
Preface

Computing, in the sense of doing mathematical calculations, is a skill that mankind
has developed over thousands of years. Programming, on the other hand, is in
its infancy, with a history that spans a few decades only. Both topics are vastly
comprehensive and usually taught as separate subjects in educational institutions
around the world, especially at the undergraduate level. This book is about the
combination of the two, because computing today becomes so much more powerful
when combined with programming.

Most universities and colleges implicitly require students to specialize in com-
puter science if they want to learn the craft of programming, since other student
programs usually do not offer programming to an extent demanded for really mas-
tering this craft. Common arguments claim that it is sufficient with a brief introduc-
tion, that there is not enough room for learning programming in addition to all other
must-have subjects, and that there is so much software available that few really need
to program themselves. A consequence is that engineering students often graduate
with shallow knowledge about programming, unless they happened to choose the
computer science direction.

We think this is an unfortunate situation. There is no doubt that practicing engi-
neers and scientists need to know their pen and paper mathematics. They must also
be able to run off-the-shelf software for important standard tasks and will certainly
do that a lot. Nevertheless, the benefits of mastering programming are many.

Why learn programming?

1. Ready-made software is limited to handling certain standard problems. What do
you do when the problem at hand is not covered by the software you bought?
Fortunately, a lot of modern software systems are extensible via programming.
In fact, many systems demand parts of the problem specification (e.g., material
models) to be specified by computer code.

2. With programming skills, you may extend the flexibility of existing software
packages by combining them. For example, you may integrate packages that do
not speak to each other from the outset. This makes the work flow simpler, more
efficient, and more reliable, and it puts you in position to attack new problems.

v



vi Preface

3. It is easy to use excellent ready-made software the wrong way. Insight in
programming and the mathematics behind is fundamental for understanding
complex software, avoiding pitfalls, and become a safe user.

4. Bugs (errors in computer code) are present in most larger computer programs
(also in the ones from the shop!). What do you do when your ready-made
software gives unexpected results? Is it a bug, is it wrong use, or is it the math-
ematically correct result? Experience with programming of mathematics gives
you a good background for answering these questions. The one who can pro-
gram, can also make tailored code for a simplified problem setting and use that
to verify the computations done with off-the-shelf software.

5. Lots of skilled people around the world solve computational problems by writ-
ing their own code and offer their code for free on the Internet. To take advantage
of this truly great source of software in a reliable way, one must normally be able
to understand and possibly modify computer code offered by others.

6. It is recognized world wide that students struggle with mathematics and physics.
Too many find such subjects difficult and boring. With programming, we can
execute the good old subjects in a brand new way! According to the authors’
own experience, students find it much more motivating and enlightening when
programming is made an integrated part of mathematics and physical science
courses. In particular, the problem being solved can be much more realistic than
when the mathematics is restricted to what you can do with pen and paper.

7. Finally, we launch our most important argument for learning computer program-
ming: the algorithmic thinking that comes with the process of writing a program
for a computational problem enforces a thorough understanding of both the
problem and solution method. We can simply quote the famous Norwegian
computer scientist Kristen Nyggaard: “Programming is understanding”.

In the authors’ experience, programming is an excellent pedagogical tool for un-
derstanding mathematics: “You think you know when you can learn, are more sure
when you can write, even more when you can teach, but certain when you can
program” (Alan Perlis, computer scientist, 1922-1990). Consider, for example, in-
tegration. A numerical method for integration has a much stronger focus on what
the integral actually is and means compared to analytical methods, where much
time and effort must be devoted to integration by parts, integration by substitution,
etc. Moreover, when programming the numerical integration formula, it becomes
evident that it works for “all” mathematical functions and that the implementation
should be in terms of a general function applicable to “all” integrals. In this way,
students learn to recognize a special problem as belonging to a class of problems
(e.g., integration, differential equations, root finding), for which we have general
numerical methods implemented in widely applicable software. When they write
this software, as we do in this book, they learn how to generalize and increase the
abstraction level of the mathematical problem. When they use this software, they
learn how a special case should be attacked by general methods and software for
the class of problems that comprises the special case at hand. This is the power of
mathematics in a nutshell, and it is paramount that students understand this way of
thinking.



Preface vii

Target audience and background knowledge This book was written for students,
teachers, engineers and scientists that know nothing about programming and nu-
merical methods from before, but who seek a minimum of the fundamental skills
required to get started with programming as a tool for solving scientific and engi-
neering problems. Some knowledge of one- and multi-variable calculus is assumed.
The basic programming concepts are presented in only 50 pages (Chapters 1 and
2), before practical applications of these concepts are demonstrated in important
mathematical subjects addressed in the remaining parts of the book (Chapters 3-6).
Each chapter is followed by a set of exercises that cover a wide range of application
areas, e.g. biology, geology, statistics, physics and mathematics. The exercises were
particularly designed to bring across important points from the text. The reader will
realize that the modest content of the first 50 pages can in fact bring you quite far
in powerful problem solving!

Learning the very basics of programming should not take long, but as with any
other craft, mastering the skill requires continued and extensive practice. Some
beginning practice is gained through Chapters 3-6, but the authors strongly empha-
size that this is only a start. Students should continue to practice programming in
subsequent courses, while those who exercise self-study, should keep up the learn-
ing process through continued application of the craft. The book is a good starting
point when teaching computer programming as an integrated part of standard uni-
versity courses in mathematics and physical sciences. In our experience, such an
integration is doable and indeed rewarding.

Numerical methods An overall goal with this book is to motivate computer pro-
gramming as a very powerful tool for doing mathematics. All examples are related
to mathematics and its use in engineering and science. However, to solve math-
ematical problems through computer programming, we need numerical methods.
Explaining basic numerical methods is therefore an integral part of the book. Our
choice of topics is governed by what is most needed in science and engineering, as
well as in the teaching of applied physical science courses. Mathematical models
are then central, with differential equations constituting the most frequent type of
models. Consequently, the numerical focus in this book is on differential equations.
As a soft pedagogical starter for the programming of mathematics, we have chosen
the topic of numerical integration. There is also a chapter on root finding, which
is important for the numerical solution on nonlinear differential equations. We re-
mark that the book is deliberately brief on numerical methods. This is because our
focus is on implementing numerical algorithms, but to develop reliable, working
programs, the programmer must be confident about the basic ideas of the numerical
approximations involved.

The computer language: Python We have chosen to use the programming lan-
guage Python, because this language gives very compact and readable code that
closely resembles the mathematical recipe for solving the problem at hand. Python
also has a gentle learning curve. There is a MATLAB/Octave companion of this
book in case that language is preferred. Comparing these two versions of the book
provides an excellent demonstration of how similar these languages are. Other
computer languages, like Fortran, C, and C++, have a strong position in science
and engineering. During the last two decades, however, there has been a significant



viii Preface

shift in popularity from these compiled languages to more high-level and easier-to-
read languages like Matlab, Python, R, Maple, Mathematica, and IDL, for instance.
This latter class of languages is computationally less efficient, but superior with re-
spect to overall human problem solving efficiency. This book emphasizes how to
think like a programmer, rather than focusing on technical language details. Thus,
the book should put the reader in a good position for learning other programming
languages later, including the classic ones: Fortran, C, and C++.

How this book is different There are numerous texts on computer programming
and numerical methods, so how does the present one differ from the existing lit-
erature? Compared to books on numerical methods, our book has a much stronger
emphasis on the craft of programming and on verification. We want to give students
a thorough understanding of how one thinks about programming as a problem solv-
ing method and how one can be sure that programs are correct (well, you can never
be completely sure, but we show how you can provide convincing evidence for
correctness).

Even though there are lots of books on numerical methods where many algo-
rithms have a corresponding computer implementation (see, e.g., [1, 3–6, 11, 16–
18, 21, 24, 26–31] – the latter two are the only texts we know that apply Python),
it is assumed that the reader “can program” beforehand. The present book teaches
the craft of structured programming along with the fundamental ideas of numeri-
cal methods. Furthermore, we have so far not found any other numerical methods
book that has a strong emphasis on verifying implementations. In this book, unit
testing and corresponding test functions are introduced early on. We also put much
emphasis on coding algorithms as functions, as opposed to “flat programs”, which
often dominate in the literature and among practitioners. Functions are reusable
because they utilize the general formulation of a mathematical algorithm such that
it becomes applicable to a large class of problems.

There are also numerous books on computer programming, but to our knowledge
only one [13] that aims to teach how to think about programming in the context
of numerical methods and scientific applications. That book [13] has its primary
focus on teaching Python and is a very comprehensive introduction to Python as
a language and the thinking about programming as a computer scientist. Sometimes
one needs a text that does not go so deep into the language-specific details, but
instead targets the shortest path to reliable mathematical problem solving through
programming. With this attitude in mind, a lot of topics were left out of the present
book, simply because they were not strictly needed in the mathematical problem
solving process. Examples of such topics are object-oriented programming and
Python dictionaries (of which the latter omission is possibly subject to more debate).
If you find the present book too shallow, [13] might be the right choice for you. That
source should also work nicely as a more in-depth successor of the present text.

Whenever the need for a structured introduction to programming arises in sci-
ence and engineering courses, this book may be your option, either for self-study or
for use in organized teaching. The thinking, habits, and practice covered in a couple
of hundred pages will put readers in a firm position for utilizing and understanding
the power of computers for problem solving in science and engineering.



Preface ix

Supplementary materials All program and data files referred to in this book are
available from the book’s primary web site: http://hplgit.github.io/prog4comp/.

Acknowledgments First of all, we want to thank all students who attended the
courses FM1006 Modelling and simulation of dynamic systems, FM1115 Scientific
Computing, FB1012 Mathematics I and FB2112 Physics at the University College
of Southeast Norway over the last couple of years. They worked their way through
early versions of this text and gave us constructive and positive feedback that helped
us correct errors and improve the book in so many ways. Special acknowledgement
goes to Guandong Kou and Edirisinghe V. P. J. Manjula for their careful reading
of the manuscript and constructive suggestions for improvement. The careful proof
reading by Yapi Donatien Achou is also highly appreciated. We thank all our good
colleagues at the University College of Southeast Norway, University of Oslo, and
Simula Research Laboratory for their continued support and interest, enlightening
discussions, and for providing such an inspiring environment for teaching and sci-
ence. In particular, Svein Linge is thankful to Marius Lysaker for their fruitful
collaboration on introducing programming as an integral part of mathematics and
physics bachelor courses at the University College of Southeast Norway. Finally,
the authors must thank the Springer team with Dr. Martin Peters, Thanh-Ha Le Thi,
and Yvonne Schlatter for the effective editorial and production process.

The text was written in the DocOnce1 [12] markup language, which allowed us
to work with a single text source for both the Python and the Matlab version of this
book, and to produce various electronic versions of the book.

December 2015 Svein Linge and Hans Petter Langtangen

1 https://github.com/hplgit/doconce

http://hplgit.github.io/prog4comp/
https://github.com/hplgit/doconce
https://github.com/hplgit/doconce


http://www.springer.com/978-3-319-32427-2


