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1 Introduction

1.1 Countably Additive Subjective Probability

In his classic The Foundations of Statistics, Savage (1954) provided an axiom sys-

tem sufficient to imply that a decision maker’s preferences could be represented by

the expected value of a von Neumann–Morgenstern utility function, with personal or

subjective probabilities attached to unknown events ranging over a sample space of

states of the world. His axioms, however, implied that probabilities are only finitely

rather than countably additive. Yet countable additivity is a key measure-theoretic

property that probabilitists since the time of Kolmogorov (1933), at least, are accus-

tomed to using. It allows, for instance, the probability of an interval of the real line

to be found by integrating a density function over that interval.

1.2 Monotonicity

To bridge this gap between finite and countable additivity, Villegas (1964), Arrow

(1965) and Fishburn (1982) all introduced an additional monotonicity axiom ensur-

ing that subjective probabilities are countably additive. One version of the relevant

axiom can be derived by combining slightly modified versions of two axioms set out

in Sects. 7.2 and 7.3 of Hammond (1998b).
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Let (Y , ) denote a measurable space of consequences, and (S,) a measurable

space of states of the world. Following the evocative terminology introduced by

Anscombe and Aumann (1963), let Δ(Y , ) denote the space of roulette lotteries
in the form of probability measures over (Y , ).

In the special case when S is a finite set, for each E ⊆ S, let YE
denote the Carte-

sian product set
∏

s∈E Ys, where each Ys is a copy of Y , and let 
E

denote the product

𝜎-field
⨂

s∈E s, where each s is a copy of  . Consider then the space Δ(YE
,

E)
of roulette lotteries, in the form of probability measures over (YE

,
E) whose ran-

dom outcomes are horse lotteries yE
in the space of measurable mappings from E to

(Y , ).
The key reversal of order axiom (RO) due to Anscombe and Aumann (1963)

treats, for any event E ⊆ S, any pair 𝜆
E
, 𝜇

E ∈ Δ(YE
,

E) as equivalent if and only if

their marginal measures 𝜆s, 𝜇s ∈ Δ(Y , ) are equal for each state s ∈ E. Then each

𝜋

E ∈ Δ(YE
,

E) can be identified with the list ⟨𝜋s⟩s∈E of marginal probability mea-

sures 𝜋s ∈ Δ(Y , ). In particular, this treats as irrelevant the extent of any correlation

between consequences ys ∈ Y that arise in different states s ∈ E.

Next, we revert to the case of a general measurable space (S,). Then, for each

measurable event E ∈  , define the conditional sub-𝜎-field

|E ∶= {G ∈  ∣ G ⊆ E} ⊆ 

Obviously, in case E = S, this definition implies that |S =  .

In the spirit of the case when S is a finite set, for each measurable event E ∈  ,

let Δ(YE
,|E, ) denote the space of functions 𝜋

E ∶E → Δ(Y , ) with the property

that, for each K ∈  , the mapping

E ∋ s ↦ 𝜋

E(s,K) ∈ ℝ+

is measurable w.r.t. the 𝜎-field |E on E and the Borel 𝜎-field on ℝ.

The other axioms to be discussed here concern:

1. the preference ordering ≿

∗
on Δ(Y , ) having the property that for each y ∈ Y ,

in addition to the set {y}, the upper and lower contour sets

{y′ ∈ Y ∣ 𝛿y′ ≿
∗
𝛿y} and {y′ ∈ Y ∣ 𝛿y′ ≾

∗
𝛿y}

are both  -measurable;

2. for each measurable event E ∈  , the conditional preference ordering ≿

E
on

Δ(YE
,|E, ).

Definition 1 (Event Dominance (ED))

Suppose that the event E ∈  , the list of probability measures 𝜋

E = ⟨𝜋s⟩s∈E ∈
Δ(YE

,|E, ), and the simple lottery 𝜆 ∈ Δ(Y) are all given. Let 𝜆 1E
denote the

particular list 𝜆
E = ⟨𝜆s⟩s∈E ∈ Δ(YE

,|E, ) that satisfies 𝜆s = 𝜆 for all s ∈ E. Then:
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1. 𝜋s ≿
∗
𝜆 (all s ∈ E) implies 𝜋

E
≿

E
𝜆 1E

;

2. 𝜋s ≾
∗
𝜆 (all s ∈ E) implies 𝜋

E
≾

E
𝜆 1E

.

In case the set E is finite, condition (ED) is an obvious implication of Anscombe

and Aumann’s extension of Savage’s sure thing principle. The force of (ED) comes

in partially extending this principle to the case when E is any measurable subset of S.

Next, given any measurable event E ∈  satisfying ∅ ≠ E ≠ S, let (𝜋 1E
, 𝜋̃ 1S⧵E)

denote the particular list of probability measures 𝜆
S = ⟨𝜆s⟩s∈S ∈ Δ(YE

, , ) whose

marginal distribution 𝜆s ∈ Δ(Y , ) for each s ∈ S is a roulette lottery that satisfies

𝜆s =

{
𝜋 if s ∈ E
𝜋̃ if s ∈ S⧵E

Definition 2 (Event Continuity (EC))

Let ≿
∗

on Δ(Y , ) and ≿

S
on Δ(YS

,
S
, ) be fixed preference orderings. Suppose

that the two measurable events E,E∗
⊂ S, as well as the sequence of measurable

events Ek (k ∈ ℕ), and the two probability measures 𝜋, 𝜋̃ ∈ Δ(Y , ), together satisfy:

1. E1 ⊂ E2 ⊂ ⋯ ⊂ Ek ⊂ Ek+1 ⊂ ⋯ ⊂ S;

2. E∗ = ∪∞
k=1 Ek;

3. 𝜋 ≻

∗
𝜋̃;

4. (𝜋 1E∗
, 𝜋̃ 1S⧵E∗ ) ≻S (𝜋 1E

, 𝜋̃ 1S⧵E).

Then there must exist a finite k such that (𝜋 1Ek
, 𝜋̃ 1S⧵Ek ) ≻S (𝜋 1E

, 𝜋̃ 1S⧵E).

Equivalently,

(𝜋 1Ek
, 𝜋̃ 1S⧵Ek ) ≿S (𝜋 1E

, 𝜋̃ 1S⧵E) (all k ∈ ℕ)
⟹ (𝜋 1E∗

, 𝜋̃ 1S⧵E∗ ) ≿S (𝜋 1E
, 𝜋̃ 1S⧵E)

1.3 Beyond Monotonicity

In several recent papers, Chichilnisky (1996, 2000, 2009, 2010) has explored a

particular weakening of this kind of monotonicity axiom. This weakening allows

a revised decision theory in which rare events, catastrophes, perhaps even “black

swans”, can all be given more prominence. Of course, the weakening comes at the

cost of allowing probabilities that are only finitely additive. For this reason, ulti-

mately it may be useful to investigate whether some alternative approach could allow

for such phenomena while retaining probabilities that are countably additive mea-

sures.
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1.4 Outline of Paper

The rest of this paper considers three different strands of literature. First, Sect. 2

considers some background on the use of the word “catastrophe”, in drama, mathe-

matics, and finally decision theory. It goes on to formalize a notion of catastrophic

risk in decision theory, based on pioneering work on the value of life due to Drèze

(1962), followed by Jones-Lee (1974).

The second strand discussed in Sect. 3 concerns the use of infinitesimals to rep-

resent the subjective probability of events so rare that they should not be accorded

any positive probability. Third, Sect. 4 offers a possible approach to modelling the

“true black swans” that Taleb (2007) in particular regards as beyond any kind of sys-

tematic analysis. Finally, Sect. 5 combines a suggestion for an alternative synthesis

of these three strands with some concluding remarks.

2 Catastrophic Risk

2.1 Etymology

According to http://www.etymonline.com/, the word “catastrophe” entered the Eng-

lish language during the 1530s with the meaning “‘reversal of what is expected’

(especially a fatal turning point in a drama)”. It is derived from the Greek “katastro-

phe”, meaning “overturning; a sudden end”, itself a compound of the prefix “kata”

meaning “down” and “strephein” meaning “turn”.

The extension of the meaning of “catastrophe” to include “sudden disaster” is

first recorded in 1748. In medicine, catastrophe is often taken to mean death related

to what should have been routine surgery. In engineering, a “catastrophic failure”

is the complete breakdown of a system from which recovery is impossible. A cele-

brated example is the Tay Bridge disaster of 1879 which, thanks to to the doggerel

in McGonagall (1880), has become a classic of British folklore.

There is a branch of mathematics known as “catastrophe theory” that concerns the

possible instability of the minimum of a non-linear potential function when that func-

tion depends on exogenous parameters which may be subject to sudden shocks. The

monograph by Thom (1973) provided a systematic classification of different types

of catastrophe. Zeeman (1976) did much to popularize the application of catastrophe

theory to the study of many different dynamic phenomena where there is a sudden

change. These applications include:

∙ in animal psychology, aggression in dogs;

∙ in medicine, the beating heart;

∙ in structural engineering, beams that first buckle and then collapse;

∙ in economics and finance, crashes in stock markets, as well as structural properties

of the Walrasian equilibrium manifold as described by Balasko (1978).

http://www.etymonline.com/
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2.2 Catastrophic Consequences

Standard decision theory considers acts whose consequences range over a specified

consequence domain in the form of an abstract set Y equipped with a 𝜎-algebra 

of measurable sets. In principle, catastrophes can be described by letting the con-

sequence domain Y be the union of the two disjoint measurable sets: (i) Y0 of non-
catastropic consequences; and (ii) Y1 of catastrophic consequences.

Here, however, our concern will be to discuss how catastrophes can be modeled

as events so extreme that a suitable money metric utility function becomes undefined

whenever the probability of a catastrophe is sufficiently high. Accordingly, consider

a consequence domain K ×ℝ+ of pairs (𝜅, y) where:

1. y ∈ ℝ+ is income or wealth (depending on context);

2. 𝜅 ∈ K = {0, 1} is a binary indicator variable indicating whether a “catastrophe”:

∙ occurs, iff 𝜅 = 1;

∙ or does not occur, iff 𝜅 = 0.

Hence Y0 = {0} ×ℝ+, whereas Y1 = {1} ×ℝ+,

Following Drèze (1962), consider too a consumer whose preference ordering

≿ on the set Δ(K ×ℝ+) of lotteries over K ×ℝ+ is represented by the expected

value𝔼u of each real-valued von Neumann–Morgenstern utility function (or NMUF)

K ×ℝ+ ↦ (𝜅, y) ↦ u(𝜅, y) ∈ ℝ in a unique cardinal equivalence class. The litera-

ture on decision theory inspired by Drèze often regards the mapping y ↦ u(𝜅, y) as a

state-dependent utility function of income y, though it can perhaps be more usefully

regarded as a state-independent utility function of the fully specified consequence
(𝜅, y).

2.3 Assumptions

Within the framework of Sect. 2.2, we assume that:

1. for each fixed 𝜅 ∈ K, each NMUF y ↦ u(𝜅, y) is continuous, strictly increasing,

and bounded above, with upper bound ū
𝜅

∶= supy u(𝜅, y);
2. for each fixed y ∈ ℝ+, one has u(0, y) > u(1, y);
3. ū0 > ū1.

The second assumption, of course, is that the consumer is worse off with a

catastrophe than without, ceteris paribus. Taking the limit as y → ∞ implies that

ū0 ≥ ū1, obviously, but the third assumption that ū0 > ū1 strengthens this to a strict

inequality. In particular, this third assumption holds if and only if there is a con-

tinuous extended utility function ũ ∶ K × (ℝ+ ∪ {∞}) → ℝ for which there exists

y∗ ∈ ℝ such that ũ(0, y∗) = ũ(1,∞) and so ũ(0, y) > ũ(1,∞) whenever y > y∗.
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2.4 Money Metric Utility

Following Jones-Lee (1974), consider this consumer’s willingness to pay for a reduc-

tion in the probability p of catastrophe. Specifically, consider any reference or base-
line lottery

𝜆

R ∶= (1 − pR)𝛿(0,yR
0 )
+ pR

𝛿(1,yR
1 )

(1)

which is a mixture of the two degenerate lotteries 𝛿(0,yR
0 )

and 𝛿(1,yR
1 )

that attach proba-

bility one to the consequences (0, yR
0 ) and (1, yR

1 ) respectively. Thus, the consumer

faces the probability pR
of a catastrophe, along with reference income levels yR

𝜅

(𝜅 ∈ {1, 0}) with and without a catastrophe. Let

UR ∶= (1 − pR)u(0, yR
0 ) + pRu(1, yR

1 ) (2)

denote expected utility in the reference situation. One can use these reference levels

and the equation

(1 − p)u(0,m) + pu(1, y1) = UR
(3)

in an attempt to define implicitly a money metric utility function

ℝ+ × [0, 1] ∋ (y1; p) ↦ m(y1; p) ∈ ℝ+ (4)

Note that this function will be the same whenever u is replaced by an alternative

NMUF that is cardinally equivalent.

Definition (4), when valid, implies that m(y1; p) − yR
0 is the consumer’s willing-

ness to accept the net increase p − pR
in the risk of catastrophe, when compen-

sation in the event of the catastrophe raises income from yR
1 to y1. Alternatively,

yR
0 − m(y1; p) is the consumer’s (net) willingness to pay, in terms of foregone income

in the absence of catastrophe, for the decrease in the probability of catastrophe from

pR
to p.

2.5 A Critical Probability Level: Catastrophic Risk

The money metric utility function (4) really is defined by Eq. (3) for the pair (y1; p)
if and only if

(1 − p)u(0, 0) + pu(1, y1) ≤ UR
.

Otherwise giving up all income is insufficient to compensate for the increase in p,

which one could then regard as a true catastrophe.
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In particular, the function (4) is defined iff p ≤ pC for the critical probability level
defined by

pC ∶= UR − u(0, 0)
u(1, y1) − u(0, 0)

=
(1 − pR)u(0, yR

0 ) + pRu(1, yR
1 ) − u(0, 0)

u(1, y1) − u(0, 0)
(5)

Thus, once p has reached pC, no compensation is possible for any further increase in

the probability of catastrophe.

Note that pC, as the ratio of expected utility differences, is not only preserved

under positive affine utility transformations. In addition, as discussed in Hammond

(1998a), the formula (5) that expresses pC as the ratio of utility differences implies

that it must equal the constant marginal rate of substitution between shifts in prob-

ability away from (0, 0), the worst possible outcome without a catastrophe, toward

respectively:

1. the reference lottery defined by (1);

2. the consequence (1, y1) that represents the occurrence of the catastrophe com-

bined with the income level y1.

2.6 Extreme Economic Catastrophes

One can also have an extreme catastrophe where p is large enough to satisfy

(1 − p)u(0, 0) + pū1 > UR

This, of course, is equivalent to

p >

UR − u(0, 0)
ū1 − u(0, 0)

(6)

Inequality (6) implies that the probability of catastrophe is so high that no matter how

large y1 may be, there is no value of m that satisfies (3). In this sense, compensation

is completely impossible.

3 Rare Events

3.1 Standard Decision Theory

Standard decision theory uses the expected utility (EU) criterion. Traditionally,

moreover, a distinction is made between objective and subjective EU theory, depend-

ing on whether one faces:
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∙ risk or roulette lotteries described by objective probabilities, as in von Neumann

and Morgenstern (1953) and then Jensen (1967);

∙ uncertainty or horse lotteries described by subjective probabilities, as in Savage

(1954);

∙ combinations of roulette and horse lotteries, as in Anscombe and Aumann (1963).

3.2 Infinitesimal Probability

Recall that, by definition, an infinitesimal 𝜖 is some positive entity (not a real number)

that is smaller than any positive real number in the sense that 0 < n𝜖 < 1 for all nat-

ural numbers n ∈ ℕ. To accommodate rare events, one can follow the game-theoretic

literature emanating from Selten (1975) by allowing “trembles” whose probability is

taken to be some positive multiple of a particular basic infinitesimal 𝜖. See Halpern

(2009, 2010) for discussion of some recent developments.

3.3 Rare Events and Infinitesimal Probabilities

Probabilities must be:

1. added when calculating the probability of the union of two or more pairwise

disjoint events;

2. subtracted when calculating the probability of the set-theoretic difference of any

two events;

3. multiplied when compounding probabilities at successive stages of a stochastic

process;

4. divided when calculating conditional probabilities.

This suggests that Selten’s space of trembles should be enriched so that the extended

probabilities we construct take values in an algebraic field, where all these four oper-

ations are well-defined—except, of course, when trying to divide by zero. This moti-

vates the following definition:

Definition 3 A polynomial function of 𝜖 takes the form

P(𝜖) ≡
∑

k∈K
pk𝜖

k =
∑r

j=1
pkj

𝜖

kj (7)

for some finite set K = {k1, k2,… , kr} ⊂ ℤ+, where kj < kj+1 for j = 1, 2,… , r − 1,

and pk ≠ 0 for all k ∈ K. The leading non-zero coefficient of the polynomial (7) is

pk1 . The polynomial (7) is positive just in case pk1 > 0.

A rational function of 𝜖 takes the form of a quotient P(𝜖)∕Q(𝜖) of two polynomial

functions of 𝜖, where the denominator Q(𝜖) is positive. Without loss of generality,

the leading non-zero coefficient of Q(𝜖) can be normalized to 1.
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Following Robinson (1973), define ℝ(𝜖) as the algebraic field whose members

are rational functions of 𝜖, equipped with the standard algebraic binary operations

of addition and multiplication, as well as the additive identity 0 and the multiplicative

identity 1. Define the positive cone ℝ+(𝜖) of rational functions P(𝜖)∕Q(𝜖) as those

where P(𝜖) as well as Q(𝜖) is a positive polynomial.

Following Rényi (1955, 1956) and associated ideas that were surveyed in Ham-

mond (1994), rare events E in a finite set S of states of the world can be modelled

formally as having infinitesimal probability p(E; 𝜖) in an extended EU theory with

“non-Archimedean” probabilities in the positive coneℝ+(𝜖) of the fieldℝ(𝜖). That is,

we must have p(E; 𝜖) = P(𝜖)∕Q(𝜖)where the coefficient of 𝜖
0

in the polynomial (7) is

zero. Obviously one requires the probability mapping 2S ∋ E ↦ p(E; 𝜖) ∈ ℝ+(𝜖) to

satisfy the additivity condition p(E; 𝜖) ≡ p(E′; 𝜖) + p(E′′; 𝜖) whenever E = E′ ∪ E′′

with E′ ∩ E′′ = ∅, as well as the normalization condition p(S; 𝜖) ≡ 1.

3.4 A Metric Completion

As discussed in Hammond (1999), following an approach set out in Lightstone and

Robinson (1975), the set ℝ(𝜖) of rational functions can be given a (real-valued) met-

ric d ∶ ℝ(𝜖) ×ℝ(𝜖) → ℝ+. This metric induces a very fine topology, according to

which a sequence rℕ = ⟨rn⟩n∈ℕ of real numbers converges to r∗ ∈ ℝ if and only if rn
is eventually equal to r∗—i.e., there exists n∗ ∈ ℕ such that n ≥ n∗ ⟹ rn = r∗.

Let ℝℕ(𝜖) denote the Cartesian product of countably many copies of the alge-

braic field ℝ(𝜖). The elements of ℝℕ(𝜖) are infinite sequences rℕ(𝜖) = (rn(𝜖))n∈ℕ
of rational functions of 𝜖. Following standard terminology in metric space theory,

say that rℕ(𝜖) = (rn(𝜖))n∈ℕ is a Cauchy sequence if for every small 𝛿 > 0, there

exists n
𝛿

∈ ℕ such that whenever n′, n′′ ∈ ℕ with n′ > n
𝛿

and n′′ > n
𝛿

, one has

d(rn′ (𝜖), rn′′ (𝜖)) < 𝛿.

Define the binary relation ∼ on the space of Cauchy sequences in ℝℕ(𝜖) so that

rℕ(𝜖) ∼ r̃ℕ(𝜖) just in case, for every small 𝛿 > 0, there exists n
𝛿

∈ ℕ such that when-

ever n′, n′′ ∈ ℕ with n′ > n
𝛿

and n′′ > n
𝛿

, one has d(rn′ (𝜖), r̃n′′ (𝜖)) < 𝛿. It is easy

to check that the relation ∼ is symmetric, reflexive, and transitive — i.e., it is an

equivalence relation. Then the metric space (ℝ(𝜖), d), like any other, has a metric
completion consisting of equivalence classes of Cauchy sequences. In Hammond

(1997) it is shown that each member of this metric completion can be expressed

uniquely as a power series
∑∞

k=0 ak𝜖
k

of the basic infinitesimal 𝜖, for an infinite

sequence aℕ = (ak)k∈ℕ ∈ ℝℕ
of real constants. We denote this metric completion by

(ℝ∞(𝜖), d), where d denotes an obvious extension to the set ℝ∞(𝜖) of power series

of the original metric d on the set ℝ(𝜖) of rational functions.

In the following, let ℝ∞
+ (𝜖) denote the subset of power series that are positive

in the sense that the leading non-zero coefficient is positive. We also introduce the

lexicographic strict ordering >L on ℝ∞(𝜖), defined so that



26 P.J. Hammond

∑∞

k=0
ak𝜖

k
>L

∑∞

k=0
bk𝜖

k

if and only if the leading non-zero coefficient of the difference

∑∞

k=0
(ak − bk)𝜖k

is positive. Let ≥L denote the corresponding weak ordering defined so that

∑∞

k=0
ak𝜖

k
≥L

∑∞

k=0
bk𝜖

k ⟺
∑∞

k=0
bk𝜖

k
≯L

∑∞

k=0
ak𝜖

k

3.5 Extended Probability Measures

In order to treat compound lotteries in decision trees where branches at one or more

successive chance nodes can have infinitesimal probabilities, and also to have a sat-

isfactory theory of subjective probability, it seems desirable to allow probabilities to

have values in ℝ∞
+ (𝜖) rather than just in ℝ+.

Definition 4 Let (S,) be any measurable state space S with 𝜎 -field . An extended
probability measure on (S,) is a mapping

 ∋ E ↦ 𝜋(E; 𝜖) =
∑∞

k=0
𝜋k(E)𝜖k ∈ ℝ∞(𝜖)

that satisfies:

1. 𝜋(E; 𝜖) ∈ ℝ∞
+ (𝜖) for all E ∈ ⧵{∅};

2. 𝜋(S; 𝜖) = 1;

3. if the countable collection of sets En (n ∈ ℕ) is pairwise disjoint, then

𝜋(∪nEn; 𝜖) =
∑

n 𝜋(En; 𝜖) (countable additivity).

Let Δ(S,;ℝ∞
+ (𝜖)) denote the family of all extended probability measures on (S,).

Note that, apart from having values in the algebraic fieldℝ∞(𝜖), such probabilities

are required to be positive for all possible events; a zero probability is attached only

to the empty set.

3.6 Extended Subjective Expected Utility

For the case when S is finite, Hammond (1997) offers axioms which imply that a

preference ordering ≿ over the space Δ(YS) of all possible combination of roulette

and horse lotteries can be represented by the lexicographic weak ordering ≥L applied

to subjectively expected utility, in the form of a power series
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∑

yS∈YS 𝜆(y
S)
∑

s∈S
𝜋(s; 𝜖)v(ys) ∈ ℝ∞(𝜖)

Note in particular that the von Neumann–Morgenstern utility function (or NMUF)

v ∶ Y → ℝ is real valued; there is no need for any form of lexicographic utility, as

opposed to lexicographic expected utility. The following is the main theorem of

Hammond (1997):

Theorem 1 Let S denote a finite set of unknown states of the world, and Y a conse-
quence domain. Suppose that all the seven axioms (O), (I*), (C*), (RO), (SI), (RC)
and (XC) of Hammond (1997) are satisfied throughout the domain Δ(YS;ℝ∞

+ (𝜖)) of
consequence lotteries with non-Archimedean objective probabilities ranging over
ℝ∞

+ (𝜖). Unless there is universal indifference over the whole domain, there exist

∙ a unique extended subjective probability measure p(⋅; 𝜖) that belongs to the space
Δ(S,;ℝ∞

+ (𝜖)) of mappings  ∋ E ↦ p(E; 𝜖) ∈ ℝ∞
+ (𝜖);

∙ a unique cardinal equivalence class of real-valued NMUFs v ∶ Y → ℝ

such that the preference ordering≿S onΔ(YS;ℝ∞(𝜖)) is represented by the subjective
expected utility function

𝜆

S ↦ US(𝜆S) ≡
∑

s∈S
p(s; 𝜖)

∑

y∈Y
𝜆s(y) v(y) ∈ ℝ∞(𝜖) (8)

on the domain Δ(YS;ℝ∞
+ (𝜖)) of ℝ∞

+ (𝜖)-valued lotteries 𝜆

S ∈ Δ(YS;ℝ∞
+ (𝜖)) whose

marginal distributions satisfy 𝜆s ∈ Δ(Y;ℝ∞
+ (𝜖)) for all s ∈ S. Specifically,

𝜆

S
≿

S
𝜇

S ⟺ US(𝜆S) ≥L US(𝜇S)

3.7 Lexicographic Expected Utility

The subjective probability p(s; 𝜖) ∈ ℝ∞
+ (𝜖) of every state s ∈ S can be expressed as

the power series
∑∞

k=0 pk(s) 𝜖k
. Thus, the SEU expression (8) can be re-written as the

power series US(𝜆S) ≡
∑∞

k=0 uS
k(𝜆

S) 𝜖k
whose coefficients of successive powers of 𝜖

are

uS
k(𝜆

S) ∶=
∑

s∈S
pk(s)

∑

y∈Y
𝜆s(y) v(y) (k = 0, 1, 2,…) (9)

But then 𝜆

S
≿

S
𝜇

S
, or equivalently US(𝜆S) ≥ US(𝜇S), if and only if the two respec-

tive associated infinite hierarchies of coefficients ⟨uS
k(𝜆

S)⟩∞k=0 and ⟨uS
k(𝜇

S)⟩∞k=0 in the

power series satisfy

⟨uS
k(𝜆

S)⟩∞k=0 ≥L ⟨uS
k(𝜇

S)⟩∞k=0 (10)

w.r.t. the usual lexicographic total ordering ≥L on the space ℝ∞
of infinite sequences

in ℝ. In this sense, the preference ordering ≿

S
has a lexicographic expected utility

representation.
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4 Black Swans

4.1 Background

In 82 AD Juvenal (in Satires, VI, 165) had written “rara avis in terris nigroque
simillima cygno” (a rare bird upon earth, and exceedingly like a black swan). That,

however, was merely imaginative irony. Real black swans belonging to the biological

species Cygnus atratus remained unknown to most of the world before 1697 when

Willem de Vlamingh voyaged to what has since become Western Australia. There he

became the first European to record seeing living black swans in their native habitat,

which included the river he named “Swarte Swaene-Revier” (black swan river). This

is now Swan River, which is the main waterway running through the capital city

Perth.

Later John Stuart Mill, paraphrasing David Hume, wrote:

No amount of observations of white swans can allow the inference that all swans are white,

but the observation of a single black swan is sufficient to refute that conclusion.

In elementary philosophy, the existence of black swans has become a classical exam-

ple of the limits to inferential reasoning.

Taleb’s (2007) book provides many vivid examples of events, often related to

finance or economics, which he sees as meeting his characterisation of a “Black

Swan” event as an “outlier” with “an extreme impact” for which “human nature

makes us concoct explanations after the event”. The book was written before the

recent crisis in global financial markets. Nevertheless, it does discuss several earlier

ones like the stock market crash of October 1987 that are often plausibly blamed on

faulty statistical models.

Indeed, at an early stage of his book, Taleb defines a “special case of ‘gray’

swans” which are rare but expected. More precisely, they have probability distribu-

tions described by “Mandelbrotian randomness”, a particular class of fat-tailed prob-

ability distribution following a power law. These distributions put so much weight

on outliers, or extreme values, of a random variable v ∈ ℝ that, for large enough

k ∈ ℕ, the expectation of the kth power of v, otherwise known as the kth moment of

the distribution, becomes infinite. This is in stark contrast to the normal or Gaussian

distribution, for which the tail of the distribution is so “thin” that all moments exist.

Yet the main issue with the random value of an asset, especially a derivative secu-

rity, is typically not whether its distribution has fat or thin tails. Rather, for such assets

there is typically a positive probability of losing everything. This potential loss can-

not be captured by a Gaussian distribution, or by any “smooth” alternative such as a

power law. But there is little really new here, since statisticians and financial econo-

mists, along with decision and game theorists, have long been coming to terms with

probability distributions which do not correspond to a smooth density function.
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4.2 Black Swan Events

Much more challenging than Taleb’s “gray swans”, however, are the true Black

Swans which effectively break our existing scientific models. Indeed, the indis-

putable existence of the (black) swan species now called Cygnus atratus broke all

previous biological models of the genus Cygnus. While Taleb does recognise that

such events could occur, he regards them as “totally intractable”, scientifically speak-

ing. Nevertheless, biologists have formulated statistical models intended to forecast

probabilistically the likely number of new species that one might expect to find in a

poorly explored habitat. And of course economists have developed many models of

economic growth with technical progress, which may be approximately treated as the

accumulation of many small but typically favourable surprises. A notable example

is Schumpeter’s (1926, 1934) The Theory of Economic Development which sets out

the view that, as entrepreneurs innovate, a capitalist market economy is subjected to

repeated shocks that cannot be modelled in advance.

More generally, any practical model, especially in the social sciences, must have

bounded scope and so must ignore some possibilities. As the statistician George

Box wrote: “Essentially, all models are wrong, but some are useful.” Should any

unmodelled possibility such as a bank run or bank failure occur and have a noticeable

impact, it will have to be recognised as an “aberrant” event which, by definition, lies

outside the current model.

This is not to deny that any aberrant event could have appeared in an enriched

version of the agent’s model, if it had been imagined soon enough and then deemed

worth modelling. But it was not. Instead, its occurrence demonstrates that the origi-

nal model is broken and needs modifying accordingly. Such aberrant events lying

outside the current model should be distinguished from events within the model

which, like Taleb’s “gray swans”, have extremely low or even zero probability. By

contrast, black swan events, unlike those described in Taleb’s book, may not even

be imagined ex ante. Thus, aberrance may be due to a failure of the imagination in

constructing a decision model. This may be related to Shackle’s (1953) concept of

“surprise”—see also Hammond (2007). Indeed, there may be more phenomena in

economics that can be explained by “asymmetric imagination” than by the widely

used notion of asymmetric information. And not only in economics, but in culture,

business, etc.

To summarize, sometimes models may change as their originators anticipate

events that had to be excluded originally. To adapt the widely quoted saying by the

statistician George Box: “Essentially, all useful models are incompletely specified.”

The excluded events would become aberrant if they were to occur before they could

be included in a more accurate statistical model. Even so, their possible effects on the

consequences of modelled current decisions can be allowed for, at least in principle,

within a suitable EU decision model allowing an “enlivened” version of the usual

decision tree. This is our next topic.
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4.3 An Initial Simple Tree

Let Y be a fixed consequence domain. Consider a decision maker whose objective

is to maximize the expected value of a von Neumann–Morgenstern utility function

(NMUF) v ∶ Y → ℝ.

Consider an initial (dead) decision tree T:

∙ with an initial (decision) node n0,

∙ at which the agent chooses a chance node n1 in the set N1 ∶= N+1(n0) of all nodes

that immediately succeed n0,

∙ at each of which chance determines an immediately succeeding terminal node

n2 in the set N2(n1) ∶= N+1(n1) of all nodes that immediately succeed n1, using

known transition probabilities 𝜋(n2|n1) satisfying 𝜋(⋅|n1) ∈ Δ(N2(n1)),
∙ each of which has a known final consequence 𝛾(n2) ∈ Y .

4.4 Initial Evaluation

In this initial simple tree there is a known consequence 𝛾(n2) ∈ Y , of reaching any

terminal node n2. The initial evaluation of reaching this node is evidently w2(n2) =
v(𝛾(n2)).

Working backwards, as usual in dynamic programming, the conditional expected
utility of reaching any chance node n1 ∈ N1 is

w1(n1) = 𝔼[w2(n2)|n1] =
∑

n2∈N2(n1)
𝜋(n2|n1)w2(n2) (11)

Then an optimal decision n∗1 ∈ N1 is any that maximizes w1(n1) with respect to n1,

subject to n1 ∈ N1.

The above simple argument is a trivial application to an orthodox “unenlivened”

decision model of the optimality principle of stochastic dynamic programming. That

is, any current decision should be given a continuation value equal to the highest

possible expected utility resulting from an appropriate plan for all subsequent deci-

sions. Optimality requires the current decision to maximize the expectation of this

continuation value.

4.5 Enriched Subtrees

One possible enrichment of the agent’s decision model involves a new NMUF

v+ ∶Y+ → ℝ defined on an enriched model consequence domain Y+
⊇ Y . But many

other enrichments are also possible.
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Before we discuss these, note first that the agent can hardly make an unmodelled

decision. Accordingly, assume that a necessary and sufficient condition for being

able to choose any n1 ∈ N1 is that node n1 is included in the model. Hence the set

N+1(n0) remains fixed. So we assume that any enrichment of the tree takes place only

after a particular chosen decision node ni
1 ∈ N+1(n0) has already been reached.

What matters, however, is not just how the continuation subtree T(ni
1) after this

particular node is enriched. Also relevant are the potential enrichments of the con-

tinuation subtrees T(n1) at all the other nodes n1 ∈ N1⧵{ni
1}, since all these possi-

ble enrichments ultimately affect the relative expected values of moving to different

nodes n1 ∈ N1.

Now, starting at each n1 ∈ N1, the original continuation subtree T(n1) had nodes

n2 ∈ N2(n1). Instead there is now an enriched continuation subtree T+(n1) with:

∙ an expanded set N+
+1(n1) = N+

2 (n1) ⊇ N2(n1) of immediately succeeding terminal

nodes;

∙ revised transition probabilities 𝜋
+(n+2 |n1) for all n+2 ∈ N+

2 (n1);
∙ revised consequences 𝛾

+(n+2 ) ∈ Y+
for all n+2 ∈ N+

2 (n1) with utilities w+
2 (n

+
2 ) ∶=

v+(𝛾+(n+2 )).

Instead of (11), the revised expected utility of any decision at node n0 to move to

any node n1 ∈ N1 = N+1(n0) is therefore

w+
1 (n1) ∶= 𝔼+[w+

2 (n
+
2 )|n1] ∶=

∑

n+2 ∈N+
+1(n1)

𝜋

+(n+2 |n1)w+
2 (n

+
2 ) (12)

4.6 Retrospective Evaluation in the Enlivened Tree

In this simple two-stage model, the enriched tree T+
is the extension of T obtained

by replacing each continuation subtree T(n1) (n1 ∈ N1) with its enrichment T+(n1).
We define the enlivened tree as the pair (T ,T+). Unlike botanical tree rings, this

includes a complete record of how the tree has grown between:

1. the first period, when it was T;

2. the second period, when it has become T+
.

It is also a mathematical rather than a botanical growth process! For one thing, botan-

ical trees may lose branches in windy conditions, whereas enlivened trees can only

expand with time.

Analysed ex post, the appropriate decision at initial node n0 would have been to

maximize w+
1 (n

i
1) with respect to i ∈ I. But ex ante, only the details of the origi-

nal model can be used, by definition. What the agent can still do ex ante, however,

is to recognize that the original evaluation function w1(ni
1) may be revised to an

as yet unknown and uncertain retrospective evaluation function w+
1 (n

i
1) that ranges

over a function space of possible evaluation functions. This is similar in spirit to the
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work of Koopmans (1964) and Kreps (1992) that allows uncertainty about future

preferences—see also Dekel et al. (2001, 2007).

In other words, somewhat like Hansen and Sargent (2008, 2011), we can apply

a robust decision analysis and choose the initial decision i ∈ I in order to maximize

𝔼w+
1 (n

i
1) after allowing for uncertainty about the appropriate form of the function

i ↦ w+
1 (n

i
1).

4.7 Cardinally Equivalent Evaluation Functions

Two evaluation functions w1, w̃1 ∶N1 → ℝ are cardinally equivalent, with w1 ∼ w̃1,

just in case there exist:

∙ an additive constant 𝛼 ∈ ℝ
∙ a positive multiplicative constant 𝜌 ∈ ℝ+

such that w̃1(ni
1) ≡ 𝛼 + 𝜌w1(ni

1).
The value state space Ω is defined as the set

∙ of all non-constant functions n1 ↦ 𝜔(n1) normalized to satisfy

min
n1∈N1

𝜔(n1) = 0 and max
n1∈N1

𝜔(n1) = 1

∙ together with the normalized constant function satisfying 𝜔(n1) = 0 for all n1 ∈
N+1(n0), which represents complete indifference.

4.8 Uncertain Retrospective Evaluation

Enlivenment replaces the original evaluation function w1 in T by an uncertain retro-

spective evaluation function w+
1 derived in the tree T+

, which cannot even be mod-

elled ex ante. Because the set N1 is assumed to be finite, the function w+
1 ∶N1 → ℝ

ranges over the space Ω ⊆ [0, 1]N1
⊂ ℝN1—i.e., Ω is a subset of the unit hypercube

in Euclidean space.

4.9 State-Dependent Consequence Domains

In this setting, applying standard subjective probability theory faces an obstacle.

The relevant consequences are pairs (n1, 𝜔) ∈ N1 × Ω. So the consequence domain

N1 × {𝜔} depends on the state 𝜔 ∈ Ω. This rules out Savage’s constant acts a ∶Ω →
N1 with a(𝜔) = ā for all 𝜔 ∈ Ω.
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In normative decision theory, Hammond (1998b, 1999) suggests a remedy for

this kind of state-dependent consequence domain. It is to postulate the existence of

an extended NMUF U ∶ N1 × Ω → ℝ whose expected value represents preferences

≿ on Δ(N1 × Ω), when one can choose, in addition to different nodes n1 ∈ N1, the

probabilities of different states 𝜔 ∈ Ω.

Given any fixed state 𝜔 ∈ Ω, the expected values w.r.t. any 𝜈 ∈ Δ(N1) of the two

functions n1 ↦ U(n1, 𝜔) and n1 ↦ 𝜔(n1) should represent preferences over corre-

sponding lotteries 𝜈 ∈ Δ(N1) and 𝜈 × 𝛿
𝜔

. So the two functions n1 ↦ U(n1, 𝜔) and

n1 ↦ 𝜔(n1) must be cardinally equivalent, for each fixed 𝜔. That is, there must

exist mappings 𝜔 ↦ 𝛼(𝜔) ∈ ℝ and 𝜔 ↦ 𝜌(𝜔) ∈ ℝ+ such that U(n1, 𝜔) ≡ 𝛼(𝜔) +
𝜌(𝜔)𝜔(n1).

4.10 Subjective Expected Evaluation

The agent’s subjective expected utility objective in the enlivened tree (T ,T+) can

(and should) use a subjective probability measure P over the Borel subsets ofΩ. Then

preferences over objective “roulette” lotteries 𝜈 ∈ Δ(N1) are ultimately represented

by the objectively expected value 𝔼
𝜈

V of the subjective expectation function N1 ∋
n1 ↦ V(n1) defined by

V(n1) ∶=
∫Ω

U(n1, 𝜔)P(d𝜔) =
∫Ω

[𝛼(𝜔) + 𝜌(𝜔)𝜔(n1)]P(d𝜔) (13)

There is an obvious analogy here with Anscombe and Aumann (1963), who allow

combinations of roulette and horse lotteries. An axiomatic justification, however, has

yet to be developed, though it should be possible by combining the ideas of Myerson

(1979), Fishburn (1982), and Hammond (1998b, 1999).

4.11 Hubris Versus Enlivenment

Tractable models are necessarily bounded in scope. Actions may have consequences

that are not only unintended, but quite possibly unimagined, and certainly not

included in whatever bounded model was used to analyse the agent’s decision.

An agent’s decision model, like any competent engineer’s plan, will typically need

to change as and when surprise events outside the model compel attention. Orthodox

decision models ignore completely any possibility of model revision. In this sense,

they are inherently hubristic.
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4.12 Could There Be a Metamodel?

A decision model in discrete time amounts to a controlled stochastic process, or

equivalently a decision tree that combines chance nodes with decision nodes where

the decision is controlled by the decision-maker. Recognizing that the appropriate

decision model is itself subject to uncertainty, is it possible, or even desirable, to

construct a “metamodel” that embraces all possible decision models?

We will actually consider a simpler question: whether one can or should construct

a metamodel in the form of a stochastic “metaprocess” defined on the space of all

possible stochastic process models? The result would be a sequence of stochastic

processes in which the state space is continually being enriched unpredictably.

Now, recall that the stochastic process model is based on Kolmogorov’s extension

theorem in probability theory. This result states that any “consistent” family of prob-

ability laws on finite Cartesian subproducts of an arbitrary collection of component

measurable spaces can be extended to a probability law on the whole Cartesian prod-

uct. The theorem, however, depends on significant topological assumptions such as

the existence in each component measurable space of a compact class  of measur-

able sets—i.e., every sequence of sets in  whose finite intersections are non-empty

has a non-empty infinite intersection—such that the probability of any measurable

set must equal the supremum of the probabilities of all its subsets that lie in .
1

It seems difficult to find a suitable topology on the class of all potentially relevant

sequences of stochastic process models which allows an interesting probability mea-

sure to exist.

4.13 Should We Look for a Meta Stochastic Process?

El Aleph is a short story published by the distinguished Argentinian author Jorge

Luis Borges in 1945. It begins with a quotation from Shakespeare’s Hamlet Act II,

Scene 2

O God! I could be bounded in a nutshell,

and count myself a King of infinite space . . .

This could be regarded as Shakespeare’s poetic description of a key requirement for

a metamodel. Eventually we move to the heart of Borges’ wonderful story
2
:

He explained that an Aleph is one of the points in space that contains all other points. . . . The

Aleph’s diameter was probably little more than an inch, but all space was there, actual and

undiminished. Each thing (a mirror’s face, let us say) was infinite things, since I distinctly

saw it from every angle of the universe.

1
See Neveu’s (1965, p. 82) significant generalization of Kolmogorov’s extension theorem, as

described in Aliprantis and Border (1994, Sect. 14.6).

2
The following brief extracts are from http://www.phinnweb.org/links/literature/borges/aleph.html,

which reproduces the English translation on which Norman Thomas Di Giovanni collaborated with

Borges himself.

http://www.phinnweb.org/links/literature/borges/aleph.html
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Shortly thereafter the story takes a rather disturbing turn:

I saw the Aleph from every point and angle, and in the earth the Aleph, and in the Aleph the

earth; I saw my own face and my own bowels; I saw your face; and I felt dizzy and wept, for

my eyes had seen that secret and conjectured object whose name is common to all men but

which no man has looked upon—the unimaginable universe.

I felt infinite wonder, infinite pity.

But eventually something like normality returns:

Out on the street, going down the stairways inside Constitution Station, riding the subway,

every one of the faces seemed familiar to me. I was afraid that not a single thing on earth

would ever again surprise me; I was afraid I would never again be free of all I had seen.

Happily, after a few sleepless nights, I was visited once more by oblivion.

A later postscript includes some explanation for Borges’ choice of title:

As is well known, the Aleph is the first letter of the Hebrew alphabet. Its use for the strange

sphere in my story may not be accidental. For the Kabbala, the letter stands for the En Soph,

the pure and boundless godhead; it is also said that it takes the shape of a man pointing to

both heaven and earth, in order to show that the lower world is the map and mirror of the

higher; for Cantor’s Mengenlehre [set theory], it is the symbol of transfinite numbers, of

which any part is as great as the whole.

Perhaps the moral of Borges’ story is that in the end we should be relieved about

how mathematically and conceptually intractable the problem of finding a stochastic

metaprocess appears to be.

5 Concluding Remarks

A descriptive decision theory stands or falls by its capacity to explain what we

observe. A prescriptive decision theory, on the other hand, stands or falls by its

capacity to offer a normatively appealing approach to decision making. This work

has set out alternative departures from standard prescriptive decision theory. These

departures have been designed to deal separately with the three key phenomena of

catastrophic risk, rare events, and true black swan events that transcend whatever

decision model we may currently be using.

The work by Chichilnisky (1996, 2000, 2009, 2010) has set out heroically to deal

with all these three phenomena within one integrated framework. In doing so, how-

ever, she follows Savage (1954) in relaxing the usual countable additivity property

of probability measures, thus allowing probabilities that are only finitely additive. A

conjecture to be settled by future research is that the same three phenomena could

be accommodated within a different integrated framework which retains a countably

additive probability measure. This framework would allow:
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1. the kind of distinction between catastrophic and non-catastrophic consequences

that was introduced in Sect. 2;

2. for rare events, non-Archimedean probabilities of the kind discussed in Sect. 3,

but extended from a finite sample space S to a general measurable space (S,);
3. for true black swan events, enlivened trees of the kind sketched briefly in Sect. 4,

with preferences represented by subjective expected utility based on extended

probability measures over states of the world that correspond to possible retro-

spective evaluation functions defined for every modelled decision.

Note finally that rationality within bounded decision trees allows a restricted
revealed preference hypothesis, applying only to options that receive serious consid-

eration. But decision trees almost inevitably become enlivened in case the decision

maker is forced to recognize the possibility of events which were excluded from ear-

lier decision models. These unmodelled events are truly unknown “black swans”, like

the species cygnus atratus was to Europeans before Dutch explorers reached Western

Australia. Such unmodelled events are completely different from the “highly improb-

able” but modelled events referred to as “grey swans” in Taleb (2007). Indeed, Taleb

dismisses true black swans as completely intractable.
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