)
)2

. (2.42)

Hence the model displays two d+1
2 -fold degenerate energy bands arranged, symmet-

rically relative to E = 0. There is a spectral gap at E = 0, except when m is equal
to ±1,±3, . . ., ±d. These are precisely the points where the topological transitions
take place. Due to the simplicity of the spectrum, the Fermi unitary matrix Uk can
be computed explicitly to be

Uk = (E+
k )−1

⎡

⎣
d∑

j=1

sin(kj) σj + i
(

m +
d∑

j=1

cos(kj)
)

1

⎤

⎦ ,

where σj’s are the irreducible representation of the odd complex Clifford algebra

Cld on C
2

d−1
2 (with our CCR conventions). The top odd Chern number can again

be computed by counting the change at the critical values of m where the bulk gap
closes, as done for the unitary case. Formally, the gap closing conditions are exactly
the same as in the unitary case, and the analysis can be adapted. Near a gap closing,
the contribution I to the bulk invariant becomes



44 2 Topological Solid State Systems: Conjectures, Experiments and Models

I = i(iπ)
d−1
2

d!!
d∏

i=1

αD
i

∑

ρ∈Sd

(−1)ρ
∫

dk

(2π)d
tr

⎛

⎝ −iε√
ξ 2 + ε2

d∏

j=1

σρj√
ξ 2 + ε2

⎞

⎠ ,

which can be computed explicitly

I = χ

2

ε

|ε|
d∏

i=1

αW
i , χ = (−1)

d−1
2 ,

where one should note that now we have Weyl singularities at the gap closing. By
literally repeating the counting done for the unitary case, we conclude

Chd(UF) = χ(−1)n

(
d − 1

n

)
, (2.43)

form ∈ (−d +2n,−d +2n+2)with n = 0, . . . , d −1, and Chd(UF) = 0 otherwise.
We now impose the Dirichlet boundary condition at xd = 0. As before, a partial

Bloch-Floquet decomposition has fibers

Ĥk =
d−1∑

j=1

sin(kj) γj ⊗1+ 1
2iγd ⊗ (̂S − Ŝ∗)+γd+1⊗

(
m+

d−1∑

j=1

cos(kj)+ 1
2 (̂S + Ŝ∗)

)
,

and the solutions to the Schrödinger equation Ĥkψk = Êkψk are sought in the form

ψk(x) = ξk ⊗ (λk)
x , |λk| < 1 , ξk ∈ C

2
d+1
2

,

Due to the Dirichlet boundary condition at xd = 0 this leads to the two independent
constraints

[ d−1∑

j=1

sin(kj)γj + λk − λ−1
k

2i
γd +

(
m+

d−1∑

j=1

cos(kj)+ λk + λ−1
k

2

)
γd+1

]
ξk = Êkξk ,

and

[ d−1∑

j=1

sin(kj)γj + λk

2i
γd +

(
m +

d−1∑

j=1

cos(kj) + λk

2

)
γd+1

]
ξk = Êkξk .

They can be simultaneously satisfied if only if

(iγd + γd+1)ξk = 0 and λk = −
(

m +
d−1∑

j=1

cos(kj)
)

.
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This implies that ξk is a common eigenvector for two commuting matrices:

[ d−1∑

j=1

sin(kj)γj

]
ξk = Êkξk , (2.44)

and
− iγd+1γdξk = ξk . (2.45)

Let L ⊂ C
2

d+1
2 be the linear space spanned by the ξ ’s satisfying (2.45) whose

dimension is 2
d−1
2 . This linear space is invariant for the matrices γ1, . . . , γd−1 so that

one can define
γ̂j = γj �L , j = 1, . . . , d − 1 ,

as well as γ̂0 = γ0 �L= (−i)
d−1
2 γ̂1 · · · γ̂d−1. This provides an irreducible represen-

tation of the even complex Clifford algebra Cld−1 on L, satisfying our conventions.
We are now ready to draw our conclusions for d > 1:

(i) ξk’s are eigenvectors of a reduced Hamiltonian which is of Dirac-type

[ d−1∑

j=1

sin(kj)γ̂j

]
ξk = Êkξk .

(ii) The band spectrum inside the insulating gap is given by

Ê±
k = ±

√√√√
d−1∑

j=1

sin2(kj) . (2.46)

The ± branches are connected at a singular point which occurs at E = 0.
This singularity is the Dirac point mentioned earlier. The bands are 2

d−3
2 -fold

degenerate. This degeneracy can be lifted by a small periodic perturbation
except at theWeyl pointwhere the bandswill remain connected via a singularity.

(iii) The 2
d−3
2 eigenstates corresponding to Ê±

k are all of the form

ψk(x) = ξ±
k ⊗ (λk)

x

√
2(1 − (λk)2)

, λk = −
(

m +
d−1∑

j=1

cos(kj)
)

.

(iv) Generically, the boundary bands are not defined over the entire Brillouin zone,
but only over the domain determined by the implicit condition |λk| < 1.
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(v) From (2.46), the d − 1 coordinates kD
j of the Dirac points can only be equal to

0 or π . For k in a neighborhood of such a Dirac point, the reduced Hamiltonian
can be approximated by an exact Dirac operator

Hk ≈
d−1∑

j=1

αj(kj − kD
j ) γ̂j , (2.47)

where the sign factorsαj = ±1 are determined by the exact location of theDirac
point in the Brillouin zone. We can always flip the signs of a pair (αi, αj) by a
continuous rotation in the (ki, kj) plane. As such, the Hamiltonians (2.47) fall
into two homotopy classes, one of positive chirality for which (2.47) contains
an even number of negative αj’s, and one of negative chirality for (2.47) which
contains an odd number of negative αj’s.

(vi) There could be more than one Dirac point. The condition which determines
how many Dirac points are there and where are they exactly located is:

|λD
k | < 1 ⇐⇒

d−1∑

j=1

cos(kD
j ) ∈ [−1 − m, 1 − m] ∩ [−(d − 1), d − 1] .

The bulk-boundary correspondence can now be established following line by line
the arguments provided for the unitary case.

2.4 Main Hypotheses on the Hamiltonians

This section translates the settings and the assumptions in a mathematically precise
language and presents the behavior of various quantities of interest under such cir-
cumstances. Most of the statements are well-known or can be found in the literature,
hence some are presented without a proof. Having all these statements listed in one
place will be useful because they are referenced often throughout the book.

2.4.1 The Probability Space of Disorder Configurations

Here an explicit mathematical definition of the dynamical system (Ω, τ,Zd,P)

describing the disorder configurations of the models is given. Throughout it will
be assumed that this particular set-up is given. Recall that the allowed hopping range
R ⊂ Z

d is supposed to be finite.

Definition 2.4.1 Suppose that the randomness in the individual hopping process by
y ∈ Z

d can be described by a compact and convex (hence contractible) space Ω
y
0

equipped with the probability measure Py
0. Then the dynamical system (Ω, τ,Zd,P)

is defined by:
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(i) The compact and metrizable Tychonov space

Ω = ( ∏

y∈R
Ω

y
0

)Z
d

. (2.48)

(ii) The family of homeomorphisms

(τzω)y
x = ω

y
x−z , ω =

(
ωy

x

)y∈R
x∈Zd

∈ Ω , z ∈ Z
d .

In particular, the homeomorphisms corresponding to the generators ej of Zd

will be dented by τj, so that τz = τ
◦z1
1 . . . τ

◦zd
d .

(iii) The product probability measure

P(dω) =
∏

y∈R

∏

x∈Zd

P
y
0(dωy

x) , (2.49)

which is invariant and ergodic w.r.t. the Zd action τ .

For sake of concreteness, let us give a very concrete and simple example ofΩ and
also the matrix functions Wy entering into the Hamiltonian (2.12). One may choose
Ω

y
0 = [− 1

2 ,
1
2 ] with P0(dω

y
x) = dω

y
x , and

Wy(ω) = (1 + λyω
y
0)Wy

with real coefficients λy which can be seen as a measure of disorder strength.
One last but important observation spurs from the fact that the space Ω is con-

tractible. In this case, all the maps are homotopic with the constant map. As a con-
sequence, the map τ and the identity map are homotopically equivalent. This will
have an important consequence for the K-theory of the observables algebras.

2.4.2 The Bulk Hamiltonians

The analysis carried out in this book applies to the families of Hamiltonians H =
{Hω}ω∈Ω defined in (2.12) and (2.38), and indexed by the disorder probability space
(Ω, τ,Zd,P) described in Definition 2.4.1. These families of Hamiltonians satisfy
the covariance relation (2.13). The bulk analysis can be carried out as well in the
symmetric gauge but, to avoid confusion, we consider only the Landau gauge from
nowon.Almost surely, the spectra ofHω are identical non-random sets (see e.g. [49]).
This non-random set can be regarded as the spectrum of H, the family of covariant
Hamiltonians.
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Bulk Gap Hypothesis (BGH): The Fermi level μ ∈ R lies in a gap Δ ⊂ R of the
spectrum of H.

The gap mentioned above will be referred as the bulk or insulating gap. By a well-
known Combes-Thomas estimate (e.g. [53]) one deduces the following estimate on
the Fermi projection.

Proposition 2.4.2 If BGH holds, then the Fermi projection has exponential decay

sup
ω∈Ω

∣∣〈x|χ(Hω ≤ μ)|y〉∣∣ ≤ γ e−β|x−y| , (2.50)

for some strictly positive and finite constants γ and β.

A periodic insulator has, by definition, always a bulk gap. Turning on a disordered
perturbation will ultimately close the bulk gap. Nevertheless, it is possible that the
Fermi level lies in a region of dynamically Anderson localized spectrum. In this
regime, the Fermi level is located in the essential spectrum, but the spectrum is dense
pure point and the eigenvectors decay exponentially at infinity. This regime can
nicely be characterized by requiring the means square replacement to be bounded
[20], however, for sake of simplicity and because it holds in many random models
anyway (in particular, those considered here, see [53]), we choose to characterize
this regime by the stronger Aizenmann-Molchanov bound [2].

Mobility Bulk Gap Hypothesis (MBGH): The Fermi level μ ∈ R lies in an interval
Δ ⊂ R of the spectrum of H which is Anderson localized, in the sense that the
Aizenmann-Molchanov bound on the resolvent

∫

Ω

P(dω)
∣∣〈x|(E + iε − Hω)−1|y〉∣∣s ≤ γs e−βs|x−y| (2.51)

holds uniformly as ε → 0, for all E ∈ Δ and any s ∈ (0, 1). Above, γs and βs are
strictly positive and finite parameters which depend only on s.

Definition 2.4.3 We say that the energy spectrum is delocalized at energy E if the
uniform Aizenmann-Molchannov bound (2.51) cannot be established.

The physical regime where BGH is replaced by MBGH is often referred to as the
strong localization regime. The existence of a mobility gap also induces a special
behavior on the Fermi projection.

Proposition 2.4.4 ([1, 53, 169]) If MBGH holds, then, on average, the Fermi pro-
jection is exponentially localized

∫

Ω

P(dω)
∣∣〈x|χ(Hω ≤ μ)|y〉∣∣ ≤ γ e−β|x−y| (2.52)

for some strictly positive and finite constants γ and β.
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Next we describe the behavior of the Fermi projections under homotopies. To
describe the deformations of the covariant Hamiltonians properly, recall that the
hopping matrices are continuous functions over Ω with values in MN (C). As such,
it is natural to view Wy as elements of the C∗-algebra MN (C) ⊗ C(Ω), where C(Ω)

is equipped with the supremum norm

‖φ‖C(Ω) = sup
ω∈Ω

|φ(ω)| .

Definition 2.4.5 We call t ∈ [0, 1] �→ H(t) a continuous deformation of a family of
a covariant Hamiltonians H if H(t) are covariant families of Hamiltonians obtained
by continuous variations of Wy in MN (C) ⊗ C(Ω), for every y ∈ R.

Here it is understood that R is sufficient large (but finite) to account for all the
non-zero hopping matrices during the variation of t ∈ [0, 1]. Note that the alignment
of the Fermi level with respect to the spectrum can be changed by adding a constant
to H, and this can be done by modifying W0. In other words, the above definition of
deformations includes also the continuous variations of the Fermi level relative to
the spectrum.

Proposition 2.4.6 The following holds:

(i) Let t ∈ [0, 1] �→ H(t) be a continuous deformation such that BGH holds for all
t. Then

sup
ω∈Ω

∣∣〈x
∣∣χ

(
Hω(t′) ≤ μ) − χ

(
Hω(t) ≤ μ

)∣∣y
〉∣∣ ≤ C(t, t′) e−β|x−y| ,

where β is a strictly positive constant (hence independent of t or t′) and C(t, t′)
is a continuous function of the arguments, such that C(t, t) = 0 for all t ∈ [0, 1].

(ii) If BGH is replaced by MBGH above, then [181]

∫

Ω

P(dω)
∣∣〈x

∣∣χ
(
Hω(t′) ≤ μ) − χ

(
Hω(t) ≤ μ

)∣∣y
〉∣∣ ≤ C(t, t′) e−β|x−y| .

The above statements apply to both the unitary and chiral unitary Hamiltonians.
The latter class posses a chirality operator, which is a selfadjoint operator J : C2N ⊗
�2(Zd) → C

2N ⊗ �2(Zd), with J = J∗ and squaring to J2 = 1 and commuting with
the position operator, i.e. J is local.

Chirality Hypothesis (CH): The family H of covariant Hamiltonians has an (exact)
chiral symmetry if and only if JHωJ = −Hω for all ω ∈ Ω .

Throughout, we will chose a basis for C2N such that the chirality operator is in
the diagonal form given in (2.32). Then all chiral symmetric Hamiltonians take the
form shown in Eq. (2.38). We recall that the Fermi level is fixed at μ = 0 for the
chiral unitary class.

Proposition 2.4.7 Suppose BGH and CH hold. Then:
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(i) The family sgn(H) is chiral symmetric and is of the form

sgn(Hω) =
(

0 U∗
ω

Uω 0

)
.

(ii) The family UF = {Uω}ω∈Ω is covariant and unitary onCN ⊗�2(Zd). In analogy
with the Fermi projection, UF will be called the Fermi unitary operator.

(iii) The matrix elements of Uω are exponentially localized

sup
ω∈Ω

∣∣〈x|Uω|y〉∣∣ ≤ γ e−β|x−y| ,

for some strictly positive and finite constants γ and β.
(iv) If BGH is replaced by MBGH, then (i)-(iii) hold with the modification

∫

Ω

P(dω)
∣∣〈x|Uω|y〉∣∣ ≤ γ e−β|x−y| .

Proof (i) We have sgn(H) = 12N − 2PF . Since JPFJ = 12N − PF , the first part of
the statement follows. The second part is a consequence of the chirality. (ii) Because
UF is obtained by functional calculus form a covariant family of operators, it is itself
covariant. Since sgn(H)2 = 1, one has UωU∗

ω = U∗
ωUω = 1N . The statements (iii)

and (iv) follow from Propositions 2.4.2 and 2.4.4 and the formula in (i). �

When discussing the continuous deformations for models from the chiral unitary
class, we use Definition 2.4.5 with the added assumption that, at all times, H(t)
remains chiral symmetric relative to the same J .

Proposition 2.4.8 The following holds:

(i) Let t ∈ [0, 1] �→ H(t) be a continuous deformation of H and assume that BGH
and CH hold for all t. Then

sup
ω∈Ω

∣∣〈x|Uω(t′) − Uω(t)|y〉∣∣ ≤ C(t, t′) e−β|x−y| ,

where β is a strictly positive constant (hence independent of t or t′) and C(t, t′)
is a continuous function of the arguments, such that C(t, t) = 0 for all t ∈ [0, 1].

(ii) If BGH is replaced by MBGH above, then

∫

Ω

P(dω)
∣∣〈x|Uω(t′) − Uω(t)|y〉∣∣ ≤ C(t, t′) e−β|x−y| .

Proof Both statements follow from Propositions 2.4.6 and 2.4.7. �

As already pointed out, for the physical materials, the chiral symmetry does not
hold exactly but only approximately. In the followingwe introduce anotionof approx-
imate chirality, which will ultimately allow us to define topological invariants for
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such systems. Let us write a general covariant Hamiltonian Hω on C
2N ⊗ �2(Zd) in

the grading of J given in (2.32)

Hω =
(

Bω A∗
ω

Aω Cω

)
. (2.53)

Then the CH is equivalent to saying that the self-adjoint covariant operators Bω and
Cω vanish. Given the CH, the BGH is then equivalent to the invertibility of Aω. The
invertibility of Aω will turn out to be sufficient to define invariants, so let us state it
as a generalization (of a combination of BGH and CA):

Approximate Chirality Hypothesis (ACH): The off-diagonal entry Aω in (2.53)
is invertible and, moreover, ‖BωA−1

ω ‖ < 1 and ‖Cω(A∗
ω)−1‖ < 1 uniformly in ω.

The Fermi unitary operator of a Hamiltonian Hω satisfying the ACH is given by
Uω = Aω|Aω|−1.

Under the ACH, there exists a continuous deformation of Hamiltonians with ACH

λ ∈ [0, 1] �→ Hω(λ) =
(

λ Bω A∗
ω

Aω λ Cω

)
, (2.54)

connecting the Hamiltonian Hω = Hω(1) to an exact chiral Hamiltonian Hω(0).
Furthermore one has:

Proposition 2.4.9 Let Hω satisfy the ACH. Then each operator Hω(λ) on the path
(2.54) also satisfies the BGH.

Proof The invertibility of Hω(λ) is equivalent to the invertibility of

Hω(λ)

(
0 A−1

ω

(A∗
ω)−1 0

)
=

(
1 λ BωA−1

ω

λ Cω(A∗
ω)−1 1

)
,

This is guaranteed because the Schur complement 1 − λ2 BωA−1
ω Cω(A∗

ω)−1 is
invertible. �

2.4.3 The Half-space and Boundary Hamiltonians

The half-space lattice Hamiltonians are restrictions of the bulk Hamiltonians to the
half-space, hence to the Hilbert space C

N ⊗ �2(Zd−1 × N). The surjective partial
isometry �d from �2(Zd) onto �2(Zd−1 × N) will become useful in the following.
We want the half-space Hamiltonians to be realistic models of disordered crystals
with a homogeneous boundary. The latter means that the covariance property w.r.t.
magnetic translations along the first (d − 1)-directions is preserved. For the unitary
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class, we claim that this can be achieved within the following generic class of half-
space Hamiltonians

Ĥω = �dHω�∗
d + H̃ω , (2.55)

where the first term represents the restriction of the generic bulk Hamiltonians (2.10)
to half-space via a simple Dirichlet boundary condition and the second term will be
referred to as the boundary Hamiltonian. Supposing again a finite range condition,
its most general covariant expression in the symmetric gauge is

H̃sym,ω =
R∑

n,m=0

∑

y∈R′

∑

x∈Zd−1

W̃ y
n,m(τx,nω) ⊗ |x, n〉〈x, n|Uy,n−m

sym

=
R∑

n,m=0

∑

y∈R′

∑

x∈Zd−1

e
i
2 〈y,n−m|B|x,n〉W̃ y

n,m(τx,nω) ⊗ |x, n〉〈x − y, m| ,

whereR′ is a finite subset ofZd−1,R a finite number and W̃ y
n,m ∈ MN (C)⊗C(Ω). The

representation in the Landau gauge is obtained by conjugating H̃sym,ω with e
i
2 〈X|B+|X〉,

which gives

H̃ω =
R∑

n,m=0

∑

y∈R′

∑

x∈Zd−1

e
i
2 〈y,n−m|B+|y,n−m〉 W̃ y

n,m(τx,nω) ⊗ |x, n〉〈x, n|Uy,n−m .

(2.56)

The Landau gauge representation will be primarily used in the following.
Let us further discuss the terms above. The first term �dHω�∗

d models the ideal-
ized situation where a boundary was physically created and the remaining hopping
matrices are not effected at all by the process of cutting the boundary. Of course, this
is not what happens in reality and this is why the boundary Hamiltonian is needed.
Note that its hopping matrices depend on m and n instead of n−m, which enables us
to model practically any homogeneous distortion occurring near the boundary. These
distortions will eventually become experimentally undetectable far away from the
boundary, hence we imposed the cut-off at m, n ≤ R, where R can be arbitrarily large
but nevertheless finite.

We now turn our attention to the chiral unitary class. The chiral symmetry on
C

2N ⊗ �2(Zd−1 × N) is given by

Ĵ = �d J �∗
d . (2.57)

Since J is local, Ĵ inherits the basic properties Ĵ∗ = Ĵ and Ĵ 2 = 1. The bulk-
boundary principle derived in our work applies strictly to pairs (H, Ĥ) of bulk and
half-space Hamiltonians which are chiral symmetric with respect to (J, Ĵ). The
generic half-space Hamiltonians which remains chiral symmetric, Ĵ Ĥ Ĵ = −Ĥ,
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takes the form (2.55) with (2.38) and (2.56), and the boundary hopping matrices
assume the chiral form

W̃ y
n,m(τx,nω) =

(
0 w̃y

n,m(τx,nω)

w̃y
n,m(τx,nω)∗ 0

)
. (2.58)

For chiral systems, one should also keep in mind the discussion at the and of
Sect. 2.3.1 where we have seen that the bulk unit cell needs to be adapted to a given
boundary.

We now present the behavior of various quantities of interest. Recall the decompo-
sition Eq. (2.55), which justifies the notation Ĥ = (H, H̃) for the covariant families
of half-space Hamiltonians. Below, the components H and H̃ are assumed of the
generic forms (2.12) and (2.56), respectively. When we say that BGH holds for Ĥ
we are referring specifically to the bulk component H. The following estimates are
by now standard with proofs based on the functional calculus introduced by Dynkin
[57], often also referred to as the Helffer-Sjorstrand formula [89].

Proposition 2.4.10 ([58, 166, 194]) Assume that the BGH holds for the half-space
Hamiltonian Ĥ. Then, for any smooth function φ with support in the bulk insulat-
ing gap,

sup
ω∈Ω

∣∣〈x, n|φ(Ĥω)|y, m〉∣∣ ≤ AM

1 + |x − y|M e−β(n+m) , n, m ∈ N , x, y ∈ Z
d−1 .

where M is any integer and AM and β are strictly positive constants.

Definition 2.4.5 of continuous deformations extends literally to the half-space
Hamiltonians. By similar proofs, one obtains the following:

Proposition 2.4.11 ([58, 166, 194]) Let Ĥ(t) be a continuous deformation of a
family of covariant half-space Hamiltonians. Then, for any smooth function φ with
support in a common insulating gap,

sup
ω∈Ω

∣∣〈x, n|φ(
Ĥω(t)

) − φ
(
Ĥω(t′)

)|y, m〉∣∣ ≤ CM(t, t′)
1 + |x − y|M e−β(n+m) ,

where M is any integer, β is a strictly positive constant, and CM(t, t′) is a continuous
function of the arguments such that CM(t, t) = 0 for all t ∈ [0, 1].



http://www.springer.com/978-3-319-29350-9


	2 Topological Solid State Systems:  Conjectures, Experiments and Models
	2.1 The Classification Table
	2.2 The Unitary Class
	2.2.1 General Characterization
	2.2.2 Experimental Achievements
	2.2.3 Conventions on Clifford Representations
	2.2.4 Bulk-Boundary Correspondence in a Periodic Unitary Model

	2.3 The Chiral Unitary Class
	2.3.1 General Characterization
	2.3.2 Experimental Achievements
	2.3.3 Bulk-Boundary Correspondence in a Periodic Chiral Model

	2.4 Main Hypotheses on the Hamiltonians
	2.4.1 The Probability Space of Disorder Configurations
	2.4.2 The Bulk Hamiltonians
	2.4.3 The Half-space and Boundary Hamiltonians



