Catastrophic Risk, Rare Events, and Black
Swans: Could There Be a Countably Additive
Synthesis?

Peter J. Hammond

1 Introduction

1.1 Countably Additive Subjective Probability

In his classic The Foundations of Statistics, Savage (1954) provided an axiom sys-
tem sufficient to imply that a decision maker’s preferences could be represented by
the expected value of a von Neumann—Morgenstern utility function, with personal or
subjective probabilities attached to unknown events ranging over a sample space of
states of the world. His axioms, however, implied that probabilities are only finitely
rather than countably additive. Yet countable additivity is a key measure-theoretic
property that probabilitists since the time of Kolmogorov (1933), at least, are accus-
tomed to using. It allows, for instance, the probability of an interval of the real line
to be found by integrating a density function over that interval.

1.2 Monotonicity

To bridge this gap between finite and countable additivity, Villegas (1964), Arrow
(1965) and Fishburn (1982) all introduced an additional monotonicity axiom ensur-
ing that subjective probabilities are countably additive. One version of the relevant
axiom can be derived by combining slightly modified versions of two axioms set out
in Sects. 7.2 and 7.3 of Hammond (1998b).
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Let (Y, F) denote a measurable space of consequences, and (S, S) a measurable
space of states of the world. Following the evocative terminology introduced by
Anscombe and Aumann (1963), let A(Y, F) denote the space of roulette lotteries
in the form of probability measures over (Y, F).

In the special case when S is a finite set, for each E C S, let YE denote the Carte-
sian product set [ ¥,, where each Y is a copy of Y, and let F* denote the product
o-field Q) F,. where each F; is a copy of F. Consider then the space A(Y%, FF)
of roulette lotteries, in the form of probability measures over (Y%, F¥) whose ran-
dom outcomes are horse lotteries y* in the space of measurable mappings from E to
Y, F).

The key reversal of order axiom (RO) due to Anscombe and Aumann (1963)
treats, for any event E C S, any pair AF, u* € A(YE, FF) as equivalent if and only if
their marginal measures A, u, € A(Y, F) are equal for each state s € E. Then each
7E € A(YE, FE) can be identified with the list (7). of marginal probability mea-
sures 7, € A(Y, F). In particular, this treats as irrelevant the extent of any correlation
between consequences y, € Y that arise in different states s € E.

Next, we revert to the case of a general measurable space (S, S). Then, for each
measurable event £ € S, define the conditional sub-oc-field

Sp:={GES|GCEICS

Obviously, in case E = S, this definition implies that Sl ¢=S.

In the spirit of the case when S is a finite set, for each measurable event E € S,
let A(YE, S|, F) denote the space of functions 7t : E — A(Y,F) with the property
that, for each K € F, the mapping

E>sw— nf(s,K) € R,

is measurable w.r.t. the o-field S on E and the Borel o-field on R.
The other axioms to be discussed here concern:

1. the preference ordering =* on A(Y, F) having the property that for each y € Y,
in addition to the set {y}, the upper and lower contour sets

(yyer|é,z"6,) and (Y €Y|s,3"6)

are both F-measurable;
2. for each measurable event E € S, the conditional preference ordering =% on
A(YE, S, F).

Definition 1 (Event Dominance (ED))

Suppose that the event E € S, the list of probability measures z£ = (z,) .., €
A(Y®, S, F), and the simple lottery 4 € A(Y) are all given. Let 4 1% denote the
particular list A* = (A)cr € A(YE, S, F) that satisfies A, = A for all s € E. Then:
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1. z, z* A (all s € E) implies zf =F A1F;
2. z, 3" A(all s € E) implies £ <F A 1F.

In case the set E is finite, condition (ED) is an obvious implication of Anscombe
and Aumann’s extension of Savage’s sure thing principle. The force of (ED) comes
in partially extending this principle to the case when E is any measurable subset of S.

Next, given any measurable event E € S satisfying § # E # S, let (z 1£, 7 15\F)
denote the particular list of probability measures A5 = (4,),cs € A(YE, S, F) whose
marginal distribution A4, € A(Y, F) for each s € § is a roulette lottery that satisfies

1= n ifsek
ST & ifseS\E

Definition 2 (Event Continuity (EC))

Let >* on A(Y, ) and =5 on A(YS, S5, F) be fixed preference orderings. Suppose
that the two measurable events E, E* C S, as well as the sequence of measurable
events £, (k € N), and the two probability measures 7, 7 € A(Y, F), together satisfy:

l. EyCE,Cc--CE,CE,,C- CS;
2. E* = U2, Ey;

3. #>" 71,

4. (15,7 15V 5 (z 15, 7 15\),

Then there must exist a finite k such that (z 15, # 15\E) >5 (7 1£, 7 15\E),

Equivalently,

(z 15, 7 15VE) =5 (2 18, 7 15VF) (all k € N)

= (17,7 15V 25 (15, 7 15\F)

1.3 Beyond Monotonicity

In several recent papers, Chichilnisky (1996, 2000, 2009, 2010) has explored a
particular weakening of this kind of monotonicity axiom. This weakening allows
a revised decision theory in which rare events, catastrophes, perhaps even “black
swans”, can all be given more prominence. Of course, the weakening comes at the
cost of allowing probabilities that are only finitely additive. For this reason, ulti-
mately it may be useful to investigate whether some alternative approach could allow
for such phenomena while retaining probabilities that are countably additive mea-
sures.
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1.4 Outline of Paper

The rest of this paper considers three different strands of literature. First, Sect.2
considers some background on the use of the word “catastrophe”, in drama, mathe-
matics, and finally decision theory. It goes on to formalize a notion of catastrophic
risk in decision theory, based on pioneering work on the value of life due to Dréze
(1962), followed by Jones-Lee (1974).

The second strand discussed in Sect. 3 concerns the use of infinitesimals to rep-
resent the subjective probability of events so rare that they should not be accorded
any positive probability. Third, Sect. 4 offers a possible approach to modelling the
“true black swans” that Taleb (2007) in particular regards as beyond any kind of sys-
tematic analysis. Finally, Sect. 5 combines a suggestion for an alternative synthesis
of these three strands with some concluding remarks.

2 Catastrophic Risk

2.1 Etymology

According to http://www.etymonline.com/, the word “catastrophe” entered the Eng-
lish language during the 1530s with the meaning “‘reversal of what is expected’
(especially a fatal turning point in a drama)”. It is derived from the Greek “katastro-
phe”, meaning “overturning; a sudden end”, itself a compound of the prefix “kata”
meaning “down” and “strephein” meaning “turn”.

The extension of the meaning of “catastrophe” to include “sudden disaster” is
first recorded in 1748. In medicine, catastrophe is often taken to mean death related
to what should have been routine surgery. In engineering, a “catastrophic failure”
is the complete breakdown of a system from which recovery is impossible. A cele-
brated example is the Tay Bridge disaster of 1879 which, thanks to to the doggerel
in McGonagall (1880), has become a classic of British folklore.

There is a branch of mathematics known as “catastrophe theory” that concerns the
possible instability of the minimum of a non-linear potential function when that func-
tion depends on exogenous parameters which may be subject to sudden shocks. The
monograph by Thom (1973) provided a systematic classification of different types
of catastrophe. Zeeman (1976) did much to popularize the application of catastrophe
theory to the study of many different dynamic phenomena where there is a sudden
change. These applications include:

« in animal psychology, aggression in dogs;

« in medicine, the beating heart;

« in structural engineering, beams that first buckle and then collapse;

 in economics and finance, crashes in stock markets, as well as structural properties
of the Walrasian equilibrium manifold as described by Balasko (1978).


http://www.etymonline.com/
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2.2 Catastrophic Consequences

Standard decision theory considers acts whose consequences range over a specified
consequence domain in the form of an abstract set Y equipped with a o-algebra F
of measurable sets. In principle, catastrophes can be described by letting the con-
sequence domain Y be the union of the two disjoint measurable sets: (i) Y, of non-
catastropic consequences; and (ii) Y, of catastrophic consequences.

Here, however, our concern will be to discuss how catastrophes can be modeled
as events so extreme that a suitable money metric utility function becomes undefined
whenever the probability of a catastrophe is sufficiently high. Accordingly, consider
a consequence domain K X R of pairs (x,y) where:

1. y € R, is income or wealth (depending on context);
2. k € K = {0, 1} is a binary indicator variable indicating whether a “catastrophe’:

e occurs, iff k = 1;
e or does not occur, iff K = 0.

Hence Y, = {0} x R, whereas Y| = {1} X R,

Following Dreze (1962), consider too a consumer whose preference ordering
% on the set A(K X R,) of lotteries over K X R, is represented by the expected
value Eu of each real-valued von Neumann—Morgenstern utility function (or NMUF)
K xR, = (k,y) » u(x,y) € R in a unique cardinal equivalence class. The litera-
ture on decision theory inspired by Dréze often regards the mapping y — u(k,y) as a
state-dependent utility function of income y, though it can perhaps be more usefully
regarded as a state-independent utility function of the fully specified consequence

(x,y).

2.3 Assumptions

Within the framework of Sect. 2.2, we assume that:

1. for each fixed k € K, each NMUF y — u(k,y) is continuous, strictly increasing,
and bounded above, with upper bound i1, := sup, u(x,y);

2. for each fixed y € R, one has u(0,y) > u(1,y);

3. Wy > .

The second assumption, of course, is that the consumer is worse off with a
catastrophe than without, ceteris paribus. Taking the limit as y — oo implies that
ity > iy, obviously, but the third assumption that i, > i, strengthens this to a strict
inequality. In particular, this third assumption holds if and only if there is a con-
tinuous extended utility function # : K X (R, U {eo}) — R for which there exists
y* € R such that &#(0, y*) = @i(1, o) and so (0, y) > (1, co) whenever y > y*.
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2.4 Money Metric Utility

Following Jones-Lee (1974), consider this consumer’s willingness to pay for a reduc-
tion in the probability p of catastrophe. Specifically, consider any reference or base-
line lottery

A= (1= PP, + P 0 1) M

which is a mixture of the two degenerate lotteries 6, ,#, and &, ,, that attach proba-
0.5 (155

bility one to the consequences (0, yg) and (1, y’f) respectively. Thus, the consumer
faces the probability p® of a catastrophe, along with reference income levels y’lf
(x € {1,0}) with and without a catastrophe. Let

UR 2= (1= pu(0,y5) + pfu(l, yf) 2

denote expected utility in the reference situation. One can use these reference levels
and the equation

(1 = p)u(0,m) + pu(l,y,) = U 3)
in an attempt to define implicitly a money metric utility function
R, X[0,1]1 3 (y;;p) = m(y;;p) E R, “4)

Note that this function will be the same whenever u is replaced by an alternative
NMUEF that is cardinally equivalent.

Definition (4), when valid, implies that m(y,; p) — yg is the consumer’s willing-
ness to accept the net increase p — p® in the risk of catastrophe, when compen-
sation in the event of the catastrophe raises income from y’f to y;. Alternatively,
yg — m(y,; p) is the consumer’s (net) willingness to pay, in terms of foregone income
in the absence of catastrophe, for the decrease in the probability of catastrophe from

pRtop.

2.5 A Critical Probability Level: Catastrophic Risk

The money metric utility function (4) really is defined by Eq. (3) for the pair (y,; p)
if and only if

(1 = p)u(0,0) + pu(l,y,) < UX.

Otherwise giving up all income is insufficient to compensate for the increase in p,
which one could then regard as a true catastrophe.
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In particular, the function (4) is defined iff p < p,- for the critical probability level
defined by

UR —u(0,0) (1= p®u(0.y) + p*u(l.y}) — u(0,0)
u(l,y;) —u(0,0) u(l,y;) —u(0,0)

pe = 5)

Thus, once p has reached p, no compensation is possible for any further increase in
the probability of catastrophe.

Note that p., as the ratio of expected utility differences, is not only preserved
under positive affine utility transformations. In addition, as discussed in Hammond
(1998a), the formula (5) that expresses p as the ratio of utility differences implies
that it must equal the constant marginal rate of substitution between shifts in prob-
ability away from (0, 0), the worst possible outcome without a catastrophe, toward
respectively:

1. the reference lottery defined by (1);
2. the consequence (1,y,) that represents the occurrence of the catastrophe com-
bined with the income level y;.

2.6 Extreme Economic Catastrophes

One can also have an extreme catastrophe where p is large enough to satisfy
(1 = p)u(0,0) + pir, > UR
This, of course, is equivalent to

UR - u(0, 0)

it — u(0,0) ©)

p>

Inequality (6) implies that the probability of catastrophe is so high that no matter how
large y, may be, there is no value of m that satisfies (3). In this sense, compensation
is completely impossible.

3 Rare Events

3.1 Standard Decision Theory

Standard decision theory uses the expected utility (EU) criterion. Traditionally,
moreover, a distinction is made between objective and subjective EU theory, depend-
ing on whether one faces:
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« risk or roulette lotteries described by objective probabilities, as in von Neumann
and Morgenstern (1953) and then Jensen (1967);

 uncertainty or horse lotteries described by subjective probabilities, as in Savage
(1954);

» combinations of roulette and horse lotteries, as in Anscombe and Aumann (1963).

3.2 Infinitesimal Probability

Recall that, by definition, an infinitesimal € is some positive entity (not a real number)
that is smaller than any positive real number in the sense that 0 < ne < 1 for all nat-
ural numbers n € N. To accommodate rare events, one can follow the game-theoretic
literature emanating from Selten (1975) by allowing “trembles” whose probability is
taken to be some positive multiple of a particular basic infinitesimal €. See Halpern
(2009, 2010) for discussion of some recent developments.

3.3 Rare Events and Infinitesimal Probabilities

Probabilities must be:

1. added when calculating the probability of the union of two or more pairwise
disjoint events;

2. subtracted when calculating the probability of the set-theoretic difference of any
two events;

3. multiplied when compounding probabilities at successive stages of a stochastic
process;

4. divided when calculating conditional probabilities.

This suggests that Selten’s space of trembles should be enriched so that the extended
probabilities we construct take values in an algebraic field, where all these four oper-
ations are well-defined—except, of course, when trying to divide by zero. This moti-
vates the following definition:

Definition 3 A polynomial function of ¢ takes the form

r

PO = 2P = 2oy Pyt g

for some finite set K = {k;,k,,...,k.} C Z, where kj < kj+l forj=1,2,...,r—1,
and p, # O for all k € K. The leading non-zero coefficient of the polynomial (7) is
Px,- The polynomial (7) is positive just in case p; > 0.

A rational function of e takes the form of a quotient P(¢)/Q(¢) of two polynomial
functions of e, where the denominator Q(e) is positive. Without loss of generality,
the leading non-zero coefficient of Q(¢) can be normalized to 1.
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Following Robinson (1973), define R(e) as the algebraic field whose members
are rational functions of e, equipped with the standard algebraic binary operations
of addition and multiplication, as well as the additive identity O and the multiplicative
identity 1. Define the positive cone R_ (¢) of rational functions P(e)/Q(¢) as those
where P(¢) as well as Q(e) is a positive polynomial.

Following Rényi (1955, 1956) and associated ideas that were surveyed in Ham-
mond (1994), rare events E in a finite set S of states of the world can be modelled
formally as having infinitesimal probability p(E;€) in an extended EU theory with
“non-Archimedean” probabilities in the positive cone R, (¢) of the field R(e). That s,
we must have p(E; €) = P(e)/Q(e) where the coefficient of € in the polynomial (7) is
zero. Obviously one requires the probability mapping 25 3 E — p(E;€) € R, (¢) to
satisfy the additivity condition p(E;€) = p(E'; €) + p(E"; €) whenever E = E' U E”
with E' N E" = @, as well as the normalization condition p(S;e) = 1.

3.4 A Metric Completion

As discussed in Hammond (1999), following an approach set out in Lightstone and
Robinson (1975), the set R(e) of rational functions can be given a (real-valued) met-
ric d : R(e) X R(e) — R,. This metric induces a very fine topology, according to
which a sequence N = (r, ),y Of real numbers converges to r* € R if and only if 7,
is eventually equal to r*—i.e., there exists n* € N such thatn > n* = r, = r".

Let RV(e) denote the Cartesian product of countably many copies of the alge-
braic field R(e). The elements of RN(e) are infinite sequences r(e) = ('(€)),en
of rational functions of e. Following standard terminology in metric space theory,
say that ™N(e) = ((€)),en is @ Cauchy sequence if for every small § > 0, there
exists n; € N such that whenever n’,n” € N with n’ > n; and n” > n;, one has
d(r (e), " (e)) < 6.

Define the binary relation ~ on the space of Cauchy sequences in RN(¢e) so that
™ (e) ~ ™(e) just in case, for every small § > 0, there exists s € N such that when-
ever n’,n" € N with n’ > ng and n” > ng, one has d(r" (), 7" (€)) < 6. It is easy
to check that the relation ~ is symmetric, reflexive, and transitive — i.e., it is an
equivalence relation. Then the metric space (R(e), d), like any other, has a metric
completion consisting of equivalence classes of Cauchy sequences. In Hammond
(1997) it is shown that each member of this metric completion can be expressed
uniquely as a power series Y. a,e* of the basic infinitesimal ¢, for an infinite
sequence a" = (a;);ecny € RN of real constants. We denote this metric completion by
(R*(e),d), where d denotes an obvious extension to the set R*(e) of power series
of the original metric d on the set R(e) of rational functions.

In the following, let R°(¢) denote the subset of power series that are positive
in the sense that the leading non-zero coefficient is positive. We also introduce the
lexicographic strict ordering >; on R*(¢), defined so that
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E ks E be*
a,e €
k=0 K L Lak=0"k

if and only if the leading non-zero coefficient of the difference

Zk:O(ak —bye*

is positive. Let >; denote the corresponding weak ordering defined so that

© k > o b k 0 b k A k
a,€ € = € a,€
Zk:O k= =L Zk:O k Zk:O K€ FL Zk:() k

3.5 Extended Probability Measures

In order to treat compound lotteries in decision trees where branches at one or more
successive chance nodes can have infinitesimal probabilities, and also to have a sat-
isfactory theory of subjective probability, it seems desirable to allow probabilities to
have values in IRf(e) rather than justin R, .

Definition 4 Let (S, S) be any measurable state space S with o -field S. An extended
probability measure on (S, S) is a mapping

SSEw n(Ese) = ZZO m(E)et € R®(e)

that satisfies:

L. n(E;e) € RY(e) for all E € S\ {#};

2. 7n(S;e)=1;

3. if the countable collection of sets E, (n € N) is pairwise disjoint, then
7(U,E,;€) = ), n(E,; €) (countable additivity).

Let A(S, S; R (€)) denote the family of all extended probability measures on (S, S).

Note that, apart from having values in the algebraic field R*(¢), such probabilities
are required to be positive for all possible events; a zero probability is attached only
to the empty set.

3.6 Extended Subjective Expected Utility

For the case when S is finite, Hammond (1997) offers axioms which imply that a
preference ordering > over the space A(YS) of all possible combination of roulette
and horse lotteries can be represented by the lexicographic weak ordering >; applied
to subjectively expected utility, in the form of a power series
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ZySeYS A6 ZJES n(s; ev(y;) € R¥(e)

Note in particular that the von Neumann—Morgenstern utility function (or NMUF)
v Y — R is real valued; there is no need for any form of lexicographic utility, as
opposed to lexicographic expected utility. The following is the main theorem of
Hammond (1997):

Theorem 1 Let S denote a finite set of unknown states of the world, and Y a conse-
quence domain. Suppose that all the seven axioms (0), (I*), (C*), (RO), (SI), (RC)
and (XC) of Hammond (1997) are satisfied throughout the domain A(Y*; Rf(e)) of
consequence lotteries with non-Archimedean objective probabilities ranging over
R (). Unless there is universal indifference over the whole domain, there exist

 a unique extended subjective probability measure p(-; €) that belongs to the space
A(S, S; Rf(e)) of mappings S 2 E — p(E;¢) € Rf(e);
 a unique cardinal equivalence class of real-valued NMUFsv : Y - R

such that the preference ordering =5 on A(YS; R®(€)) is represented by the subjective
expected utility function

e USQS) = ers p(s;€) Zyey 2,0)v(y) € R (e) (8)

on the domain A(YS; Rf(e)) of Rf(e)-valued lotteries A5 € A(YS; Rj_"(e)) whose
marginal distributions satisfy A, € A(Y; R (¢)) for all s € S. Specifically,

28w = U 2, U()

3.7 Lexicographic Expected Utility

The subjective probability p(s; €) € RY(e) of every state s € S can be expressed as
the power series 2110 Pi(s) €*. Thus, the SEU expression (8) can be re-written as the
power series US(4%) = Y77 ) u (4%) e* whose coefficients of successive powers of e
are

a5 1= Y P Y AOVG) (=012, ©)

But then A% =5 45, or equivalently U(4%) > US(u®), if and only if the two respec-
tive associated infinite hierarchies of coefficients (ui(/ls))]‘:‘;o and (ui(ys))l‘f:o in the
power series satisfy

NNy 2 ()2, (10)

w.r.t. the usual lexicographic total ordering >; on the space R* of infinite sequences
in R. In this sense, the preference ordering =° has a lexicographic expected utility
representation.
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4 Black Swans

4.1 Background

In 82 AD Juvenal (in Satires, VI, 165) had written “rara avis in terris nigroque
simillima cygno” (a rare bird upon earth, and exceedingly like a black swan). That,
however, was merely imaginative irony. Real black swans belonging to the biological
species Cygnus atratus remained unknown to most of the world before 1697 when
Willem de Vlamingh voyaged to what has since become Western Australia. There he
became the first European to record seeing living black swans in their native habitat,
which included the river he named “Swarte Swaene-Revier” (black swan river). This
is now Swan River, which is the main waterway running through the capital city
Perth.
Later John Stuart Mill, paraphrasing David Hume, wrote:

No amount of observations of white swans can allow the inference that all swans are white,
but the observation of a single black swan is sufficient to refute that conclusion.

In elementary philosophy, the existence of black swans has become a classical exam-
ple of the limits to inferential reasoning.

Taleb’s (2007) book provides many vivid examples of events, often related to
finance or economics, which he sees as meeting his characterisation of a “Black
Swan” event as an “outlier” with “an extreme impact” for which “human nature
makes us concoct explanations after the event”. The book was written before the
recent crisis in global financial markets. Nevertheless, it does discuss several earlier
ones like the stock market crash of October 1987 that are often plausibly blamed on
faulty statistical models.

Indeed, at an early stage of his book, Taleb defines a “special case of ‘gray’
swans” which are rare but expected. More precisely, they have probability distribu-
tions described by “Mandelbrotian randomness”, a particular class of fat-tailed prob-
ability distribution following a power law. These distributions put so much weight
on outliers, or extreme values, of a random variable v € R that, for large enough
k € N, the expectation of the kth power of v, otherwise known as the kth moment of
the distribution, becomes infinite. This is in stark contrast to the normal or Gaussian
distribution, for which the tail of the distribution is so “thin” that all moments exist.

Yet the main issue with the random value of an asset, especially a derivative secu-
rity, is typically not whether its distribution has fat or thin tails. Rather, for such assets
there is typically a positive probability of losing everything. This potential loss can-
not be captured by a Gaussian distribution, or by any “smooth” alternative such as a
power law. But there is little really new here, since statisticians and financial econo-
mists, along with decision and game theorists, have long been coming to terms with
probability distributions which do not correspond to a smooth density function.
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4.2 Black Swan Events

Much more challenging than Taleb’s “gray swans”, however, are the true Black
Swans which effectively break our existing scientific models. Indeed, the indis-
putable existence of the (black) swan species now called Cygnus atratus broke all
previous biological models of the genus Cygnus. While Taleb does recognise that
such events could occur, he regards them as “totally intractable”, scientifically speak-
ing. Nevertheless, biologists have formulated statistical models intended to forecast
probabilistically the likely number of new species that one might expect to find in a
poorly explored habitat. And of course economists have developed many models of
economic growth with technical progress, which may be approximately treated as the
accumulation of many small but typically favourable surprises. A notable example
is Schumpeter’s (1926, 1934) The Theory of Economic Development which sets out
the view that, as entrepreneurs innovate, a capitalist market economy is subjected to
repeated shocks that cannot be modelled in advance.

More generally, any practical model, especially in the social sciences, must have
bounded scope and so must ignore some possibilities. As the statistician George
Box wrote: “Essentially, all models are wrong, but some are useful.” Should any
unmodelled possibility such as a bank run or bank failure occur and have a noticeable
impact, it will have to be recognised as an “aberrant” event which, by definition, lies
outside the current model.

This is not to deny that any aberrant event could have appeared in an enriched
version of the agent’s model, if it had been imagined soon enough and then deemed
worth modelling. But it was not. Instead, its occurrence demonstrates that the origi-
nal model is broken and needs modifying accordingly. Such aberrant events lying
outside the current model should be distinguished from events within the model
which, like Taleb’s “gray swans”, have extremely low or even zero probability. By
contrast, black swan events, unlike those described in Taleb’s book, may not even
be imagined ex ante. Thus, aberrance may be due to a failure of the imagination in
constructing a decision model. This may be related to Shackle’s (1953) concept of
“surprise”—see also Hammond (2007). Indeed, there may be more phenomena in
economics that can be explained by “asymmetric imagination” than by the widely
used notion of asymmetric information. And not only in economics, but in culture,
business, etc.

To summarize, sometimes models may change as their originators anticipate
events that had to be excluded originally. To adapt the widely quoted saying by the
statistician George Box: “Essentially, all useful models are incompletely specified.”
The excluded events would become aberrant if they were to occur before they could
be included in a more accurate statistical model. Even so, their possible effects on the
consequences of modelled current decisions can be allowed for, at least in principle,
within a suitable EU decision model allowing an “enlivened” version of the usual
decision tree. This is our next topic.
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4.3 An Initial Simple Tree

Let Y be a fixed consequence domain. Consider a decision maker whose objective
is to maximize the expected value of a von Neumann—Morgenstern utility function
(NMUF)v:Y - R.

Consider an initial (dead) decision tree 7

 with an initial (decision) node n,

« at which the agent chooses a chance node n, in the set N; := N, (n,) of all nodes
that immediately succeed n,

 at each of which chance determines an immediately succeeding terminal node
n, in the set N,(n;) := N,,(n;) of all nodes that immediately succeed n,, using
known transition probabilities w(n,|n,) satisfying z(-|n,) € A(N,(n,)),

o each of which has a known final consequence y(n,) € Y.

4.4 Initial Evaluation

In this initial simple tree there is a known consequence y(n,) € Y, of reaching any
terminal node n,. The initial evaluation of reaching this node is evidently w,(n,) =
v(y(np)).

Working backwards, as usual in dynamic programming, the conditional expected
utility of reaching any chance node n; € N is

wy(ny) = E[w,(ny)|n;]1 = Z z(ny|ny) wy(n,) (11

n,EN, (1)
Then an optimal decision n} € N, is any that maximizes w;(n,) with respect to n;,
subject to n; € N,.

The above simple argument is a trivial application to an orthodox “unenlivened”
decision model of the optimality principle of stochastic dynamic programming. That
is, any current decision should be given a continuation value equal to the highest
possible expected utility resulting from an appropriate plan for all subsequent deci-
sions. Optimality requires the current decision to maximize the expectation of this
continuation value.

4.5 Enriched Subtrees

One possible enrichment of the agent’s decision model involves a new NMUF
vt 1 YT - R defined on an enriched model consequence domain ¥* 2 Y. But many
other enrichments are also possible.
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Before we discuss these, note first that the agent can hardly make an unmodelled
decision. Accordingly, assume that a necessary and sufficient condition for being
able to choose any n; € N, is that node n, is included in the model. Hence the set
N_,(ny) remains fixed. So we assume that any enrichment of the tree takes place only
after a particular chosen decision node n’l € N, (ny) has already been reached.

What matters, however, is not just how the continuation subtree T(n‘i) after this
particular node is enriched. Also relevant are the potential enrichments of the con-
tinuation subtrees T'(n,) at all the other nodes n; € N, l\{nil }, since all these possi-
ble enrichments ultimately affect the relative expected values of moving to different
nodes n; € N,.

Now, starting at each n; € N,, the original continuation subtree T'(n,) had nodes
ny € N,(n,). Instead there is now an enriched continuation subtree 7+ (n;) with:

o an expanded set NT (n,) = N3 (n,) 2 N,(n,) of immediately succeeding terminal
nodes;

« revised transition probabilities z*(n] |n;) for all n] € N (n;);

« revised consequences y*(n]) € Y* for all n] € N, (n)) with utilities w} (1)) :=
Vit ).

Instead of (11), the revised expected utility of any decision at node n,, to move to
any node n; € N; = N_(n,) is therefore

win) 1= E wiln ] i= )

+(F 0+
n;ele(n,)ﬂ (ny |ny) w3 (n3) (12)

4.6 Retrospective Evaluation in the Enlivened Tree

In this simple two-stage model, the enriched tree T™ is the extension of T obtained
by replacing each continuation subtree 7(n;) (n; € N,) with its enrichment 7" (n,).
We define the enlivened tree as the pair (T, TT). Unlike botanical tree rings, this
includes a complete record of how the tree has grown between:

1. the first period, when it was T
2. the second period, when it has become 7.

Itis also a mathematical rather than a botanical growth process! For one thing, botan-
ical trees may lose branches in windy conditions, whereas enlivened trees can only
expand with time.

Analysed ex post, the appropriate decision at initial node n, would have been to
maximize wf(nil) with respect to i € I. But ex ante, only the details of the origi-
nal model can be used, by definition. What the agent can still do ex ante, however,
is to recognize that the original evaluation function wl(ni) may be revised to an
as yet unknown and uncertain retrospective evaluation function W1+ (n’i) that ranges
over a function space of possible evaluation functions. This is similar in spirit to the
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work of Koopmans (1964) and Kreps (1992) that allows uncertainty about future
preferences—see also Dekel et al. (2001, 2007).

In other words, somewhat like Hansen and Sargent (2008, 2011), we can apply
a robust decision analysis and choose the initial decision i € I in order to maximize
[Ew{r(ni) after allowing for uncertainty about the appropriate form of the function

. (i
i =Wy (nl).

4.7 Cardinally Equivalent Evaluation Functions

Two evaluation functions w, w, : N; = R are cardinally equivalent, with w; ~ Ww,,
just in case there exist:

« an additive constant « € R
« a positive multiplicative constant p € R

such that w, () = a + pw, (n)).
The value state space Q is defined as the set

« of all non-constant functions n; = w(n,) normalized to satisfy

min w(n,;)=0 and max wn,) =1
n €N, ( 1) n €N, ( 1)

« together with the normalized constant function satisfying w(n;) = 0 for all n| €
N_(ny), which represents complete indifference.

4.8 Uncertain Retrospective Evaluation

Enlivenment replaces the original evaluation function w, in 7' by an uncertain retro-
spective evaluation function wT derived in the tree T", which cannot even be mod-
elled ex ante. Because the set N, is assumed to be finite, the function WT N, >R
ranges over the space Q C [0, 1]V ¢ RM—i.e., Q is a subset of the unit hypercube
in Euclidean space.

4.9 State-Dependent Consequence Domains

In this setting, applying standard subjective probability theory faces an obstacle.
The relevant consequences are pairs (1, ®) € N; X Q. So the consequence domain
N, X {w} depends on the state @ € Q. This rules out Savage’s constant acts a : Q —
N, with a(w) = a for all w € Q.
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In normative decision theory, Hammond (1998b, 1999) suggests a remedy for
this kind of state-dependent consequence domain. It is to postulate the existence of
an extended NMUF U : N, X Q — R whose expected value represents preferences
Z on A(N, x ), when one can choose, in addition to different nodes n; € N, the
probabilities of different states o € Q.

Given any fixed state w € €, the expected values w.r.t. any v € A(N,) of the two
functions n; = U(n;,®) and n; = w(n;) should represent preferences over corre-
sponding lotteries v € A(N;) and v X 6,,. So the two functions n;, = U(n,, w) and
n, = w(n;) must be cardinally equivalent, for each fixed w. That is, there must
exist mappings @ — a(w) € R and w ~ p(w) € R, such that U(n, ®) = a(w) +
p(w) w(ny).

4.10 Subjective Expected Evaluation

The agent’s subjective expected utility objective in the enlivened tree (T, T%) can
(and should) use a subjective probability measure P over the Borel subsets of Q. Then
preferences over objective “roulette” lotteries v € A(N,) are ultimately represented
by the objectively expected value E V of the subjective expectation function N; >
n, ~ V(n,) defined by

V(n) = / U(ny, w)P(dw) = /[a(a)) + p(@) w(n;)]P(dw) (13)
Q Q

There is an obvious analogy here with Anscombe and Aumann (1963), who allow
combinations of roulette and horse lotteries. An axiomatic justification, however, has
yet to be developed, though it should be possible by combining the ideas of Myerson
(1979), Fishburn (1982), and Hammond (1998b, 1999).

4.11 Hubris Versus Enlivenment

Tractable models are necessarily bounded in scope. Actions may have consequences
that are not only unintended, but quite possibly unimagined, and certainly not
included in whatever bounded model was used to analyse the agent’s decision.

An agent’s decision model, like any competent engineer’s plan, will typically need
to change as and when surprise events outside the model compel attention. Orthodox
decision models ignore completely any possibility of model revision. In this sense,
they are inherently hubristic.
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4.12 Could There Be a Metamodel?

A decision model in discrete time amounts to a controlled stochastic process, or
equivalently a decision tree that combines chance nodes with decision nodes where
the decision is controlled by the decision-maker. Recognizing that the appropriate
decision model is itself subject to uncertainty, is it possible, or even desirable, to
construct a “metamodel” that embraces all possible decision models?

We will actually consider a simpler question: whether one can or should construct
a metamodel in the form of a stochastic “metaprocess” defined on the space of all
possible stochastic process models? The result would be a sequence of stochastic
processes in which the state space is continually being enriched unpredictably.

Now, recall that the stochastic process model is based on Kolmogorov’s extension
theorem in probability theory. This result states that any “consistent” family of prob-
ability laws on finite Cartesian subproducts of an arbitrary collection of component
measurable spaces can be extended to a probability law on the whole Cartesian prod-
uct. The theorem, however, depends on significant topological assumptions such as
the existence in each component measurable space of a compact class C of measur-
able sets—i.e., every sequence of sets in C whose finite intersections are non-empty
has a non-empty infinite intersection—such that the probability of any measurable
set must equal the supremum of the probabilities of all its subsets that lie in C.!
It seems difficult to find a suitable topology on the class of all potentially relevant
sequences of stochastic process models which allows an interesting probability mea-
sure to exist.

4.13 Should We Look for a Meta Stochastic Process?

El Aleph is a short story published by the distinguished Argentinian author Jorge
Luis Borges in 1945. It begins with a quotation from Shakespeare’s Hamlet Act 11,
Scene 2

O God! I could be bounded in a nutshell,
and count myself a King of infinite space ...

This could be regarded as Shakespeare’s poetic description of a key requirement for
a metamodel. Eventually we move to the heart of Borges’ wonderful story?:

He explained that an Aleph is one of the points in space that contains all other points. ... The
Aleph’s diameter was probably little more than an inch, but all space was there, actual and
undiminished. Each thing (a mirror’s face, let us say) was infinite things, since I distinctly
saw it from every angle of the universe.

'See Neveu’s (1965, p. 82) significant generalization of Kolmogorov’s extension theorem, as
described in Aliprantis and Border (1994, Sect. 14.6).

2The following brief extracts are from http://www.phinnweb.org/links/literature/borges/aleph.html,
which reproduces the English translation on which Norman Thomas Di Giovanni collaborated with
Borges himself.
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Shortly thereafter the story takes a rather disturbing turn:

I saw the Aleph from every point and angle, and in the earth the Aleph, and in the Aleph the
earth; I saw my own face and my own bowels; I saw your face; and I felt dizzy and wept, for
my eyes had seen that secret and conjectured object whose name is common to all men but
which no man has looked upon—the unimaginable universe.

I felt infinite wonder, infinite pity.

But eventually something like normality returns:

Out on the street, going down the stairways inside Constitution Station, riding the subway,
every one of the faces seemed familiar to me. I was afraid that not a single thing on earth
would ever again surprise me; I was afraid I would never again be free of all I had seen.
Happily, after a few sleepless nights, I was visited once more by oblivion.

A later postscript includes some explanation for Borges’ choice of title:

As is well known, the Aleph is the first letter of the Hebrew alphabet. Its use for the strange
sphere in my story may not be accidental. For the Kabbala, the letter stands for the En Soph,
the pure and boundless godhead; it is also said that it takes the shape of a man pointing to
both heaven and earth, in order to show that the lower world is the map and mirror of the
higher; for Cantor’s Mengenlehre [set theory], it is the symbol of transfinite numbers, of
which any part is as great as the whole.

Perhaps the moral of Borges’ story is that in the end we should be relieved about
how mathematically and conceptually intractable the problem of finding a stochastic
metaprocess appears to be.

5 Concluding Remarks

A descriptive decision theory stands or falls by its capacity to explain what we
observe. A prescriptive decision theory, on the other hand, stands or falls by its
capacity to offer a normatively appealing approach to decision making. This work
has set out alternative departures from standard prescriptive decision theory. These
departures have been designed to deal separately with the three key phenomena of
catastrophic risk, rare events, and true black swan events that transcend whatever
decision model we may currently be using.

The work by Chichilnisky (1996, 2000, 2009, 2010) has set out heroically to deal
with all these three phenomena within one integrated framework. In doing so, how-
ever, she follows Savage (1954) in relaxing the usual countable additivity property
of probability measures, thus allowing probabilities that are only finitely additive. A
conjecture to be settled by future research is that the same three phenomena could
be accommodated within a different integrated framework which retains a countably
additive probability measure. This framework would allow:
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1. the kind of distinction between catastrophic and non-catastrophic consequences
that was introduced in Sect. 2;

2. for rare events, non-Archimedean probabilities of the kind discussed in Sect. 3,
but extended from a finite sample space S to a general measurable space (S, S);

3. for true black swan events, enlivened trees of the kind sketched briefly in Sect. 4,
with preferences represented by subjective expected utility based on extended
probability measures over states of the world that correspond to possible retro-
spective evaluation functions defined for every modelled decision.

Note finally that rationality within bounded decision trees allows a restricted
revealed preference hypothesis, applying only to options that receive serious consid-
eration. But decision trees almost inevitably become enlivened in case the decision
maker is forced to recognize the possibility of events which were excluded from ear-
lier decision models. These unmodelled events are truly unknown “black swans”, like
the species cygnus atratus was to Europeans before Dutch explorers reached Western
Australia. Such unmodelled events are completely different from the “highly improb-
able” but modelled events referred to as “grey swans” in Taleb (2007). Indeed, Taleb
dismisses true black swans as completely intractable.
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