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Abstract An evolutionary discrete version of the Firefly Algorithm (EDFA) is pre-
sented in this chapter for solving thewell-knownVehicle Routing Problemwith Time
Windows (VRPTW). The contribution of this work is not only the adaptation of the
EDFA to the VRPTW, but also with some novel route optimization operators. These
operators incorporate the process of minimizing the number of routes for a solution
in the search process where node selective extractions and subsequent reinsertion
are performed. The new operators analyze all routes of the current solution and thus
increase the diversification capacity of the search process (in contrast with the tra-
ditional node and arc exchange based operators). With the aim of proving that the
proposed EDFA and operators are effective, some different versions of the EDFA are
compared. The present work includes the experimentation with all the 56 instances
of the well-known VRPTW set. In order to obtain rigorous and fair conclusions, two
different statistical tests have been conducted.
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1 Introduction

Nowadays, transportation is a crucial activity for modern society, both for citizens
and for business sectors. Regarding the transportation in the business world, the rapid
advance of technology has made the logistic increasingly important in this area. The
fact that anyone in the world can be well connected has led to transport networks
that are very demanding, though such networks might be less important in the past.
Today, a competitive logistic network can make a huge difference between some
companies and others. On the other hand, public transport is used by almost all the
population and can thus affect the quality of life. In addition, there are different kinds
of public transportation systems, each one with its own characteristics. Nonetheless,
all of them share the same disadvantages such as the finite capacity of the vehicles,
the geographical area of coverage, and the service schedules and frequencies.

Because of their importance, the development of efficient methods for obtaining a
proper logistic, or routing planning solution is a hot topic in the scientific community.
In the literature, several areas of knowledge can be related to tackle with transport
modelling and optimization issues. However, due to the complex nature of such
transport networks, efficient methods are yet to be developed. Therefore, this work
attempts to focus on artificial intelligence, one of the these active research areas.

In fact, route planning is one ofmost studied fields related to artificial intelligence.
Problems arisen in this field are usually known as the so-called vehicle routing
problems, which are a particular case of problemswithin combinatorial optimization.
Different sorts of VRPs can lead to lots of research work annually in international
conferences [1, 2], journals [3–5], technical reports [6] and edited books [7, 8].

There are many main reasons for such popularity and importance of the routing
problems, however, we only highlight two reasons: the social interests they generate
and their inherent scientific interests. On the one hand, routing problems are normally
designed to deal with real-world situations related to the transport or logistics. Their
efficient resolution can lead to profits, either social or business. On the other hand,
most of the problems arising in this field have a great computational complexity,
typically NP-Hard [9]. Thus, the resolution of these problems is a major challenge
for researchers. Probably the most famous problems in this area are the Traveling
Salesman Problem [10] and the Vehicle Routing Problem [11].

This chapter focuses on the VRP family of problems. The basic VRP consists of a
set of clients, a fleet of vehicles with a limited capacity, and a known depot. The main
objective of the VRP is to find the minimum number of routes with the minimum
costs such that (i) each route starts and ends at the depot, (ii) each client is visited
exactly by one route and (iii) the total demand of the customers visited by one route
does not exceed the total capacity of the vehicle that performs the task.

Besides the basic TSP andVRP,many variations of these problems can be found in
the literature. The emphasis of this work is one one of these variants: the well-known
vehicle routing problem with time windows (VRPTW). In this variant, each client
imposes a time window for the start of the service. The VRPTW will be described
in detail in the following sections.
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In line with this, several appropriate methods can be found in the literature to
tackle this kind of problems in a relatively efficient way, especially for small-scale
problems. Probably, the most effective techniques are the exact methods [12, 13],
heuristics and metaheuristics. In our present work, our focus is nature-inspired meta-
heuristics. Some classic examples of metaheuristics are tabu search [14], simulated
annealing [15], ant colony optimization [16], genetic algorithms (GA) [17, 18], and
particle swarm optimization [19], though most recent metaheuristic algorithms are
population-based. Despite having been proposed many years ago, these techniques
remain active and useful with diverse applications [20–22].

Despite of the existence of these well-known techniques, it is still necessary to
design new techniques because existingmethods can have some disadvantages or still
struggle to cope with such tough optimization problems. In fact, new and different
metaheuristic algorithms have been proposed in recent years and they have been
successfully applied to a wide range of fields and problems. Some examples of these
methods are the harmony search proposed by Geem et al. in 2001 [23], the cuckoo
search developed by Yang and Deb in 2009 [24, 25], the firefly algorithm developed
by Yang in 2008 [27] and the gravitational search algorithm presented by Rashedi in
2009 [26].

The present work focus on the the metaheuristic, called Firefly Algorithm (FA).
The FAwas developed byYang in 2008 [27] as a newnature-inspired algorithmbased
on the flashing behaviour of fireflies. The flashing acts as a signal system to attract
other fireflies. As can be shown in several surveys [28, 29], the FA has been applied
in several different optimization fields and problems since its proposal, and it still
attracts a lot of interests in the current scientific community [30–32]. Nevertheless,
the FA has been rarely applied to any VRP problem. This lack of works, along with
the growing scientific interest in bio-inspired algorithms, and the good performance
shown by the FA since its proposal in 2008, has motivated its use in this study.

In addition, it is worth mentioning that several novel route optimization operators
will be presented in this paper. These operators perform selective extractions of
nodes in an attempt to minimize the number of routes in the current solution. For this
purpose, the size of the route, the distance of the nodes from the center of gravity of
the route or just random criteria are used. Specifically, the experiments presented in
this chapter try to delete a route at random and then re-insert the extracted nodes on
the remaining routes.

Therefore, in order to prove that our Evolutionary Discrete Firefly Algorithm
(EDFA), which uses our proposed novel operators, is a promising technique to solve
the well-knownVRPTW, experiments with 56 instances have been conducted. In this
set of experiments, the performance of several versions of the EDFA will be com-
pared. Besides that, with the aim of drawing fair and rigorous conclusions, in addition
to the conventional comparison based on the typical descriptive statistics parameters
(results average, standard deviation, best result, etc.), we have also conducted two
different statistical tests: the Friedman test and the Holm’s test.
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The rest of the chapter is organized as follows. In Sect. 2, a brief background is
presented. In Sect. 3, the basic aspects of the FA are detailed. In addition, in Sect. 4, an
in-depth description of the VRPTW is shown. Then, our proposed EDFA and Route
optimization operators are described inSect. 5.After that, the experimentation carried
out is detailed in Sect. 6. Then, the chapter finishes with the conclusions of the study
and further work in Sect. 7.

2 Related Work

Aswe havementioned in the previous section, the FA is a population-based algorithm
proposed in 2008 byYang. The basic FA is based on the flashing behaviour of fireflies,
and its first version was proposed for solving continuous optimization problems.
Since this first implementation, theFAhas been applied in awide rangeof areas. Some
of these areas are the continuous optimization [33, 34], multi-modal optimization
[35, 36] combinatorial optimization [37], and multi-objective optimization [38].

Regarding the application fields in which the FA has proven to be effective, we
can list the image processing [39], the antena design [40], civil engineering [41],
robotics [42], semantic web [43], chemistry [44], and metereology [45].

In addition, several modifications and hybrid algorithms have been presented in
the literature. In [46], for example, a modification called modified Firefly Algorithm
is proposed. In [47, 48], on the other hand, a Chaos randomized firefly algorithmwas
developed. Besides that, in [49, 50] two Parallel Firefly Algorithms were presented.
Regarding hybrid techniques, in [51, 52] two FAs hybridized with the GA were
developed. Additionally, in [53] an ant colony hybridized with a FA was proposed.
Finally, in [54] an approach was presented in which the FA was hybridized with
neural networks.

In the present work, we develop a discrete version of the FA. Although the first
version FA was designed for continuous problems, it has been modified many times
in the literature with the intention of addressing discrete optimization problems. In
[55], for instance, we can find a discrete FA adjusted to solve the class of discrete
problems named Quadratic Assignment Problem. Another successful discrete FA
was developed by Sayady et al. in 2010 [37] for solving minimizing the makespan
for the permutation flow shop scheduling problem which is classified as a NP-Hard
problem. Another discrete FA was presented in [56] by Marichelvam et al. in 2014
for the multi-objective flexible job shop scheduling problem. On the other hand, a
novel evolutionary discrete FA applied to the symmetric TSP was presented in [57].

Despite the huge amount of related works, as we have pointed in the introduction,
the FA has been rarely applied to any routing problem. This lack of application,
along with the growing scientific interest in bio-inspired algorithms, and the good
performance shown by the FA, has been the main motivation of its use in this study.
Nevertheless, one of the main originalities of this work is the application field of the
FA. Another novelty of our proposed approach is the use of the Hamming Distance
function to measure the distance between two fireflies of the swarm. This approach
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has been used previously in other techniques applied to the TSP, proving its good
performance [58], but it has been never used for any EDFA applied to VRPTW. In
addition, the movement functions that have been used in the proposed EDFA have
been never used before in the literature.

Regarding the VRPTW, the number of publications retated to this problem is
really high. For this reason, we can only mention only a fraction of some recently
published studies. In [59], an interesting paper published by Desaulniers et al. in
2014 can be found, in which a set of exact algorithms are presented to tackle the
electric VRPTW. On other hand, Belhaiza et al. proposed in their work [60] a hybrid
variable neighborhood tabu search approach for solving the VRPTW. Besides that,
in 2014, a multiple ant colony system was developed for the VRPTWwith uncertain
travel times by Toklu et al. [61]. Finally, an interesting hybrid generational algorithm
for the periodic VRPTW can be found in [62].

Finally, it is worth pointing that the set of papers and books listed in this section
is only a small sample of all the related work that can be found in the literature.
Because of this huge amount of related works, to summarize all the interesting papers
is obviously a complex task. For this very reason, if any reader wants to extend
the information presented in this work, we recommend the reading of the review
paper presented in [29] about FAs. On the other hand, for additional information
about the VRPTW and its solving methods, the work presented in [63, 64] is highly
recommended.

3 Firefly Algorithm

The first verion of the FA was developed by Xin-She Yang in 2008 [27, 36], and it
was based on the idealized behaviour of the flashing characteristics of fireflies. To
understand this method in a proper way, it is important to clarify the following three
idealized rules, which have been drawn from [27]:

• All the fireflies of the swarm are unisexual, and one firefly will be attracted to other
ones regardless of their sex.

• Attractiveness is proportional to the brightness, whichmeans that, for any two fire-
flies, the brighter one will attract the less bright one. The attractiveness decreases
as the distance between the fireflies increases. Furthermore, if one firefly is the
brightest one of the swarm, it moves randomly.

• The brightness of a firefly is directly determined by the objective function of the
problem under consideration. In this manner, for a maximization problem, the
brightness can be proportional to the objective function value. On the other hand,
for aminimization problem, it can be the reciprocal of the objective function value.
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Algorithm 1: Pseudocode of the basic version of the FA.

1 Define the objective function f (x);
2 Initialize the firefly population X = x1, x2, ..., xn ;
3 Define the light absorption coefficient γ;
4 for each firefly xi in the population do
5 Initialize light intensity Ii ;
6 end
7 repeat
8 for each firefly xi in the swarm do
9 for each other firefly x j in the swarm do

10 if I j > Ii then
11 Move firelfy xi toward x j ;
12 end
13 Attractiveness varies with distance r via exp(-γr );
14 Evaluate new solutions and update light intensity;
15 end
16 end
17 Rank the fireflies and find the current best;
18 until termination criterion reached;
19 Rank the fireflies and return the best one;

The pseudocode of the basic version of the FA is depicted in Algorithm 1. This
pseudocodewas proposed byYang in [27]. Consistentwith this, there are three crucial
factors to consider in the FA: the attractiveness, the distance and the movement. In
the basic FA these three factors are addressed in the following way. First of all, the
attractiveness of a firefly is determined by its light intensity, and it can be calculated
as follows:

β(r) = β0e−γr2 (1)

On the other hand, the distance ri j between two fireflies i and j is determined
using the Cartesian distance, and it is computed by this formula:

ri j = ||Xi − X j || =
√
√
√
√

d
∑

k=1

(

Xi,k − X j,k
)2

(2)

where Xi,k is the kth component of the spatial coordinate Xi of the i th firefly in the
d-dimensional space. Finally, the movement of firefly i toward any other brighter
firefly j is calculated as follows:

Xi = Xi + β0e−γr2i j (X j − Xi ) + α(rand − 0.5) (3)

where α is the randomization parameter and rand is a random number uniformly
distributed in [0, 1]. On the other hand, the second term of the equation stems from
the attraction assumption.
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4 Vehicle Routing Problem with Time Windows

The VRPTW is an extension of the basic VRP, in which, apart from capacity con-
straints of each of the vehicles, each client has an associated time window [ei , li ].
This timewindow has a lower limit ei and an upper limit li which have to be respected
by all the vehicles. In other words, the service in every customer must necessarily
start after ei and li before. This would be the variant with hard time windows; there
is also another variant that enables noncompliance with some time window (with a
penzalizacin in the objective function).

Therefore, a route is not feasible if a vehicle reaches the position of any client
after the upper limit of the range. By contrast, the route is feasible whether a vehicle
reaches a customer before its lower limit. In this case, the client cannot be served
before this limit, so that the vehicle has to wait until ei . In addition, the central depot
has also a time window, which restricts the period of activity of each vehicle in order
to adapt to this range. Apart from this temporal window, it can also take into account
the customer’s service time. This parameter is the time that the vehicle is parked on
the client while it is performing the supply. It is a factor to be taken into account to
calculate if the vehicle arrives on time to the next customer.

This problem has been widely studied both in the past [63, 65, 66], and nowadays
[67, 68]. One reason why the VRPTW is so interesting is its dual nature. It might be
considered as a problem of two phases, one phase concerning the vehicle routing and
other concerning the planning phase or customer scheduling. Another reason is its
easy adaptation to the real world, because in the great majority of distribution chains,
customers have strong temporal constraints that have to be fulfilled. For example, in
the distribution of the press or of perishable foods thesewindows are really necessary.

Regarding the mathematical formulation of VRPTW, it can take several forms,
using more or less variables [69, 70]. One of the most interesting formulations can
be found in [71].

5 Our Proposed Approach for Solving the VRPTW

In this section, the description of our EDFA for the VRPTW is provided (Sect. 5.1).
Besides that, a detailed description of the proposed novel route optimization operators
can be found in Sect. 5.2.

5.1 An Evolutionary Discrete Firefly Algorithm

It is worth mentioning that the original FA was primarily developed for solving
continuous optimization problems. This is the reason because the classic FA cannot
be applied directly to solve any discrete problem, such as the VRPTW. Hence, some
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modifications in the flowchart of the basic FA must be conducted with the aim of
preparing it for tackling the VRPTW.

First of all, in the proposed EDFA, each firefly in the swarm represents a possible
and feasible solution for the VRPTW. In addition, as it is well-known, the VRPTW
is a minimization problem. For this reason, the most attractive fireflies are those with
a lower objective function value. The concept of light absorption is also represented
in this version of the FA. In this case, γ = 0.95, and this parameter is used in the
same way as has been depicted in Eq. (3). This parameter has been set following the
guidelines proposed in several studies of the literature [27, 36].

Furthermore, as has been mentioned in the introduction of this paper, the dis-
tance between two fireflies is calculated using the well-known Hamming distance.
The Hamming distance between two fireflies is the number of non-corresponding
elements in the sequence. In the experimentation, VRPTW solutions are represented
by a giant-tour, which consists of the client identifiers, being 0 the depot. Thus, the
Hamming distance is calculated from the comparison of the order who have the
clients in the giant-tour (excluding the depot). For example, given two solutions (or
firefly) problem consisting of 7 nodes:

x1 : {0, 1, 2, 5, 0, 3, 4, 6, 7, 0} → 1, 2, 5, 3, 4, 6, 7,

x2 : {0, 1, 2, 6, 0, 7, 4, 0, 5, 3, 0} → 1, 2, 6, 7, 4, 5, 3,

the Hamming Distance between x1 and x2 would be 4.
This same example serves to analyze the brightness (light intensity Ii ) of a firefly.

In this case, the fitness function used is traditional for the VRP. It has two hierarchical
objectives: first the number of routes and as a secondary objective the total traveled
distance. As shown in the above example, firefly x1 is better than the firefly x2 because
the former has fewer routes than the second; 2 versus 3. Thus x2 will be attracted to
x1 using the proposed route optimization operator.

Finally, the movement of firefly i attracted to another brighter firefly j is deter-
mined by

n = Random
(

2, ri j · γg
)

(4)

where ri j is the Hamming Distance between firefly i and firefly j , and g is the
iteration number. In this case, the length of the movement of a firefly will be a
random number between 2 and ri j · γg . This value is used to generate n successors
from the solution corresponding to the firefly to be moved. Once all successors are
generated, the best of them is selected to replace the original firefly. For comparison
of different alternatives, two criteria for selecting the best successor will be used:
the successor with the best objective function value, or the successor with the lower
Hamming distance towards the firefly j (the one that is used as reference to perform
the movement of firefly i).

In the proposed EDFA, a single operator to simulate the movement of fireflies is
used. This operator is based on the description given in Sect. 5.2 with the following
features:
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• The ejectionPool is initialized with all the nodes assigned to a randomly selected
route.

• To speed up the process, the optimization of the remaining routes and the re-
insertion into the nearest route phases are not performed.

Furthermore, Regarding the termination criterion, each technique finishes its exe-
cution when it reach the generation (iteration) 101, or when there are 20 generations
without any improvement in the best solution found.

Finally, after conducting an empirical analysis, the “first-movement” criterion is
used to stop the process of attracting a firefly in each global iteration. In this sense,
when a firefly at xi is attracted by other firefly x j , the movement of xi during the
current iteration is finished. After that, the algorithm continues with the process
of the firefly xi+1. This scheme accelerates the whole process without significantly
affecting the quality of the final solution obtained by the algorithm.

5.2 Description of the Proposed Operators

In the context of VRP and its variants there are a number of operators (Or-opt, 2-
opt, String-reallocation, String-exchange, GENI-exchange, GENI-CROSS, etc. see
[72]) whose objective focuses on the improvement of routes through the exchange
of nodes (clients) or paths (sequences of clients) both for a single route and between
small groups of routes. These operators perform small modifications to the current
solutionwhich allow to control the algorithm computational complexity and runtime.
While processing time is an important element, these operators focus their analysis
on solutions close to the current solution (intensification capacity) by limiting the
space of solutions that are able to explore. Thismay limit the exploration of the search
space avoiding the movement to areas that might contain more promising solutions
(diversification ability). In addition, these operators have a limited or negligible
capacity to reduce the number of routes since only on rare occasions, the movement
of a set of nodes between two routes can leave one of them empty, allowing reduction
of the number of routes in the current solution.

On the other hand, there are heuristics that focus their efforts on minimizing the
number of routes. These techniques, which have their origin in the “ejection chains”
method [73], carried out processes of extraction and reinsertion of nodes on the
routes of the current solution. This methods could also remove a complete route
in order to minimize the number of routes. In the latter case, probably one of the
most representative and successful route minimization heuristics was developed by
Nagata and Brysy [74].

Taking as inspiration the concept of “ejection chains”, a family of operators whose
objective is the reduction of the number of routes has been presented in this work.
These operators combine the “ejection chains” technique with other simplemeasures
(such as the size of a route and the proximity with respect to the “centre of gravity
of a route”). The proposed operators are initially designed to be integrated into local
search processes. In this way, the developed operators increase the diversification
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Algorithm 2: Pseudocode of the route minimization operator.
input : Solutioncurrent , optimizeRoutes, proximity Reinsertion

1 ejectionPool = ini t E jection Pool(Solutioncurrent );
2 Solutionnew = removeEmpty Routes(Solutioncurrent );
3 if optimizeRoutes then
4 optimizeRoutes(Solutionnew) ;
5 end
6 if proximity Reinsertion then
7 reinsert(ejectionPool,Solutionnew) ;
8 end
9 if ejectionPool �=� then

10 Solutionnew = parallel Reconstruction(ejectionPool,Solutionnew) ;
11 end
12 if Solutionnew better than Solutioncurrent then
13 Solutioncurrent = Solutionnew ;
14 end

output: Solutioncurrent

ability of the traditional node and arc interchange based operators. After describing
the basic notion of the proposed operators, the main characteristics of them are
depicted. The descriptions of the operators focus on VRPTW, but they could be
easily adapted for any other variant of the VRP.

VRPTW construction heuristics focus their efforts on the generation of an initial
solution in a fast and efficient way. This fact hinders the ability to explore the space
of solutions, taking irreversible decisions when assigning clients to a vehicle, and
sort them in a route. For that reason, after applying a construction heuristic, improve-
ment processes are needed. These processes review allocation and sort decisions to
obtain better solutions. This argument is consistent due to the nature of the VRP, but
could even explicitly confirmed if the construction process could analyze in detail
the structure of the generated routes and the location of customers. For example,
after obtaining a solution to a VRP, a person might suggest changes (in the alloca-
tions made) visually analyzing the solution. This process could be based on simple
calculations to analyze the number of clients of a route, or the proximity between
customers that form a route. This notion, combined with random behavior, has been
used as a basis for designing the new operators for VRPTW.

The description of the proposed operators is shown in Algorithm 2.

• First the ejectionPool is initialized (line 1). This structure is composed by the nodes
who are extracted from their original route and will be reinserted again to create
the new solution. The construction of the ejectionPool allows several variants to
extract nodes from its original location, for instance:
– Extract the nodes further away from the center of gravity of their original route.
– Extract all the nodes belonging to the smallest route(s).
– Extract all the nodes from a randomly selected route.
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In the work presented here only the third variant is applied, but other variants can
be defined.

• Once the ejectionPool is initialized “empty routes elimination” step is performed
(line 3). In this phase the routes that are empty after node extraction are eliminated.

• After the removal of empty routes, an optional optimization process is done (line
4). This process is based on an intra-route operator (it modifies a single route). Its
aim is to increase the chances for reinserting the extracted nodes. For example the
use of Or-opt or 2-opt is suggested. In the experimentation conducted in this work
this step is skipped to speed up the overall process.

• After optimizing the remaining routes, the algorithm continues with the “reinser-
tion phase” (line 7). This phase is also optional. The basic idea would be to reinsert
each of the nodes that are part of the ejectionPool in its “nearest” route. To perform
this reinsertion in an efficient way, the use of neighbor lists is recommended [75].

• As a last step, the final reconstruction of the new solution is performed (line 10).
In this phase, a parallel construction heuristic is used. This heuristics combines
the routes of the current solution and nodes remaining in the “ejection pool”.
After invoking the parallel construction heuristic all the nodes are again assigned
to a route and the process ends returning the new solution. The reconstruction
algorithm could be any construction technique but in this case the one proposed
by Campbell and Savelsbergh [76] is used.

With the scheme described above, it can be seen that this new type of operator
performs a more complex process than traditional node and arc exchange operators.
This can affect the runtime but the proposed operator possesses a good ability to
reduce the number of routes that are in the current solution.

Normally, the process of minimizing the number of routes is the last step of a
heuristic or a metaheuristic. Actually, in some cases it is run as a completely separate
process. Butwith the newproposed operators this process can be integrated implicitly
in the optimization algorithm. In fact, the new operator can be a perfect complement
to increase the diversification ability in the population. The proposed operator will
be used in the proposed EDFA algorithm to implement the movement of the fireflies
in the swarm.

6 Experiments and Results

In order to test our proposed approaches properly, the 100 customers Solomon’s prob-
lems and instances will be used [77]. This set of problems consists of 56 instances
classified into 6 categories (C1,C2,R1,R2,RC1yRC2)which differ in the geograph-
ical distributions of the customers, the capacities of the vehicles and the compatibility
of the time windows.
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Table 1 Results of EDFAF R−H D

Class T AVGV SDV AVG D SDD

C1 3792 11.022 0.050 1716.296 51.919

C2 5119 3.975 0.056 1099.617 25.176

R1 4339 14.033 0.045 1567.214 16.077

R2 7608 3.182 0.000 1325.060 18.094

RC1 2672 14.225 0.105 1847.529 13.604

RC2 4910 3.800 0.112 1600.324 21.278

Although there are VRPTW benchmarks with larger problems instances (such as
Gehring & Homberger’s1), the objective of the work presented focuses on analyzing
the adaptation of the EDFA algorithm to the VRPTW. For this reason, Solomon’s
benchmark is adequate and representative to analyze the behavior of the EDFA
applied to VRPTW.

All the tests conducted in this work have been performed on an Intel Core i5 2410
laptop, with 2.30GHz and a RAM of 4 GB. Java has been used as the programming
language.

It is important to point out that the objective function used for the VRPTW is
the classic one, which prioritizes the minimization of the routes number, leaving the
traveled distance as the second optimizing criterion.

The experimentation has been performed with 4 variants of the proposed EDFA
described in Sect. 5.2: EDFAF R−O F ,EDFAH R−O F ,EDFAF R−H D and EDFAH R−H D .
Such variants differ in the use of two criteria for initializing the swarn of fireflies (Full
Random = 100% random and Half Random = 50% random +50% good solutions)
and two criteria to select the best successor to move a firefly xi towards a firefly
x j (Objective Function = successor with the best value of the objective function,
Hamming Distance = successor with the lower Hamming distance from x j ). To
create the good initial solutions, Solomon’s I1 construction heuristic [77] has been
used. Additionally, the initial population size has been set to 50 fireflies. Finally, all
the variants of the EDFA have been executed 20 times.

The results of the experimentation are shown in Tables1, 2, 3 and 4. All the
tables have the same structure: one row for each class of the Solomon’s bechmark
(summarizing the results of all the instances of a class) and five columns. Each
column corresponds to the average runtime for all the instances of each class (T, in
seconds), and average (AVG) and standard deviation (SD) for the number of routes
(V) and the total cumulative distance (D).

Table1 presents the results obtained by EDFAF R−H D . This version of the algo-
rithm is characterized by using a completely random initial population. Best suc-
cessor of firefly xi is chosen based on the Hamming distance between the successor

1https://www.sintef.no/projectweb/top/vrptw/homberger-benchmark/.

https://www.sintef.no/projectweb/top/vrptw/homberger-benchmark/
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Table 2 Results of EDFAF R−O F

Class T AVGV SDV AVGD SDD

C1 3089 10.689 0.093 1513.885 26.913

C2 4300 3.900 0.105 1031.001 32.767

R1 3605 13.667 0.084 1506.030 5.671

R2 6629 3.218 0.050 1288.694 8.178

RC1 2166 13.650 0.105 1734.507 21.553

RC2 4364 3.750 0.088 1590.146 14.793

Table 3 Results of EDFAH R−H D

Class T AVGV SDV AVG D SDD

C1 2887 10.000 0.000 914.323 2.568

C2 4634 3.000 0.000 671.709 2.771

R1 4146 13.250 0.059 1464.889 10.628

R2 7387 3.182 0.000 1261.209 2.617

RC1 2384 12.975 0.105 1633.282 16.704

RC2 4914 3.500 0.000 1499.629 1.925

Table 4 Results of EDFAH R−O F

Class T AVGV SDV AVG D SDD

C1 2480 10.000 0.000 907.105 0.615

C2 3978 3.000 0.000 666.225 2.360

R1 3341 13.188 0.042 1442.712 3.956

R2 6693 3.182 0.000 1243.179 2.507

RC1 2013 12.969 0.063 1568.936 6.000

RC2 4407 3.500 0.000 1490.360 4.891

and firefly x j (which attracts xi ). According to the experimentation conducted, this
variant is the one that gets worse results both in number of vehicles and traveled
distance. This confirms the importance of the quality of the initial solution in the
VRPTW. On the other hand, the results also serve to justify the Hamming distance
offers a worse performance than the objective function, to choose the best successor
to move a firefly. Like the other variants, standard deviation in relation to the number
of vehicles is not very high.

In Table2 the results of EDFAF R−O F are presented. In this case the initial popula-
tion has been generated 100% at random. Regarding the selection of successors this
variant uses the same criteria as EDFAH R−O F . This variant improves the foregoing
initialization issue and its results are slightly better. However, the two variants are
tied for the number of vehicles in the R2 class.
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EDFAF R−H D results are shown in Table3. In this case the initial population is
generated 50% randomly and 50% using Solomon’s I1 construction heuristic. The
best successor to every movement of a firefly is chosen based on Hamming distance.
As we can see, this variant performs better than the previous two in terms of the
number of vehicles and distance traveled. The improvement is mainly due to the
quality of the initial solutions. This confirms the relevance of the initial solution in
the VRPTW. Furthermore, by analyzing standard deviations, it can be seen that the
values are lower. This implies that this method is also more robust.

Finally, Table4 shows the results of EDFAH R−O F . This variant of the EDFA
combines the initialization process of EDFAH R−X X with the selection of the best
successor used by EDFAX X−O F . This variant is the one that gets the best results.
Always gets the best results in terms of traveled distance, and ties with EDFAH R−H D

in terms of the number of vehicles (except for the R1 class). Given the characteristics
of this variant (and always according to the experimentation carried), it confirms that
the objective function is better than the Hamming distance in selecting successors.
Furthermore, the quality of the initial solution also affects the final solution: the better
the quality of the initial solution, the better the final solution.

To summarize, Table5 shows the comparison of all variants and the difference
from the EDFAH R−O F (which reported the best results). From the table, it can be
observed that EDFAH R−O F obtains the best results in terms of distance, having a
draw with EDFAH R−H D regarding the number of vehicles. To finish this preliminary
analysis, in relation to execution times, all values are quite similar. They are between
300 and 600s to solve an instance of a problem.

Once the results of the experimentation have been presented, two statistical tests
(using the number of vehicles and traveled distance) have been made. These tests
are based on the guidelines suggested by Derrac et al. [78]. The objective of this
task is to ensure that comparisons between the different variants of the EDFA are
fair and objective. First, the non-parametric Friedmans test for multiple comparison
was conducted. This test aims to check for significant differences between the four
variants of the EDFA.

Table6 shows the average ranking obtained for each variant (the lower the value,
the better the performance of the variant). The test has been conducted for both cri-
teria of the objective function: the number of vehicles and total traveled distance.
Regarding the number of vehicles, the resulting Friedman statistic has been 9.95.
Taking into account that the confidence interval has been stated at the 97.5% confi-
dence level, the critical point in a χ2 distribution with 3 degrees of freedom is 9.348.
Since 9.95 > 9.348, it can be concluded that there are significant differences among
the results reported by the four compared algorithms, being EDFAH R−O F the one
with the lowest rank. Finally, for this Friedman test, the computed p-value has been
0.018996.

Once discovered significant differences in the number of vehicles, it is appro-
priate to compare technique by technique. For that reason, a post-hoc Holm’s test,
using EDFAH R−O F as reference (which ranks first in the number of vehicles), has
been made. The results of this test are shown in Table7. As can be seen, only for
EDFAF R−O F adjusted and unadjusted p-values are simultaneously less than or equal
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Table 6 Average ranking obtained by the Friedman’s test

Algorithm AVGV AVG D

EDFAH R−O F 1.500 1.166

EDFAH R−H D 1.916 1.833

EDFAF R−O F 3.000 3.000

EDFAF R−H D 3.583 4.000

Table 7 Adjusted and unadjusted p-values of Holm’s test for the number of vehicles

Algorithm Adjusted p Unadjusted p

EDFAF R−O F 0.005189 0.015566

EDFAF R−H D 0.044171 0.088343

EDFAH R−H D 0.576150 0.576150

Table 8 Adjusted and unadjusted p-values of Holm’s test for the total traveled distance

Algorithm Adjusted p Unadjusted p

EDFAF R−O F 0.000144 0.000432

EDFAF R−H D 0.013906 0.027813

EDFAH R−H D 0.371093 0.371093

to 0.05. Therefore, it can be confirmed statistically that the differences in the number
of routes for all variants regardingEDFAH R−O F are only significant forEDFAH R−O F .

The statistical test of the number of vehicles show no significant differences. For
that reason, a new statistical analysis has been performed. This second analysis has
been focused on the total traveled distance. This has involved the implementation of
new Friedman’s and Holm’s tests (Table8).

For the traveled distance, the resulting Friedman statistic has been 17. In this
case 17 > 9.348, so it can be concluded that there are also significant differences
among the results reported by the compared algorithms, being EDFAH R−O F the
one with the lowest rank. Finally, regarding this Friedman test, the computed p-
value has been 0.000707. In addition, a new Holm test using traveled distance has
been performed. EDFAH R−O F has been the reference again. The results confirm the
existence of significant differences with respect to EDFAF R−H D and EDFAF R−O F ;
but no significant differences regarding EDFAH R−H D exists. These results confirm
the superiority of the initialization good solutions with respect to 100% random
initialization. Finally, after combining the results of the two rankings (number of
routes and total distance), it may conclude that the EDFAH R−O F variant is the one
that gets the best results for the experimentation conducted.
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7 Conclusions

In this work, an Evolutionary Discrete Firefly Algorithm applied to the well-known
Vehicle Routing Problem with Time Windows has been presented. The proposed
technique presents some novelties, such as the use of the Hamming Distance to
measure the distance between two different fireflies. Another interesting originality
is the novel route optimization operators that have been developed for the EDFA.
These operators perform selective extractions of nodes in an attempt to minimize the
number of routes in the actual solution. For this, the size of the route, the distance
of the nodes from the center of gravity of the route or just random criteria are used.
Specifically, the experimentation conducted in the work presented uses an operator
that removes a random selected route and then try to reinsert the extracted nodes in
the remaining routes.

In order to demonstrate that the proposed EDFA and the developed route opti-
mization operators are promising approaches, the perfomance of the presented EDFA
has been compared with those obtained by several versions of the EDFA. For this
comparison the 56 instances of 100 customers Solomon’s VRPTW bechmark have
been used. Besides that, in order to obtaind fair conclusions, two different statistical
tests have been performed: the Friedman’s Test and the Holm’s Test.

As for future work, we plan to extend the experimentation of this study, compar-
ing the performance of the proposed EDFA with those presented by some recently
proposed metaheuristic, such as the Bat Algorithm, or the Golden Ball Algorithm
[79]. In addition, we intend to use the novel route optimization operators proposed
in this work in other recent and classic techniques, such as the Simulated Annealing,
or Genetic Algorithm.

Acknowledgments This project was supported by the European Unions Horizon 2020 research
and innovation programme through the TIMON: Enhanced real time services for optimized mul-
timodal mobility relying on cooperative networks and open data project (636220); as well as by
the projects TEC2013-45585-C2-2-R from the SpanishMinistry of Economy and Competitiveness,
and PC2013-71A from the Basque Government.

References

1. Soonpracha, K., Mungwattana, A., Manisri, T.: A re-constructed meta-heuristic algorithm for
robust fleet size and mix vehicle routing problemwith time windows under uncertain demands.
In: Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems,
pp. 347–361, Springer (2015)

2. Wen, Z., Dong, X., Han, S.: An iterated local search for the split delivery vehicle routing prob-
lem. In: International Conference on Computer Information Systems and Industrial Applica-
tions, Atlantis Press (2015)

3. Escobar, J.W., Linfati, R., Toth, P., Baldoquin, M.G.: A hybrid granular tabu search algorithm
for the multi-depot vehicle routing problem. J. Heuristics 20(5), 483–509 (2014)

4. Lin, C., Choy, K.L., Ho, G.T., Chung, S., Lam, H.: Survey of green vehicle routing problem:
past and future trends. Expert Syst. Appl. 41(4), 1118–1138 (2014)



38 E. Osaba et al.

5. Reed, M., Yiannakou, A., Evering, R.: An ant colony algorithm for the multi-compartment
vehicle routing problem. Appl. Soft Comput. 15, 169–176 (2014)

6. Coelho, L.C., Renaud, J., Laporte, G.: Road-based goods transportation: a survey of real-world
applications from 2000 to 2015. Technical report, Technical Report FSA-2015-007, Québec,
Canada (2015)

7. Toth, P., Vigo, D.: The vehicle routing problem. Soc. Ind. Appl. Math. (2015)
8. Laporte, G., Ropke, S., Vidal, T.: Heuristics for the vehicle routing problem. Veh. Routing

Prob. Methods Appl. 18, 87 (2014)
9. Lenstra, J.K., Kan, A.: Complexity of vehicle routing and scheduling problems. Networks

11(2), 221–227 (1981)
10. Lawler, E.L.: The traveling salesman problem: a guided tour of combinatorial optimization.

Wiley-interscience series in discrete mathematics (1985)
11. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage. Sci. 6(1), 80–91 (1959)
12. Laporte,G.: The traveling salesman problem: an overviewof exact and approximate algorithms.

Eur. J. Oper. Res. 59(2), 231–247 (1992)
13. Laporte, G.: The vehicle routing problem: an overview of exact and approximate algorithms.

Eur. J. Oper. Res. 59(3), 345–358 (1992)
14. Glover, F.: Tabu search, part i. ORSA J. Comput. 1(3), 190–206 (1989)
15. Kirkpatrick, S., Gellat, C., Vecchi, M.: Optimization by simmulated annealing. Science

220(4598), 671–680 (1983)
16. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theoret. Comput. Sci. 344(2),

243–278 (2005)
17. Goldberg, D.: Genetic algorithms in search, optimization, and machine learning. Addison-

Wesley Professional (1989)
18. De Jong, K.: Analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis,

University of Michigan, Michigan, USA (1975)
19. Kennedy, J., Eberhart, R., et al.: Particle swarm optimization. In: Proceedings of IEEE Inter-

national Conference on Neural Networks, vol. 4, pp. 1942–1948, Perth, Australia (1995)
20. Rodriguez, A., Gutierrez, A., Rivera, L., Ramirez, L.: Rwa: Comparison of genetic algorithms

and simulated annealing in dynamic traffic. In: Advanced Computer and Communication Engi-
neering Technology, pp. 3–14, Springer (2015)

21. Cao, B., Glover, F., Rego, C.: A tabu search algorithm for cohesive clustering problems.
J. Heuristics 1–21 (2015)
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