
Preface

The summer of 2013 was very good; we found a series of papers published by
Gregory D. Smith and his coauthors. We spent several weeks trying to understand
the paper [35], which introduces and carefully studies a stochastic model of calcium
release from internal stores in cells. Then we found a whole series of papers
[36, 57, 102, 103], and the results more or less kept us busy for months. The
beauty of the theory presented in these papers is that they introduce a systematic
way of analyzing models that are of great importance for understanding essential
physiological processes.

So what is this theory about? It has been fairly well known for a while that
stochastic models are useful in studying the release of calcium ions from internal
storage in living cells. Some authors even argue that this process is stochastic. That
is debatable, but it is quite clear that stochastic models are well suited to study such
processes. Stochastic models are also very well suited to study the change of the
transmembrane potential resulting from the flow of ions through channels in the cell
membrane. Both these processes are of fundamental importance in understanding
the function of excitable cells. In both applications, ions flow from one domain to
another according to electrochemical gradients, depending on whether the channel
is in a conducting or nonconducting mode. The state of the channel is described by
a Markov model, which is a wonderful tool used to systematically represent how an
ion channel or a receptor opens or closes based on the surrounding conditions. In
this context, the contribution of the papers listed above is to present a systematic way
of analyzing the stochastic models in terms of formulating deterministic differential
equations describing the probability density distributions of the states of the Markov
models.

As pointed out in the papers by Smith et al., this approach is not really new; the
authors cite a number of earlier papers and we have been quite influenced by the
paper of Nykamp and Tranchina [63] because of its elegant way of developing the
deterministic differential equation describing the probability density functions of
the states involved in the stochastic process. The key observation is that we can
study stochastic release in two fundamentally different ways: (1) We can run a
number of simulations using a stochastic model. Because of the stochastic state
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of the channel, the results will differ, but we can gather numerous results and
summarize them in terms of histograms describing the probability density functions
of being in a given state. (2) We can find a deterministic partial differential equation
modeling the probability density functions and obtain the distributions by solving
this system numerically. By increasing the number of simulations in (1) and by
refining the numerical discretization in (1) and (2), we observe that the results of the
two methods converge to the same distributions. Therefore, we have a very powerful
tool for analyzing the stochastic models: We can simply solve deterministic partial
differential equations to find the probability density functions. In some simple cases,
the deterministic partial differential equations can be studied analytically and no
numerical solution is needed. The relation between the stochastic simulation and the
solution of the deterministic partial differential equations will be studied repeatedly
in these notes.

More recently, we found the book by Bressloff [6] to be an astonishing source of
material concerning stochastic processes in cells. It will clearly become a standard
reference in the field together with its companion volume [7]. The theory of
stochastic processes is also introduced in a most readable manner by Jacobs [39],
and elements of the theory are covered in the monumental work of Keener and
Sneyd [43, 44].

One reason for our enthusiasm in finding the papers listed above is that, for
a while, we have been trying to understand how to theoretically devise suitable
drugs for mutations affecting both ion channels and receptors. It has been clear for
some time that the effect of mutations on ion channels and various receptors can
be successfully modeled using Markov models to describe the state of the channel.
A comprehensive review is presented by Rudy [74] (see also Rudy and Silva [75]).
Clancy and Rudy and their coauthors (e.g., [16]) have also shown how to use Markov
models to describe the function of various drugs aimed at repairing the function
of mutated channels or receptors. This is very useful, since it allows simulation
based on stochastic models and the models can also be interpreted as continuous
representations for whole cell simulations. However, analysis of the Markov models
is taken to a new level by the introduction of probability density functions defined
in terms of deterministic partial differential equations.

Our approach has been as follows: Let the properties of the drug be free
parameters and use a setup based on Markov models to find the best possible drugs.
This problem is much easier to approach using the results of Smith et al. because
it amounts to understanding how the solution of the extended system of partial
differential equations (including the effect of the drug) behaves as a function of
the parameters characterizing the drug. Typically, we will end up comparing the
solutions of three systems of partial differential equations: (1) a system modeling
the dynamics of healthy (wild type) cells, (2) a system modeling the dynamics of
non-healthy (mutant) cells, and (3) a system modeling the dynamics of non-healthy
cells with a drug added to repair the effect of the mutation. The problem we would
like to address is how to adjust the parameters describing the drug such that the
solution of (3) is as close to the solution of (1) as possible. This turns out to be
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much easier using a deterministic system of partial differential equations describing
the probability density functions than using stochastic simulations.

We have decided to present our results in the form of lecture notes. There are
several reasons for this choice. First, we strongly believe that the theory described
above is very useful, and we want to help make it as comprehensible as possible.
That is more or less impossible to do in scientific papers because their focus must
be on new results and not on careful derivations of established insights. A second
reason is that the problem of understanding cell physiology and how drugs affect
their function is inherently multidisciplinary, and we therefore write these notes in
such a way that we hope readers who are not primarily applied mathematicians can
understand. We also hope to give applied mathematicians glimpses of interesting
problems of great importance.

As mentioned above, these notes aim to explain known theory that we think
can be useful to researchers working on a mathematical understanding of living
cells. There are also new results. We show in some detail how to derive formulas
describing the optimal properties of theoretical drugs. Most of the results are stated
for rather simple models, but it is quite clear that the methods can be extended to
more intricate cases.

The million dollar question when you read these notes is, of course, can these
drugs actually be created? Do they exist? We do not know. We know that Markov
models have been used to successfully represent the actions of drugs, but is it
possible to go the other way and first compute what properties the drug should
have and then create it? We have found no clear answers in the literature or through
discussions with colleagues, so we decided to just formulate these ideas as precisely
as possible in the hopes that someone will find them useful. We have tried to
carefully underline in the notes that we are discussing theoretical drugs, and we
state in many places that this work is about possible drugs.
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