
3Computing Integrals

We now turn our attention to solving mathematical problems through computer
programming. There are many reasons to choose integration as our first application.
Integration is well known already from high school mathematics. Most integrals
are not tractable by pen and paper, and a computerized solution approach is both
very much simpler and much more powerful – you can essentially treat all integralsR b

a
f .x/dx in 10 lines of computer code (!). Integration also demonstrates the

difference between exact mathematics by pen and paper and numerical mathematics
on a computer. The latter approaches the result of the former without any worries
about rounding errors due to finite precision arithmetics in computers (in contrast to
differentiation, where such errors prevent us from getting a result as accurate as we
desire on the computer). Finally, integration is thought of as a somewhat difficult
mathematical concept to grasp, and programming integration should greatly help
with the understanding of what integration is and how it works. Not only shall we
understand how to use the computer to integrate, but we shall also learn a series
of good habits to ensure your computer work is of the highest scientific quality.
In particular, we have a strong focus on how to write Python code that is free of
programming mistakes.

Calculating an integral is traditionally done by

bZ

a

f .x/ dx D F.b/ � F.a/; (3.1)

where

f .x/ D dF

dx
:

55© The Author(s) 2016
S. Linge, H.P. Langtangen, Programming for Computations – Python,
Texts in Computational Science and Engineering 15, DOI 10.1007/978-3-319-32428-9_3

56 3 Computing Integrals

The major problem with this procedure is that we need to find the anti-derivative
F.x/ corresponding to a given f .x/. For some relatively simple integrands f .x/,
finding F.x/ is a doable task, but it can very quickly become challenging, even
impossible!

The method (3.1) provides an exact or analytical value of the integral. If we
relax the requirement of the integral being exact, and instead look for approximate
values, produced by numerical methods, integration becomes a very straightforward
task for any given f .x/ (!).

The downside of a numerical method is that it can only find an approximate an-
swer. Leaving the exact for the approximate is a mental barrier in the beginning, but
remember that most real applications of integration will involve an f .x/ function
that contains physical parameters, which are measured with some error. That is,
f .x/ is very seldom exact, and then it does not make sense to compute the integral
with a smaller error than the one already present in f .x/.

Another advantage of numerical methods is that we can easily integrate a func-
tion f .x/ that is only known as samples, i.e., discrete values at some x points,
and not as a continuous function of x expressed through a formula. This is highly
relevant when f is measured in a physical experiment.

3.1 Basic Ideas of Numerical Integration

We consider the integral
bZ

a

f .x/dx : (3.2)

Most numerical methods for computing this integral split up the original integral
into a sum of several integrals, each covering a smaller part of the original inte-
gration interval Œa; b�. This re-writing of the integral is based on a selection of
integration points xi , i D 0; 1; : : : ; n that are distributed on the interval Œa; b�.
Integration points may, or may not, be evenly distributed. An even distribution sim-
plifies expressions and is often sufficient, so we will mostly restrict ourselves to that
choice. The integration points are then computed as

xi D a C ih; i D 0; 1; : : : ; n; (3.3)

where

h D b � a

n
: (3.4)

Given the integration points, the original integral is re-written as a sum of inte-
grals, each integral being computed over the sub-interval between two consecutive
integration points. The integral in (3.2) is thus expressed as

bZ

a

f .x/dx D
x1Z

x0

f .x/dx C
x2Z

x1

f .x/dx C : : : C
xnZ

xn�1

f .x/dx : (3.5)

Note that x0 D a and xn D b.

3.2 The Composite Trapezoidal Rule 57

Proceeding from (3.5), the different integration methods will differ in the way
they approximate each integral on the right hand side. The fundamental idea is that
each term is an integral over a small interval Œxi ; xiC1�, and over this small interval,
it makes sense to approximate f by a simple shape, say a constant, a straight line,
or a parabola, which we can easily integrate by hand. The details will become clear
in the coming examples.

Computational example To understand and compare the numerical integration
methods, it is advantageous to use a specific integral for computations and graphical
illustrations. In particular, we want to use an integral that we can calculate by hand
such that the accuracy of the approximation methods can easily be assessed. Our
specific integral is taken from basic physics. Assume that you speed up your car
from rest and wonder how far you go in T seconds. The distance is given by the
integral

R T

0 v.t/dt , where v.t/ is the velocity as a function of time. A rapidly
increasing velocity function might be

v .t/ D 3t2et3

: (3.6)

The distance after one second is

1Z

0

v.t/dt; (3.7)

which is the integral we aim to compute by numerical methods. Fortunately, the
chosen expression of the velocity has a form that makes it easy to calculate the
anti-derivative as

V.t/ D et3 � 1 : (3.8)

We can therefore compute the exact value of the integral as V.1/ � V.0/ � 1:718

(rounded to 3 decimals for convenience).

3.2 The Composite Trapezoidal Rule

The integral
R b

a
f .x/dx may be interpreted as the area between the x axis and the

graph y D f .x/ of the integrand. Figure 3.1 illustrates this area for the choice
(3.7). Computing the integral

R 1

0 f .t/dt amounts to computing the area of the
hatched region.

If we replace the true graph in Fig. 3.1 by a set of straight line segments, we
may view the area rather as composed of trapezoids, the areas of which are easy to
compute. This is illustrated in Fig. 3.2, where 4 straight line segments give rise to
4 trapezoids, covering the time intervals Œ0; 0:2/, Œ0:2; 0:6/, Œ0:6; 0:8/ and Œ0:8; 1:0�.
Note that we have taken the opportunity here to demonstrate the computations with
time intervals that differ in size.

58 3 Computing Integrals

Fig. 3.1 The integral of v.t/ interpreted as the area under the graph of v

Fig. 3.2 Computing approximately the integral of a function as the sum of the areas of the trape-
zoids

3.2 The Composite Trapezoidal Rule 59

The areas of the 4 trapezoids shown in Fig. 3.2 now constitute our approximation
to the integral (3.7):

1Z

0

v.t/dt � h1

�
v.0/ C v.0:2/

2

�

C h2

�
v.0:2/ C v.0:6/

2

�

C h3

�
v.0:6/ C v.0:8/

2

�

C h4

�
v.0:8/ C v.1:0/

2

�

; (3.9)

where

h1 D .0:2 � 0:0/; (3.10)

h2 D .0:6 � 0:2/; (3.11)

h3 D .0:8 � 0:6/; (3.12)

h4 D .1:0 � 0:8/ (3.13)

With v.t/ D 3t2et3
, each term in (3.9) is readily computed and our approximate

computation gives
1Z

0

v.t/dt � 1:895 : (3.14)

Compared to the true answer of 1.718, this is off by about 10%. However, note
that we used just 4 trapezoids to approximate the area. With more trapezoids, the
approximation would have become better, since the straight line segments in the
upper trapezoid side then would follow the graph more closely. Doing another hand
calculation with more trapezoids is not too tempting for a lazy human, though,
but it is a perfect job for a computer! Let us therefore derive the expressions for
approximating the integral by an arbitrary number of trapezoids.

3.2.1 The General Formula

For a given function f .x/, we want to approximate the integral
R b

a f .x/dx by n

trapezoids (of equal width). We start out with (3.5) and approximate each integral
on the right hand side with a single trapezoid. In detail,

bZ

a

f .x/ dx D
x1Z

x0

f .x/dx C
x2Z

x1

f .x/dx C : : : C
xnZ

xn�1

f .x/dx;

� h
f .x0/ C f .x1/

2
C h

f .x1/ C f .x2/

2
C : : :

C h
f .xn�1/ C f .xn/

2
(3.15)

60 3 Computing Integrals

By simplifying the right hand side of (3.15) we get

bZ

a

f .x/ dx � h

2
Œf .x0/ C 2f .x1/ C 2f .x2/ C : : : C 2f .xn�1/ C f .xn/� (3.16)

which is more compactly written as

bZ

a

f .x/ dx � h

"
1

2
f .x0/ C

n�1X

iD1

f .xi / C 1

2
f .xn/

#

: (3.17)

Composite integration rules
The word composite is often used when a numerical integration method is ap-
plied with more than one sub-interval. Strictly speaking then, writing, e.g., “the
trapezoidal method”, should imply the use of only a single trapezoid, while “the
composite trapezoidal method” is the most correct name when several trapezoids
are used. However, this naming convention is not always followed, so saying just
“the trapezoidal method”may point to a single trapezoid as well as the composite
rule with many trapezoids.

3.2.2 Implementation

Specific or general implementation? Suppose our primary goal was to compute
the specific integral

R 1

0
v.t/dt with v.t/ D 3t2et3

. First we played around with
a simple hand calculation to see what the method was about, before we (as one
often does in mathematics) developed a general formula (3.17) for the general or
“abstract” integral

R b

a
f .x/dx. To solve our specific problem

R 1

0
v.t/dt we must

then apply the general formula (3.17) to the given data (function and integral limits)
in our problem. Although simple in principle, the practical steps are confusing for
many because the notation in the abstract problem in (3.17) differs from the notation
in our special problem. Clearly, the f , x, and h in (3.17) correspond to v, t , and
perhaps �t for the trapezoid width in our special problem.

The programmer’s dilemma
1. Should we write a special program for the special integral, using the ideas

from the general rule (3.17), but replacing f by v, x by t , and h by �t?
2. Should we implement the general method (3.17) as it stands in a general

function trapezoid(f, a, b, n) and solve the specific problem at hand
by a specialized call to this function?

Alternative 2 is always the best choice!

The first alternative in the box above sounds less abstract and therefore more
attractive to many. Nevertheless, as we hope will be evident from the examples,
the second alternative is actually the simplest and most reliable from both a math-
ematical and programming point of view. These authors will claim that the second

3.2 The Composite Trapezoidal Rule 61

alternative is the essence of the power of mathematics, while the first alternative is
the source of much confusion about mathematics!

Implementation with functions For the integral
R b

a
f .x/dx computed by the for-

mula (3.17) we want the corresponding Python function trapezoid to take any f ,
a, b, and n as input and return the approximation to the integral.

We write a Python function trapezoidal in a file trapezoidal.py as close
as possible to the formula (3.17), making sure variable names correspond to the
mathematical notation:

def trapezoidal(f, a, b, n):

h = float(b-a)/n

result = 0.5*f(a) + 0.5*f(b)

for i in range(1, n):

result += f(a + i*h)

result *= h

return result

Solving our specific problem in a session Just having the trapezoidal func-
tion as the only content of a file trapezoidal.py automatically makes that file
a module that we can import and test in an interactive session:

>>> from trapezoidal import trapezoidal

>>> from math import exp

>>> v = lambda t: 3*(t**2)*exp(t**3)

>>> n = 4

>>> numerical = trapezoidal(v, 0, 1, n)

>>> numerical

1.9227167504675762

Let us compute the exact expression and the error in the approximation:

>>> V = lambda t: exp(t**3)

>>> exact = V(1) - V(0)

>>> exact - numerical

-0.20443492200853108

Is this error convincing? We can try a larger n:

>>> numerical = trapezoidal(v, 0, 1, n=400)

>>> exact - numerical

-2.1236490512777095e-05

Fortunately, many more trapezoids give a much smaller error.

Solving our specific problem in a program Instead of computing our special
problem in an interactive session, we can do it in a program. As always, a chunk
of code doing a particular thing is best isolated as a function even if we do not see
any future reason to call the function several times and even if we have no need for
arguments to parameterize what goes on inside the function. In the present case,

https://github.com/hplgit/prog4comp/tree/master/src/py/trapezoidal.py

62 3 Computing Integrals

we just put the statements we otherwise would have put in a main program, inside
a function:

def application():

from math import exp

v = lambda t: 3*(t**2)*exp(t**3)

n = input(’n: ’)

numerical = trapezoidal(v, 0, 1, n)

Compare with exact result

V = lambda t: exp(t**3)

exact = V(1) - V(0)

error = exact - numerical

print ’n=%d: %.16f, error: %g’ % (n, numerical, error)

Now we compute our special problem by calling application() as the only state-
ment in the main program. Both the trapezoidal and application functions
reside in the file trapezoidal.py, which can be run as

Terminal

Terminal> python trapezoidal.py
n: 4
n=4: 1.9227167504675762, error: -0.204435

3.2.3 Making aModule

When we have the different pieces of our program as a collection of functions, it
is very straightforward to create a module that can be imported in other programs.
That is, having our code as a module, means that the trapezoidal function can
easily be reused by other programs to solve other problems. The requirements of
a module are simple: put everything inside functions and let function calls in the
main program be in the so-called test block:

if __name__ == ’__main__’:

application()

The if test is true if the module file, trapezoidal.py, is run as a program
and false if the module is imported in another program. Consequently, when we
do from trapezoidal import trapezoidal in some file, the test fails and
application() is not called, i.e., our special problem is not solved and will not
print anything on the screen. On the other hand, if we run trapezoidal.py in the
terminal window, the test condition is positive, application() is called, and we
get output in the window:

Terminal

Terminal> python trapezoidal.py
n: 400
n=400: 1.7183030649495579, error: -2.12365e-05

3.2 The Composite Trapezoidal Rule 63

3.2.4 Alternative Flat Special-Purpose Implementation

Let us illustrate the implementation implied by alternative 1 in the Programmer’s
dilemma box in Sect. 3.2.2. That is, we make a special-purpose code where we
adapt the general formula (3.17) to the specific problem

R 1

0
3t2et3

dt .
Basically, we use a for loop to compute the sum. Each term with f .x/ in the

formula (3.17) is replaced by 3t2et3
, x by t , and h by �t 1. A first try at writing

a plain, flat program doing the special calculation is

from math import exp

a = 0.0; b = 1.0

n = input(’n: ’)

dt = float(b - a)/n

Integral by the trapezoidal method

numerical = 0.5*3*(a**2)*exp(a**3) + 0.5*3*(b**2)*exp(b**3)

for i in range(1, n):

numerical += 3*((a + i*dt)**2)*exp((a + i*dt)**3)

numerical *= dt

exact_value = exp(1**3) - exp(0**3)

error = abs(exact_value - numerical)

rel_error = (error/exact_value)*100

print ’n=%d: %.16f, error: %g’ % (n, numerical, error)

The problem with the above code is at least three-fold:

1. We need to reformulate (3.17) for our special problem with a different notation.
2. The integrand 3t2et3

is inserted many times in the code, which quickly leads to
errors.

3. A lot of edits are necessary to use the code to compute a different integral –
these edits are likely to introduce errors.

The potential errors involved in point 2 serve to illustrate how important it is to
use Python functions as mathematical functions. Here we have chosen to use the
lambda function to define the integrand as the variable v:

from math import exp

v = lambda t: 3*(t**2)*exp(t**3) # Function to be integrated

a = 0.0; b = 1.0

n = input(’n: ’)

dt = float(b - a)/n

1 Replacing h by �t is not strictly required as many use h as interval also along the time axis.
Nevertheless, �t is an even more popular notation for a small time interval, so we adopt that
common notation.

64 3 Computing Integrals

Integral by the trapezoidal method

numerical = 0.5*v(a) + 0.5*v(b)

for i in range(1, n):

numerical += v(a + i*dt)

numerical *= dt

F = lambda t: exp(t**3)

exact_value = F(b) - F(a)

error = abs(exact_value - numerical)

rel_error = (error/exact_value)*100

print ’n=%d: %.16f, error: %g’ % (n, numerical, error)

Unfortunately, the two other problems remain and they are fundamental.
Suppose you want to compute another integral, say

R 1:1

�1
e�x2

dx. How much do
we need to change in the previous code to compute the new integral? Not so much:

� the formula for v must be replaced by a new formula
� the limits a and b
� the anti-derivative V is not easily known2 and can be omitted, and therefore we

cannot write out the error
� the notation should be changed to be aligned with the new problem, i.e., t and

dt changed to x and h

These changes are straightforward to implement, but they are scattered around in
the program, a fact that requires us to be very careful so we do not introduce new
programming errors while we modify the code. It is also very easy to forget to make
a required change.

With the previous code in trapezoidal.py, we can compute the new integralR 1:1

�1
e�x2

dx without touching the mathematical algorithm. In an interactive session
(or in a program) we can just do

>>> from trapezoidal import trapezoidal

>>> from math import exp

>>> trapezoidal(lambda x: exp(-x**2), -1, 1.1, 400)

1.5268823686123285

When you now look back at the two solutions, the flat special-purpose program
and the function-based program with the general-purpose function trapezoidal,
you hopefully realize that implementing a general mathematical algorithm in a gen-
eral function requires somewhat more abstract thinking, but the resulting code can
be used over and over again. Essentially, if you apply the flat special-purpose style,
you have to retest the implementation of the algorithm after every change of the
program.

2 You cannot integrate e�x2
by hand, but this particular integral is appearing so often in so many

contexts that the integral is a special function, called the Error function (http://en.wikipedia.org/
wiki/Error_function) and written erf.x/. In a code, you can call erf(x). The erf function is
found in the math module.

http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Error_function

3.3 The Composite Midpoint Method 65

The present integral problems result in short code. In more challenging engineer-
ing problems the code quickly grows to hundreds and thousands of lines. Without
abstractions in terms of general algorithms in general reusable functions, the com-
plexity of the program grows so fast that it will be extremely difficult to make sure
that the program works properly.

Another advantage of packaging mathematical algorithms in functions is that
a function can be reused by anyone to solve a problem by just calling the function
with a proper set of arguments. Understanding the function’s inner details is not
necessary to compute a new integral. Similarly, you can find libraries of functions
on the Internet and use these functions to solve your problems without specific
knowledge of every mathematical detail in the functions.

This desirable feature has its downside, of course: the user of a function may
misuse it, and the function may contain programming errors and lead to wrong an-
swers. Testing the output of downloaded functions is therefore extremely important
before relying on the results.

3.3 The Composite Midpoint Method

The idea Rather than approximating the area under a curve by trapezoids, we can
use plain rectangles (Fig. 3.3). It may sound less accurate to use horizontal lines
and not skew lines following the function to be integrated, but an integration method
based on rectangles (the midpoint method) is in fact slightly more accurate than the
one based on trapezoids!

Fig. 3.3 Computing approximately the integral of a function as the sum of the areas of the rect-
angles

66 3 Computing Integrals

In the midpoint method, we construct a rectangle for every sub-interval where
the height equals f at the midpoint of the sub-interval. Let us do this for four
rectangles, using the same sub-intervals as we had for hand calculations with the
trapezoidal method: Œ0; 0:2/, Œ0:2; 0:6/, Œ0:6; 0:8/, and Œ0:8; 1:0�. We get

1Z

0

f .t/dt � h1f

�
0 C 0:2

2

�

C h2f

�
0:2 C 0:6

2

�

C h3f

�
0:6 C 0:8

2

�

C h4f

�
0:8 C 1:0

2

�

;

(3.18)

where h1, h2, h3, and h4 are the widths of the sub-intervals, used previously with
the trapezoidal method and defined in (3.10)–(3.13).

With f .t/ D 3t2et3
, the approximation becomes 1.632. Compared with the true

answer (1.718), this is about 5% too small, but it is better than what we got with
the trapezoidal method (10%) with the same sub-intervals. More rectangles give
a better approximation.

3.3.1 The General Formula

Let us derive a formula for the midpoint method based on n rectangles of equal
width:

bZ

a

f .x/ dx D
x1Z

x0

f .x/dx C
x2Z

x1

f .x/dx C : : : C
xnZ

xn�1

f .x/dx;

� hf

�
x0 C x1

2

�

C hf

�
x1 C x2

2

�

C : : : C hf

�
xn�1 C xn

2

�

;

(3.19)

� h

�

f

�
x0 C x1

2

�

C f

�
x1 C x2

2

�

C : : : C f

�
xn�1 C xn

2

��

:

(3.20)

This sum may be written more compactly as

bZ

a

f .x/dx � h

n�1X

iD0

f .xi /; (3.21)

where xi D �
a C h

2

� C ih.

3.3 The Composite Midpoint Method 67

3.3.2 Implementation

We follow the advice and lessons learned from the implementation of the trape-
zoidal method and make a function midpoint(f, a, b, n) (in a file midpoint.
py) for implementing the general formula (3.21):

def midpoint(f, a, b, n):

h = float(b-a)/n

result = 0

for i in range(n):

result += f((a + h/2.0) + i*h)

result *= h

return result

We can test the function as we explained for the similar trapezoidalmethod.
The error in our particular problem

R 1

0
3t2et3

dt with four intervals is now about 0.1
in contrast to 0.2 for the trapezoidal rule. This is in fact not accidental: one can
show mathematically that the error of the midpoint method is a bit smaller than for
the trapezoidal method. The differences are seldom of any practical importance,
and on a laptop we can easily use n D 106 and get the answer with an error of about
10�12 in a couple of seconds.

3.3.3 Comparing the Trapezoidal and theMidpointMethods

The next example shows how easy we can combine the trapezoidal and
midpoint functions to make a comparison of the two methods in the file compare_
integration_methods.py:

from trapezoidal import trapezoidal

from midpoint import midpoint

from math import exp

g = lambda y: exp(-y**2)

a = 0

b = 2

print ’ n midpoint trapezoidal’

for i in range(1, 21):

n = 2**i

m = midpoint(g, a, b, n)

t = trapezoidal(g, a, b, n)

print ’%7d %.16f %.16f’ % (n, m, t)

Note the efforts put into nice formatting – the output becomes

n midpoint trapezoidal

2 0.8842000076332692 0.8770372606158094

4 0.8827889485397279 0.8806186341245393

8 0.8822686991994210 0.8817037913321336

16 0.8821288703366458 0.8819862452657772

https://github.com/hplgit/prog4comp/tree/master/src/py/midpoint.py
https://github.com/hplgit/prog4comp/tree/master/src/py/compare_integration_methods.py

68 3 Computing Integrals

32 0.8820933014203766 0.8820575578012112

64 0.8820843709743319 0.8820754296107942

128 0.8820821359746071 0.8820799002925637

256 0.8820815770754198 0.8820810181335849

512 0.8820814373412922 0.8820812976045025

1024 0.8820814024071774 0.8820813674728968

2048 0.8820813936736116 0.8820813849400392

4096 0.8820813914902204 0.8820813893068272

8192 0.8820813909443684 0.8820813903985197

16384 0.8820813908079066 0.8820813906714446

32768 0.8820813907737911 0.8820813907396778

65536 0.8820813907652575 0.8820813907567422

131072 0.8820813907631487 0.8820813907610036

262144 0.8820813907625702 0.8820813907620528

524288 0.8820813907624605 0.8820813907623183

1048576 0.8820813907624268 0.8820813907623890

A visual inspection of the numbers shows how fast the digits stabilize in both meth-
ods. It appears that 13 digits have stabilized in the last two rows.

Remark
The trapezoidal and midpoint methods are just two examples in a jungle of nu-
merical integration rules. Other famous methods are Simpson’s rule and Gauss
quadrature. They all work in the same way:

bZ

a

f .x/dx �
n�1X

iD0

wi f .xi / :

That is, the integral is approximated by a sum of function evaluations, where
each evaluation f .xi / is given a weight wi . The different methods differ in the
way they construct the evaluation points xi and the weights wi . We have used
equally spaced points xi , but higher accuracy can be obtained by optimizing the
location of xi .

3.4 Testing

3.4.1 Problems with Brief Testing Procedures

Testing of the programs for numerical integration has so far employed two strate-
gies. If we have an exact answer, we compute the error and see that increasing
n decreases the error. When the exact answer is not available, we can (as in the
comparison example in the previous section) look at the integral values and see that
they stabilize as n grows. Unfortunately, these are very weak test procedures and
not at all satisfactory for claiming that the software we have produced is correctly
implemented.

To see this, we can introduce a bug in the application function that calls
trapezoidal: instead of integrating 3t2et3

, we write “accidentally” 3t3et3
, but

keep the same anti-derivative V.t/et3
for computing the error. With the bug and

3.4 Testing 69

n D 4, the error is 0.1, but without the bug the error is 0.2! It is of course com-
pletely impossible to tell if 0.1 is the right value of the error. Fortunately, increasing
n shows that the error stays about 0.3 in the program with the bug, so the test pro-
cedure with increasing n and checking that the error decreases points to a problem
in the code.

Let us look at another bug, this time in the mathematical algorithm: instead
of computing 1

2
.f .a/ C f .b// as we should, we forget the second 1

2
and write

0.5*f(a) + f(b). The error for n D 4; 40; 400 when computing
R 1:9

1:1
3t2et3

dt

goes like 1400, 107, 10, respectively, which looks promising. The problem is that
the right errors should be 369, 4.08, and 0.04. That is, the error should be reduced
faster in the correct than in the buggy code. The problem, however, is that it is
reduced in both codes, and we may stop further testing and believe everything is
correctly implemented.

Unit testing
A good habit is to test small pieces of a larger code individually, one at a time.
This is known as unit testing. One identifies a (small) unit of the code, and then
one makes a separate test for this unit. The unit test should be stand-alone in
the sense that it can be run without the outcome of other tests. Typically, one
algorithm in scientific programs is considered as a unit. The challenge with unit
tests in numerical computing is to deal with numerical approximation errors.
A fortunate side effect of unit testing is that the programmer is forced to use
functions to modularize the code into smaller, logical pieces.

3.4.2 Proper Test Procedures

There are three serious ways to test the implementation of numerical methods via
unit tests:

1. Comparing with hand-computed results in a problem with few arithmetic oper-
ations, i.e., small n.

2. Solving a problem without numerical errors. We know that the trapezoidal rule
must be exact for linear functions. The error produced by the programmust then
be zero (to machine precision).

3. Demonstrating correct convergence rates. A strong test when we can compute
exact errors, is to see how fast the error goes to zero as n grows. In the trape-
zoidal and midpoint rules it is known that the error depends on n as n�2 as
n ! 1.

Hand-computed results Let us use two trapezoids and compute the integralR 1

0
v.t/, v.t/ D 3t2et3

:

1

2
h.v.0/ C v.0:5// C 1

2
h.v.0:5/ C v.1// D 2:463642041244344;

when h D 0:5 is the width of the two trapezoids. Running the program gives exactly
the same result.

70 3 Computing Integrals

Solving a problem without numerical errors The best unit tests for numerical
algorithms involve mathematical problems where we know the numerical result be-
forehand. Usually, numerical results contain unknown approximation errors, so
knowing the numerical result implies that we have a problem where the approx-
imation errors vanish. This feature may be present in very simple mathematical
problems. For example, the trapezoidal method is exact for integration of linear
functions f .x/ D ax C b. We can therefore pick some linear function and con-
struct a test function that checks equality between the exact analytical expression
for the integral and the number computed by the implementation of the trapezoidal
method.

A specific test case can be
R 4:4

1:2
.6x � 4/dx. This integral involves an “arbitrary”

interval Œ1:2; 4:4� and an “arbitrary” linear function f .x/ D 6x � 4. By “arbitrary”
we mean expressions where we avoid the special numbers 0 and 1 since these have
special properties in arithmetic operations (e.g., forgetting to multiply is equivalent
to multiplying by 1, and forgetting to add is equivalent to adding 0).

Demonstrating correct convergence rates Normally, unit tests must be based on
problems where the numerical approximation errors in our implementation remain
unknown. However, we often know or may assume a certain asymptotic behavior
of the error. We can do some experimental runs with the test problem

R 1

0
3t2et3

dt

where n is doubled in each run: n D 4; 8; 16. The corresponding errors are then
12%, 3% and 0.77%, respectively. These numbers indicate that the error is roughly
reduced by a factor of 4 when doubling n. Thus, the error converges to zero as n�2

and we say that the convergence rate is 2. In fact, this result can also be shown
mathematically for the trapezoidal and midpoint method. Numerical integration
methods usually have an error that converge to zero as n�p for some p that depends
on the method. With such a result, it does not matter if we do not know what
the actual approximation error is: we know at what rate it is reduced, so running
the implementation for two or more different n values will put us in a position to
measure the expected rate and see if it is achieved.

The idea of a corresponding unit test is then to run the algorithm for some n

values, compute the error (the absolute value of the difference between the exact
analytical result and the one produced by the numerical method), and check that the
error has approximately correct asymptotic behavior, i.e., that the error is propor-
tional to n�2 in case of the trapezoidal and midpoint method.

Let us develop a more precise method for such unit tests based on convergence
rates. We assume that the error E depends on n according to

E D C nr;

where C is an unknown constant and r is the convergence rate. Consider a set
of experiments with various n: n0; n1; n2; : : : ; nq . We compute the corresponding
errors E0; : : : ; Eq . For two consecutive experiments, number i and i � 1, we have
the error model

Ei D C nr
i ; (3.22)

Ei�1 D C nr
i�1 : (3.23)

3.4 Testing 71

These are two equations for two unknowns C and r . We can easily eliminate C by
dividing the equations by each other. Then solving for r gives

ri�1 D ln.Ei =Ei�1/

ln.ni =ni�1/
: (3.24)

We have introduced a subscript i � 1 in r since the estimated value for r varies
with i . Hopefully, ri�1 approaches the correct convergence rate as the number of
intervals increases and i ! q.

3.4.3 Finite Precision of Floating-Point Numbers

The test procedures above lead to comparison of numbers for checking that calcu-
lations were correct. Such comparison is more complicated than what a newcomer
might think. Suppose we have a calculation a + b and want to check that the result
is what we expect. We start with 1 + 2:

>>> a = 1; b = 2; expected = 3

>>> a + b == expected

True

Then we proceed with 0.1 + 0.2:

>>> a = 0.1; b = 0.2; expected = 0.3

>>> a + b == expected

False

So why is 0:1 C 0:2 ¤ 0:3? The reason is that real numbers cannot in general be
exactly represented on a computer. They must instead be approximated by a float-
ing-point number3 that can only store a finite amount of information, usually about
17 digits of a real number. Let us print 0.1, 0.2, 0.1 + 0.2, and 0.3 with 17 decimals:

>>> print ’%.17f\n%.17f\n%.17f\n%.17f’ % (0.1, 0.2, 0.1 + 0.2, 0.3)

0.10000000000000001

0.20000000000000001

0.30000000000000004

0.29999999999999999

We see that all of the numbers have an inaccurate digit in the 17th decimal place.
Because 0.1 C 0.2 evaluates to 0.30000000000000004 and 0.3 is represented as
0.29999999999999999, these two numbers are not equal. In general, real numbers
in Python have (at most) 16 correct decimals.

When we compute with real numbers, these numbers are inaccurately repre-
sented on the computer, and arithmetic operations with inaccurate numbers lead
to small rounding errors in the final results. Depending on the type of numerical
algorithm, the rounding errors may or may not accumulate.

3 https://en.wikipedia.org/wiki/Floating_point

https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/Floating_point

72 3 Computing Integrals

If we cannot make tests like 0.1 + 0.2 == 0.3, what should we then do? The
answer is that we must accept some small inaccuracy and make a test with a toler-
ance. Here is the recipe:

>>> a = 0.1; b = 0.2; expected = 0.3

>>> computed = a + b

>>> diff = abs(expected - computed)

>>> tol = 1E-15

>>> diff < tol

True

Here we have set the tolerance for comparison to 10�15, but calculating 0.3 -
(0.1 + 0.2) shows that it equals -5.55e-17, so a lower tolerance could be used
in this particular example. However, in other calculations we have little idea about
how accurate the answer is (there could be accumulation of rounding errors in more
complicated algorithms), so 10�15 or 10�14 are robust values. As we demonstrate
below, these tolerances depend on the magnitude of the numbers in the calculations.

Doing an experiment with 10k C 0:3 � .10k C 0:1 C 0:2/ for k D 1; : : : ; 10

shows that the answer (which should be zero) is around 1016�k . This means that
the tolerance must be larger if we compute with larger numbers. Setting a proper
tolerance therefore requires some experiments to see what level of accuracy one
can expect. A way out of this difficulty is to work with relative instead of absolute
differences. In a relative difference we divide by one of the operands, e.g.,

a D 10k C 0:3; b D .10k C 0:1 C 0:2/; c D a � b

a
:

Computing this c for various k shows a value around 10�16. A safer procedure is
thus to use relative differences.

3.4.4 Constructing Unit Tests andWriting Test Functions

Python has several frameworks for automatically running and checking a potentially
very large number of tests for parts of your software by one command. This is an
extremely useful feature during program development: whenever you have done
some changes to one or more files, launch the test command and make sure nothing
is broken because of your edits.

The test frameworks nose and py.test are particularly attractive as they are
very easy to use. Tests are placed in special test functions that the frameworks can
recognize and run for you. The requirements to a test function are simple:

� the name must start with test_
� the test function cannot have any arguments
� the tests inside test functions must be boolean expressions
� a boolean expression b must be tested with assert b, msg, where msg is an

optional object (string or number) to be written out when b is false

3.4 Testing 73

Suppose we have written a function

def add(a, b):

return a + b

A corresponding test function can then be

def test_add()

expected = 1 + 1

computed = add(1, 1)

assert computed == expected, ’1+1=%g’ % computed

Test functions can be in any program file or in separate files, typically with names
starting with test. You can also collect tests in subdirectories: running py.test
-s -v will actually run all tests in all test*.py files in all subdirectories, while
nosetests -s -v restricts the attention to subdirectories whose names start with
test or end with _test or _tests.

As long as we add integers, the equality test in the test_add function is appro-
priate, but if we try to call add(0.1, 0.2) instead, we will face the rounding error
problems explained in Sect. 3.4.3, and we must use a test with tolerance instead:

def test_add()

expected = 0.3

computed = add(0.1, 0.2)

tol = 1E-14

diff = abs(expected - computed)

assert diff < tol, ’diff=%g’ % diff

Below we shall write test functions for each of the three test procedures we
suggested: comparison with hand calculations, checking problems that can be ex-
actly solved, and checking convergence rates. We stick to testing the trapezoidal
integration code and collect all test functions in one common file by the name
test_trapezoidal.py.

Hand-computed numerical results Our previous hand calculations for two trape-
zoids can be checked against the trapezoidal function inside a test function (in
a file test_trapezoidal.py):

from trapezoidal import trapezoidal

def test_trapezoidal_one_exact_result():

"""Compare one hand-computed result."""

from math import exp

v = lambda t: 3*(t**2)*exp(t**3)

n = 2

computed = trapezoidal(v, 0, 1, n)

expected = 2.463642041244344

error = abs(expected - computed)

tol = 1E-14

success = error < tol

msg = ’error=%g > tol=%g’ % (errror, tol)

assert success, msg

https://github.com/hplgit/prog4comp/tree/master/src/py/test_trapezoidal.py

74 3 Computing Integrals

Note the importance of checking err against exact with a tolerance: rounding
errors from the arithmetics inside trapezoidal will not make the result exactly
like the hand-computed one. The size of the tolerance is here set to 10�14, which is
a kind of all-round value for computations with numbers not deviating much from
unity.

Solving a problem without numerical errors We know that the trapezoidal rule
is exact for linear integrands. Choosing the integral

R 4:4

1:2
.6x � 4/dx as test case, the

corresponding test function for this unit test may look like

def test_trapezoidal_linear():

"""Check that linear functions are integrated exactly."""

f = lambda x: 6*x - 4

F = lambda x: 3*x**2 - 4*x # Anti-derivative

a = 1.2; b = 4.4

expected = F(b) - F(a)

tol = 1E-14

for n in 2, 20, 21:

computed = trapezoidal(f, a, b, n)

error = abs(expected - computed)

success = error < tol

msg = ’n=%d, err=%g’ % (n, error)

assert success, msg

Demonstrating correct convergence rates In the present example with integra-
tion, it is known that the approximation errors in the trapezoidal rule are propor-
tional to n�2, n being the number of subintervals used in the composite rule.

Computing convergence rates requires somewhat more tedious programming
than the previous tests, but can be applied to more general integrands. The al-
gorithm typically goes like

� for i D 0; 1; 2; : : : ; q

– ni D 2iC1

– Compute integral with ni intervals
– Compute the error Ei

– Estimate ri from (3.24) if i > 0

The corresponding code may look like

def convergence_rates(f, F, a, b, num_experiments=14):

from math import log

from numpy import zeros

expected = F(b) - F(a)

n = zeros(num_experiments, dtype=int)

E = zeros(num_experiments)

r = zeros(num_experiments-1)

for i in range(num_experiments):

n[i] = 2**(i+1)

computed = trapezoidal(f, a, b, n[i])

E[i] = abs(expected - computed)

if i > 0:

r_im1 = log(E[i]/E[i-1])/log(float(n[i])/n[i-1])

r[i-1] = float(’%.2f’ % r_im1) # Truncate to two decimals

return r

3.4 Testing 75

Making a test function is a matter of choosing f, F, a, and b, and then checking
the value of ri for the largest i :

def test_trapezoidal_conv_rate():

"""Check empirical convergence rates against the expected -2."""

from math import exp

v = lambda t: 3*(t**2)*exp(t**3)

V = lambda t: exp(t**3)

a = 1.1; b = 1.9

r = convergence_rates(v, V, a, b, 14)

print r

tol = 0.01

msg = str(r[-4:]) # show last 4 estimated rates

assert (abs(r[-1]) - 2) < tol, msg

Running the test shows that all ri , except the first one, equal the target limit 2
within two decimals. This observation suggest a tolerance of 10�2.

Remark about version control of files
Having a suite of test functions for automatically checking that your soft-
ware works is considered as a fundamental requirement for reliable computing.
Equally important is a system that can keep track of different versions of the files
and the tests, known as a version control system. Today’s most popular version
control system is Git4, which the authors strongly recommend the reader to use
for programming and writing reports. The combination of Git and cloud storage
such as GitHub is a very common way of organizing scientific or engineering
work. We have a quick intro5 to Git and GitHub that gets you up and running
within minutes.

The typical workflow with Git goes as follows.

1. Before you start working with files, make sure you have the latest version of
them by running git pull.

2. Edit files, remove or create files (new files must be registered by git add).
3. When a natural piece of work is done, commit your changes by the git

commit command.
4. Implement your changes also in the cloud by doing git push.

A nice feature of Git is that people can edit the same file at the same time and
very often Git will be able to automatically merge the changes (!). Therefore,
version control is crucial when you work with others or when you do your work
on different types of computers. Another key feature is that anyone can at any
time view the history of a file, see who did what when, and roll back the entire
file collection to a previous commit. This feature is, of course, fundamental for
reliable work.

4 https://en.wikipedia.org/wiki/Git_(software)
5 http://hplgit.github.io/teamods/bitgit/Langtangen_bitgit-bootstrap.html

https://en.wikipedia.org/wiki/Git_(software)
http://hplgit.github.io/teamods/bitgit/Langtangen_bitgit-bootstrap.html
https://en.wikipedia.org/wiki/Git_(software)
http://hplgit.github.io/teamods/bitgit/Langtangen_bitgit-bootstrap.html

76 3 Computing Integrals

3.5 Vectorization

The functions midpoint and trapezoid usually run fast in Python and compute
an integral to a satisfactory precision within a fraction of a second. However, long
loops in Python may run slowly in more complicated implementations. To increase
the speed, the loops can be replaced by vectorized code. The integration functions
constitute a simple and good example to illustrate how to vectorize loops.

We have already seen simple examples on vectorization in Sect. 1.4 when we
could evaluate a mathematical function f .x/ for a large number of x values stored
in an array. Basically, we can write

def f(x):

return exp(-x)*sin(x) + 5*x

from numpy import exp, sin, linspace

x = linspace(0, 4, 101) # coordinates from 100 intervals on [0, 4]

y = f(x) # all points evaluated at once

The result y is the array that would be computed if we ran a for loop over the
individual x values and called f for each value. Vectorization essentially eliminates
this loop in Python (i.e., the looping over x and application of f to each x value are
instead performed in a library with fast, compiled code).

Vectorizing the midpoint rule The aim of vectorizing the midpoint and
trapezoidal functions is also to remove the explicit loop in Python. We start
with vectorizing the midpoint function since trapezoid is not equally straight-
forward. The fundamental ideas of the vectorized algorithm are to

1. compute all the evaluation points in one array x
2. call f(x) to produce an array of corresponding function values
3. use the sum function to sum the f(x) values

The evaluation points in the midpoint method are xi D aC.i C 1
2
/h, i D 0; : : : ; n�

1. That is, n uniformly distributed coordinates between a C h=2 and b � h=2. Such
coordinates can be calculated by x = linspace(a+h/2, b-h/2, n). Given that
the Python implementation f of the mathematical function f works with an array
argument, which is very often the case in Python, f(x)will produce all the function
values in an array. The array elements are then summed up by sum: sum(f(x)).
This sum is to be multiplied by the rectangle width h to produce the integral value.
The complete function is listed below.

from numpy import linspace, sum

def midpoint(f, a, b, n):

h = float(b-a)/n

x = linspace(a + h/2, b - h/2, n)

return h*sum(f(x))

The code is found in the file integration_methods_vec.py.

https://github.com/hplgit/prog4comp/tree/master/src/py/integration_methods_vec.py

3.6 Measuring Computational Speed 77

Let us test the code interactively in a Python shell to compute
R 1

0
3t2dt . The file

with the code above has the name integration_methods_vec.py and is a valid
module from which we can import the vectorized function:

>>> from integration_methods_vec import midpoint

>>> from numpy import exp

>>> v = lambda t: 3*t**2*exp(t**3)

>>> midpoint(v, 0, 1, 10)

1.7014827690091872

Note the necessity to use exp from numpy: our v function will be called with x as
an array, and the exp function must be capable of working with an array.

The vectorized code performs all loops very efficiently in compiled code, result-
ing in much faster execution. Moreover, many readers of the code will also say that
the algorithm looks clearer than in the loop-based implementation.

Vectorizing the trapezoidal rule We can use the same approach to vectorize the
trapezoid function. However, the trapezoidal rule performs a sum where the end
points have different weight. If we do sum(f(x)), we get the end points f(a) and
f(b) with weight unity instead of one half. A remedy is to subtract the error from
sum(f(x)): sum(f(x)) - 0.5*f(a) - 0.5*f(b). The vectorized version of
the trapezoidal method then becomes

def trapezoidal(f, a, b, n):

h = float(b-a)/n

x = linspace(a, b, n+1)

s = sum(f(x)) - 0.5*f(a) - 0.5*f(b)

return h*s

3.6 Measuring Computational Speed

Now that we have created faster, vectorized versions of functions in the previous
section, it is interesting to measure how much faster they are. The purpose of the
present section is therefore to explain how we can record the CPU time consumed
by a function so we can answer this question. There are many techniques for mea-
suring the CPU time in Python, and here we shall just explain the simplest and most
convenient one: the %timeit command in IPython. The following interactive ses-
sion should illustrate a competition where the vectorized versions of the functions
are supposed to win:

In [1]: from integration_methods_vec import midpoint as midpoint_vec

In [3]: from midpoint import midpoint

In [4]: from numpy import exp

In [5]: v = lambda t: 3*t**2*exp(t**3)

78 3 Computing Integrals

In [6]: %timeit midpoint_vec(v, 0, 1, 1000000)

1 loops, best of 3: 379 ms per loop

In [7]: %timeit midpoint(v, 0, 1, 1000000)

1 loops, best of 3: 8.17 s per loop

In [8]: 8.17/(379*0.001) # efficiency factor

Out[8]: 21.556728232189972

We see that the vectorized version is about 20 times faster: 379ms versus 8.17 s.
The results for the trapezoidal method are very similar, and the factor of about 20 is
independent of the number of intervals.

3.7 Double and Triple Integrals

3.7.1 TheMidpoint Rule for a Double Integral

Given a double integral over a rectangular domain Œa; b� � Œc; d �,

bZ

a

dZ

c

f .x; y/dydx;

how can we approximate this integral by numerical methods?

Derivation via one-dimensional integrals Since we know how to deal with in-
tegrals in one variable, a fruitful approach is to view the double integral as two
integrals, each in one variable, which can be approximated numerically by previous
one-dimensional formulas. To this end, we introduce a help function g.x/ and write

bZ

a

dZ

c

f .x; y/dydx D
bZ

a

g.x/dx; g.x/ D
dZ

c

f .x; y/dy :

Each of the integrals

bZ

a

g.x/dx; g.x/ D
dZ

c

f .x; y/dy

can be discretized by any numerical integration rule for an integral in one variable.
Let us use the midpoint method (3.21) and start with g.x/ D R d

c
f .x; y/dy. We

introduce ny intervals on Œc; d � with length hy . The midpoint rule for this integral
then becomes

g.x/ D
dZ

c

f .x; y/dy � hy

ny �1X

j D0

f .x; yj /; yj D c C 1

2
hy C jhy :

3.7 Double and Triple Integrals 79

The expression looks somewhat different from (3.21), but that is because of the
notation: since we integrate in the y direction and will have to work with both x

and y as coordinates, we must use ny for n, hy for h, and the counter i is more
naturally called j when integrating in y. Integrals in the x direction will use hx and
nx for h and n, and i as counter.

The double integral is
R b

a
g.x/dx, which can be approximated by the midpoint

method:
bZ

a

g.x/dx � hx

nx�1X

iD0

g.xi /; xi D a C 1

2
hx C ihx :

Putting the formulas together, we arrive at the composite midpoint method for a dou-
ble integral:

bZ

a

dZ

c

f .x; y/dydx � hx

nx�1X

iD0

hy

ny�1X

j D0

f .xi ; yj /

D hxhy

nx�1X

iD0

ny �1X

j D0

f

�

a C hx

2
C ihx; c C hy

2
C jhy

�

:

(3.25)

Direct derivation The formula (3.25) can also be derived directly in the two-
dimensional case by applying the idea of the midpoint method. We divide the
rectangle Œa; b� � Œc; d � into nx � ny equal-sized cells. The idea of the midpoint
method is to approximate f by a constant over each cell, and evaluate the constant
at the midpoint. Cell .i; j / occupies the area

Œa C ihx; a C .i C 1/hx� � Œc C jhy; c C .j C 1/hy�;

and the midpoint is .xi ; yj / with

xi D a C ihx C 1

2
hx; yj D c C jhy C 1

2
hy :

The integral over the cell is therefore hxhyf .xi ; yj /, and the total double integral
is the sum over all cells, which is nothing but formula (3.25).

Programming a double sum The formula (3.25) involves a double sum, which
is normally implemented as a double for loop. A Python function implementing
(3.25) may look like

def midpoint_double1(f, a, b, c, d, nx, ny):

hx = (b - a)/float(nx)

hy = (d - c)/float(ny)

I = 0

for i in range(nx):

for j in range(ny):

xi = a + hx/2 + i*hx

yj = c + hy/2 + j*hy

I += hx*hy*f(xi, yj)

return I

80 3 Computing Integrals

If this function is stored in a module file midpoint_double.py, we can compute
some integral, e.g.,

R 3

2

R 2

0
.2x Cy/dxdy D 9 in an interactive shell and demonstrate

that the function computes the right number:

>>> from midpoint_double import midpoint_double1

>>> def f(x, y):

... return 2*x + y

...

>>> midpoint_double1(f, 0, 2, 2, 3, 5, 5)

9.0

Reusing code for one-dimensional integrals It is very natural to write a two-
dimensional midpoint method as we did in function midpoint_double1when we
have the formula (3.25). However, we could alternatively ask, much as we did in
the mathematics, can we reuse a well-tested implementation for one-dimensional
integrals to compute double integrals? That is, can we use function midpoint

def midpoint(f, a, b, n):

h = float(b-a)/n

result = 0

for i in range(n):

result += f((a + h/2.0) + i*h)

result *= h

return result

from Sect. 3.3.2 “twice”? The answer is yes, if we think as we did in the mathemat-
ics: compute the double integral as a midpoint rule for integrating g.x/ and define
g.xi/ in terms of a midpoint rule over f in the y coordinate. The corresponding
function has very short code:

def midpoint_double2(f, a, b, c, d, nx, ny):

def g(x):

return midpoint(lambda y: f(x, y), c, d, ny)

return midpoint(g, a, b, nx)

The important advantage of this implementation is that we reuse a well-tested func-
tion for the standard one-dimensional midpoint rule and that we apply the one-
dimensional rule exactly as in the mathematics.

Verification via test functions How can we test that our functions for the dou-
ble integral work? The best unit test is to find a problem where the numerical
approximation error vanishes because then we know exactly what the numerical
answer should be. The midpoint rule is exact for linear functions, regardless of how
many subinterval we use. Also, any linear two-dimensional function f .x; y/ D
px C qy C r will be integrated exactly by the two-dimensional midpoint rule. We
may pick f .x; y/ D 2x Cy and create a proper test function that can automatically
verify our two alternative implementations of the two-dimensional midpoint rule.
To compute the integral of f .x; y/ we take advantage of SymPy to eliminate the
possibility of errors in hand calculations. The test function becomes

https://github.com/hplgit/prog4comp/tree/master/src/py/midpoint_double.py

3.7 Double and Triple Integrals 81

def test_midpoint_double():

"""Test that a linear function is integrated exactly."""

def f(x, y):

return 2*x + y

a = 0; b = 2; c = 2; d = 3

import sympy

x, y = sympy.symbols(’x y’)

I_expected = sympy.integrate(f(x, y), (x, a, b), (y, c, d))

Test three cases: nx < ny, nx = ny, nx > ny

for nx, ny in (3, 5), (4, 4), (5, 3):

I_computed1 = midpoint_double1(f, a, b, c, d, nx, ny)

I_computed2 = midpoint_double2(f, a, b, c, d, nx, ny)

tol = 1E-14

#print I_expected, I_computed1, I_computed2

assert abs(I_computed1 - I_expected) < tol

assert abs(I_computed2 - I_expected) < tol

Let test functions speak up?
If we call the above test_midpoint_double function and nothing happens, our
implementations are correct. However, it is somewhat annoying to have a func-
tion that is completely silent when it works – are we sure all things are properly
computed? During development it is therefore highly recommended to insert
a print statement such that we can monitor the calculations and be convinced
that the test function does what we want. Since a test function should not have
any print statement, we simply comment it out as we have done in the function
listed above.

The trapezoidal method can be used as alternative for the midpoint method. The
derivation of a formula for the double integral and the implementations follow ex-
actly the same ideas as we explained with the midpoint method, but there are more
terms to write in the formulas. Exercise 3.13 asks you to carry out the details.
That exercise is a very good test on your understanding of the mathematical and
programming ideas in the present section.

3.7.2 TheMidpoint Rule for a Triple Integral

Theory Once a method that works for a one-dimensional problem is generalized
to two dimensions, it is usually quite straightforward to extend the method to three
dimensions. This will now be demonstrated for integrals. We have the triple integral

bZ

a

dZ

c

fZ

e

g.x; y; z/dzdydx

82 3 Computing Integrals

and want to approximate the integral by a midpoint rule. Following the ideas for
the double integral, we split this integral into one-dimensional integrals:

p.x; y/ D
fZ

e

g.x; y; z/dz

q.x/ D
dZ

c

p.x; y/dy

bZ

a

dZ

c

fZ

e

g.x; y; z/dzdydx D
bZ

a

q.x/dx

For each of these one-dimensional integrals we apply the midpoint rule:

p.x; y/ D
fZ

e

g.x; y; z/dz �
nz�1X

kD0

g.x; y; zk/;

q.x/ D
dZ

c

p.x; y/dy �
ny�1X

j D0

p.x; yj /;

bZ

a

dZ

c

fZ

e

g.x; y; z/dzdydx D
bZ

a

q.x/dx �
nx�1X

iD0

q.xi /;

where

zk D e C 1

2
hz C khz; yj D c C 1

2
hy C jhy xi D a C 1

2
hx C ihx :

Starting with the formula for
R b

a

R d

c

R f

e
g.x; y; z/dzdydx and inserting the two

previous formulas gives

bZ

a

dZ

c

fZ

e

g.x; y; z/ dzdydx

� hxhyhz

nx�1X

iD0

ny�1X

j D0

nz�1X

kD0

g

�

a C 1

2
hx C ihx; c C 1

2
hy C jhy; e C 1

2
hz C khz

�

:

(3.26)
Note that we may apply the ideas under Direct derivation at the end of Sect. 3.7.1
to arrive at (3.26) directly: divide the domain into nx � ny � nz cells of volumes
hxhyhz ; approximate g by a constant, evaluated at the midpoint .xi ; yj ; zk/, in each
cell; and sum the cell integrals hxhyhzg.xi ; yj ; zk/.

3.7 Double and Triple Integrals 83

Implementation We follow the ideas for the implementations of the midpoint rule
for a double integral. The corresponding functions are shown below and found in
the file midpoint_triple.py.

def midpoint_triple1(g, a, b, c, d, e, f, nx, ny, nz):

hx = (b - a)/float(nx)

hy = (d - c)/float(ny)

hz = (f - e)/float(nz)

I = 0

for i in range(nx):

for j in range(ny):

for k in range(nz):

xi = a + hx/2 + i*hx

yj = c + hy/2 + j*hy

zk = e + hz/2 + k*hz

I += hx*hy*hz*g(xi, yj, zk)

return I

def midpoint(f, a, b, n):

h = float(b-a)/n

result = 0

for i in range(n):

result += f((a + h/2.0) + i*h)

result *= h

return result

def midpoint_triple2(g, a, b, c, d, e, f, nx, ny, nz):

def p(x, y):

return midpoint(lambda z: g(x, y, z), e, f, nz)

def q(x):

return midpoint(lambda y: p(x, y), c, d, ny)

return midpoint(q, a, b, nx)

def test_midpoint_triple():

"""Test that a linear function is integrated exactly."""

def g(x, y, z):

return 2*x + y - 4*z

a = 0; b = 2; c = 2; d = 3; e = -1; f = 2

import sympy

x, y, z = sympy.symbols(’x y z’)

I_expected = sympy.integrate(

g(x, y, z), (x, a, b), (y, c, d), (z, e, f))

for nx, ny, nz in (3, 5, 2), (4, 4, 4), (5, 3, 6):

I_computed1 = midpoint_triple1(

g, a, b, c, d, e, f, nx, ny, nz)

I_computed2 = midpoint_triple2(

g, a, b, c, d, e, f, nx, ny, nz)

tol = 1E-14

print I_expected, I_computed1, I_computed2

assert abs(I_computed1 - I_expected) < tol

assert abs(I_computed2 - I_expected) < tol

if __name__ == ’__main__’:

test_midpoint_triple()

https://github.com/hplgit/prog4comp/tree/master/src/py/midpoint_triple.py

84 3 Computing Integrals

3.7.3 Monte Carlo Integration for Complex-ShapedDomains

Repeated use of one-dimensional integration rules to handle double and triple inte-
grals constitute a working strategy only if the integration domain is a rectangle or
box. For any other shape of domain, completely different methods must be used.
A common approach for two- and three-dimensional domains is to divide the do-
main into many small triangles or tetrahedra and use numerical integration methods
for each triangle or tetrahedron. The overall algorithm and implementation is too
complicated to be addressed in this book. Instead, we shall employ an alternative,
very simple and general method, called Monte Carlo integration. It can be im-
plemented in half a page of code, but requires orders of magnitude more function
evaluations in double integrals compared to the midpoint rule.

However, Monte Carlo integration is much more computationally efficient than
the midpoint rule when computing higher-dimensional integrals in more than three
variables over hypercube domains. Our ideas for double and triple integrals can
easily be generalized to handle an integral in m variables. A midpoint formula then
involves m sums. With n cells in each coordinate direction, the formula requires
nm function evaluations. That is, the computational work explodes as an exponen-
tial function of the number of space dimensions. Monte Carlo integration, on the
other hand, does not suffer from this explosion of computational work and is the
preferred method for computing higher-dimensional integrals. So, it makes sense
in a chapter on numerical integration to address Monte Carlo methods, both for
handling complex domains and for handling integrals with many variables.

The Monte Carlo integration algorithm The idea of Monte Carlo integration ofR b

a
f .x/dx is to use the mean-value theorem from calculus, which states that the

integral
R b

a
f .x/dx equals the length of the integration domain, here b�a, times the

average value of f , Nf , in Œa; b�. The average value can be computed by sampling
f at a set of random points inside the domain and take the mean of the function
values. In higher dimensions, an integral is estimated as the area/volume of the
domain times the average value, and again one can evaluate the integrand at a set of
random points in the domain and compute the mean value of those evaluations.

Let us introduce some quantities to help us make the specification of the integra-
tion algorithm more precise. Suppose we have some two-dimensional integral

Z

˝

f .x; y/dxdx;

where ˝ is a two-dimensional domain defined via a help function g.x; y/:

˝ D f.x; y/ j g.x; y/ � 0g

That is, points .x; y/ for which g.x; y/ � 0 lie inside ˝, and points for which
g.x; y/ < ˝ are outside ˝. The boundary of the domain @˝ is given by the im-
plicit curve g.x; y/ D 0. Such formulations of geometries have been very common
during the last couple of decades, and one refers to g as a level-set function and the

3.7 Double and Triple Integrals 85

boundary g D 0 as the zero-level contour of the level-set function. For simple ge-
ometries one can easily construct g by hand, while in more complicated industrial
applications one must resort to mathematical models for constructing g.

Let A.˝/ be the area of a domain ˝. We can estimate the integral by this Monte
Carlo integration method:

1. embed the geometry ˝ in a rectangular area R

2. draw a large number of random points .x; y/ in R

3. count the fraction q of points that are inside ˝

4. approximate A.˝/=A.R/ by q, i.e., set A.˝/ D qA.R/

5. evaluate the mean of f , Nf , at the points inside ˝

6. estimate the integral as A.˝/ Nf

Note that A.R/ is trivial to compute since R is a rectangle, while A.˝/ is unknown.
However, if we assume that the fraction of A.R/ occupied by A.˝/ is the same as
the fraction of random points inside ˝, we get a simple estimate for A.˝/.

To get an idea of the method, consider a circular domain ˝ embedded in a rect-
angle as shown below. A collection of random points is illustrated by black dots.

Implementation APython function implementing
R

˝
f .x; y/dxdy can be written

like this:

import numpy as np

def MonteCarlo_double(f, g, x0, x1, y0, y1, n):

"""

Monte Carlo integration of f over a domain g>=0, embedded

in a rectangle [x0,x1]x[y0,y1]. n^2 is the number of

random points.

"""

86 3 Computing Integrals

Draw n**2 random points in the rectangle

x = np.random.uniform(x0, x1, n)

y = np.random.uniform(y0, y1, n)

Compute sum of f values inside the integration domain

f_mean = 0

num_inside = 0 # number of x,y points inside domain (g>=0)

for i in range(len(x)):

for j in range(len(y)):

if g(x[i], y[j]) >= 0:

num_inside += 1

f_mean += f(x[i], y[j])

f_mean = f_mean/float(num_inside)

area = num_inside/float(n**2)*(x1 - x0)*(y1 - y0)

return area*f_mean

(See the file MC_double.py.)

Verification A simple test case is to check the area of a rectangle Œ0; 2� � Œ3; 4:5�

embedded in a rectangle Œ0; 3� � Œ2; 5�. The right answer is 3, but Monte Carlo
integration is, unfortunately, never exact so it is impossible to predict the output of
the algorithm. All we know is that the estimated integral should approach 3 as the
number of random points goes to infinity. Also, for a fixed number of points, we
can run the algorithm several times and get different numbers that fluctuate around
the exact value, since different sample points are used in different calls to the Monte
Carlo integration algorithm.

The area of the rectangle can be computed by the integral
R 2

0

R 4:5

3
dydx, so in

this case we identify f .x; y/ D 1, and the g function can be specified as (e.g.) 1
if .x; y/ is inside Œ0; 2� � Œ3; 4:5� and �1 otherwise. Here is an example on how
we can utilize the MonteCarlo_double function to compute the area for different
number of samples:

>>> from MC_double import MonteCarlo_double

>>> def g(x, y):

... return (1 if (0 <= x <= 2 and 3 <= y <= 4.5) else -1)

...

>>> MonteCarlo_double(lambda x, y: 1, g, 0, 3, 2, 5, 100)

2.9484

>>> MonteCarlo_double(lambda x, y: 1, g, 0, 3, 2, 5, 1000)

2.947032

>>> MonteCarlo_double(lambda x, y: 1, g, 0, 3, 2, 5, 1000)

3.0234600000000005

>>> MonteCarlo_double(lambda x, y: 1, g, 0, 3, 2, 5, 2000)

2.9984580000000003

>>> MonteCarlo_double(lambda x, y: 1, g, 0, 3, 2, 5, 2000)

3.1903469999999996

>>> MonteCarlo_double(lambda x, y: 1, g, 0, 3, 2, 5, 5000)

2.986515

We see that the values fluctuate around 3, a fact that supports a correct implemen-
tation, but in principle, bugs could be hidden behind the inaccurate answers.

It is mathematically known that the standard deviation of the Monte Carlo es-
timate of an integral converges as n�1=2, where n is the number of samples. This

https://github.com/hplgit/prog4comp/tree/master/src/py/MC_double.py

3.7 Double and Triple Integrals 87

kind of convergence rate estimate could be used to verify the implementation, but
this topic is beyond the scope of this book.

Test function for function with random numbers To make a test function, we
need a unit test that has identical behavior each time we run the test. This seems
difficult when random numbers are involved, because these numbers are different
every time we run the algorithm, and each run hence produces a (slightly) different
result. A standard way to test algorithms involving random numbers is to fix the
seed of the random number generator. Then the sequence of numbers is the same
every time we run the algorithm. Assuming that the MonteCarlo_double function
works, we fix the seed, observe a certain result, and take this result as the correct
result. Provided the test function always uses this seed, we should get exactly this
result every time the MonteCarlo_double function is called. Our test function can
then be written as shown below.

def test_MonteCarlo_double_rectangle_area():

"""Check the area of a rectangle."""

def g(x, y):

return (1 if (0 <= x <= 2 and 3 <= y <= 4.5) else -1)

x0 = 0; x1 = 3; y0 = 2; y1 = 5 # embedded rectangle

n = 1000

np.random.seed(8) # must fix the seed!

I_expected = 3.121092 # computed with this seed

I_computed = MonteCarlo_double(

lambda x, y: 1, g, x0, x1, y0, y1, n)

assert abs(I_expected - I_computed) < 1E-14

(See the file MC_double.py.)

Integral over a circle The test above involves a trivial function f .x; y/ D 1. We
should also test a non-constant f function and a more complicated domain. Let ˝

be a circle at the origin with radius 2, and let f D p
x2 C y2. This choice makes it

possible to compute an exact result: in polar coordinates,
R

˝
f .x; y/dxdy simpli-

fies to 2�
R 2

0
r2dr D 16�=3. We must be prepared for quite crude approximations

that fluctuate around this exact result. As in the test case above, we experience bet-
ter results with larger number of points. When we have such evidence for a working
implementation, we can turn the test into a proper test function. Here is an example:

def test_MonteCarlo_double_circle_r():

"""Check the integral of r over a circle with radius 2."""

def g(x, y):

xc, yc = 0, 0 # center

R = 2 # radius

return R**2 - ((x-xc)**2 + (y-yc)**2)

Exact: integral of r*r*dr over circle with radius R becomes

2*pi*1/3*R**3

import sympy

r = sympy.symbols(’r’)

I_exact = sympy.integrate(2*sympy.pi*r*r, (r, 0, 2))

https://github.com/hplgit/prog4comp/tree/master/src/py/MC_double.py

88 3 Computing Integrals

print ’Exact integral:’, I_exact.evalf()

x0 = -2; x1 = 2; y0 = -2; y1 = 2

n = 1000

np.random.seed(6)

I_expected = 16.7970837117376384 # Computed with this seed

I_computed = MonteCarlo_double(

lambda x, y: np.sqrt(x**2 + y**2),

g, x0, x1, y0, y1, n)

print ’MC approximation %d samples): %.16f’ % (n**2, I_computed)

assert abs(I_expected - I_computed) < 1E-15

(See the file MC_double.py.)

3.8 Exercises

Exercise 3.1: Hand calculations for the trapezoidal method
Compute by hand the area composed of two trapezoids (of equal width) that ap-
proximates the integral

R 3

1
2x3dx. Make a test function that calls the trapezoidal

function in trapezoidal.py and compares the return value with the hand-
calculated value.
Filename: trapezoidal_test_func.py.

Exercise 3.2: Hand calculations for the midpoint method
Compute by hand the area composed of two rectangles (of equal width) that ap-
proximates the integral

R 3

1
2x3dx. Make a test function that calls the midpoint

function in midpoint.py and compares the return value with the hand-calculated
value.
Filename: midpoint_test_func.py.

Exercise 3.3: Compute a simple integral
Apply the trapezoidal and midpoint functions to compute the integral

R 6

2
x.x �

1/dx with 2 and 100 subintervals. Compute the error too.
Filename: integrate_parabola.py.

Exercise 3.4: Hand-calculations with sine integrals
We consider integrating the sine function:

R b

0 sin.x/dx.

a) Let b D � and use two intervals in the trapezoidal and midpoint method.
Compute the integral by hand and illustrate how the two numerical methods
approximates the integral. Compare with the exact value.

b) Do a) when b D 2� .

Filename: integrate_sine.pdf.

Exercise 3.5: Make test functions for the midpoint method
Modify the file test_trapezoidal.py such that the three tests are applied to the
function midpoint implementing the midpoint method for integration.
Filename: test_midpoint.py.

https://github.com/hplgit/prog4comp/tree/master/src/py/MC_double.py

3.8 Exercises 89

Exercise 3.6: Explore rounding errors with large numbers
The trapezoidal method integrates linear functions exactly, and this property
was used in the test function test_trapezoidal_linear in the file test_
trapezoidal.py. Change the function used in Sect. 3.4.2 to f .x/ D 6 � 108x �
4 � 106 and rerun the test. What happens? How must you change the test to make it
useful? How does the convergence rate test behave? Any need for adjustment?
Filename: test_trapezoidal2.py.

Exercise 3.7: Write test functions for
R 4

0

p
xdx

We want to test how the trapezoidal function works for the integral
R 4

0

p
xdx.

Two of the tests in test_trapezoidal.py are meaningful for this integral.
Compute by hand the result of using 2 or 3 trapezoids and modify the test_
trapezoidal_one_exact_result function accordingly. Then modify test_
trapezoidal_conv_rate to handle the square root integral.
Filename: test_trapezoidal3.py.

Remarks The convergence rate test fails. Printing out r shows that the actual con-
vergence rate for this integral is �1:5 and not �2. The reason is that the error in the
trapezoidal method6 is �.b � a/3n�2f 00.�/ for some (unknown) � 2 Œa; b�. With
f .x/ D p

x, f 00.�/ ! �1 as � ! 0, pointing to a potential problem in the size
of the error. Running a test with a > 0, say

R 4

0:1

p
xdx shows that the convergence

rate is indeed restored to �2.

Exercise 3.8: Rectangle methods
The midpoint method divides the interval of integration into equal-sized subinter-
vals and approximates the integral in each subinterval by a rectangle whose height
equals the function value at the midpoint of the subinterval. Instead, one might use
either the left or right end of the subinterval as illustrated in Fig. 3.4. This defines
a rectangle method of integration. The height of the rectangle can be based on the
left or right end or the midpoint.

Fig. 3.4 Illustration of the rectangle method with evaluating the rectangle height by either the left
or right point

6 http://en.wikipedia.org/wiki/Trapezoidal_rule#Error_analysis

http://en.wikipedia.org/wiki/Trapezoidal_rule#Error_analysis
http://en.wikipedia.org/wiki/Trapezoidal_rule#Error_analysis

90 3 Computing Integrals

a) Write a function rectangle(f, a, b, n, height=’left’) for computing
an integral

R b

a
f .x/dx by the rectangle method with height computed based on

the value of height, which is either left, right, or mid.
b) Write three test functions for the three unit test procedures described in

Sect. 3.4.2. Make sure you test for height equal to left, right, and mid. You
may call the midpoint function for checking the result when height=mid.

Hint Edit test_trapezoidal.py.
Filename: rectangle_methods.py.

Exercise 3.9: Adaptive integration
Suppose we want to use the trapezoidal or midpoint method to compute an integralR b

a
f .x/dx with an error less than a prescribed tolerance �. What is the appropriate

size of n?
To answer this question, we may enter an iterative procedure where we compare

the results produced by n and 2n intervals, and if the difference is smaller than �,
the value corresponding to 2n is returned. Otherwise, we halve n and repeat the
procedure.

Hint It may be a good idea to organize your code so that the function adaptive_
integration can be used easily in future programs you write.

a) Write a function

adaptive_integration(f, a, b, eps, method=midpoint)

that implements the idea above (eps corresponds to the tolerance �, and method
can be midpoint or trapezoidal).

b) Test the method on
R 2

0
x2dx and

R 2

0

p
xdx for � D 10�1; 10�10 and write out

the exact error.
c) Make a plot of n versus � 2 Œ10�1; 10�10� for

R 2

0

p
xdx. Use logarithmic scale

for �.

Filename: adaptive_integration.py.

Remarks The type of method explored in this exercise is called adaptive, because
it tries to adapt the value of n to meet a given error criterion. The true error can very
seldom be computed (since we do not know the exact answer to the computational
problem), so one has to find other indicators of the error, such as the one here where
the changes in the integral value, as the number of intervals is doubled, is taken to
reflect the error.

Exercise 3.10: Integrating x raised to x
Consider the integral

I D
4Z

0

xx dx :

3.8 Exercises 91

The integrand xx does not have an anti-derivative that can be expressed in terms of
standard functions (visit http://wolframalpha.com and type integral(x**x,x) to
convince yourself that our claim is right. Note that Wolfram alpha does give you
an answer, but that answer is an approximation, it is not exact. This is because
Wolfram alpha too uses numerical methods to arrive at the answer, just as you will
in this exercise). Therefore, we are forced to compute the integral by numerical
methods. Compute a result that is right to four digits.

Hint Use ideas from Exercise 3.9.
Filename: integrate_x2x.py.

Exercise 3.11: Integrate products of sine functions
In this exercise we shall integrate

Ij;k D
�Z

��

sin.jx/ sin.kx/dx;

where j and k are integers.

a) Plot sin.x/ sin.2x/ and sin.2x/ sin.3x/ for x 2� � �; �� in separate plots. Ex-
plain why you expect

R �

�� sin x sin 2x dx D 0 and
R �

�� sin 2x sin 3x dx D 0.
b) Use the trapezoidal rule to compute Ij;k for j D 1; : : : ; 10 and k D 1; : : : ; 10.

Filename: products_sines.py.

Exercise 3.12: Revisit fit of sines to a function
This is a continuation of Exercise 2.18. The task is to approximate a given function
f .t/ on Œ��; �� by a sum of sines,

SN .t/ D
NX

nD1

bn sin.nt/ : (3.27)

We are now interested in computing the unknown coefficients bn such that SN .t/

is in some sense the best approximation to f .t/. One common way of doing this
is to first set up a general expression for the approximation error, measured by
“summing up” the squared deviation of SN from f :

E D
�Z

��

.SN .t/ � f .t//2dt :

We may view E as a function of b1; : : : ; bN . Minimizing E with respect to
b1; : : : ; bN will give us a best approximation, in the sense that we adjust b1; : : : ; bN

such that SN deviates as little as possible from f .

http://wolframalpha.com

92 3 Computing Integrals

Minimization of a function of N variables, E.b1; : : : ; bN / is mathematically per-
formed by requiring all the partial derivatives to be zero:

@E

@b1

D 0;

@E

@b2

D 0;

:::

@E

@bN

D 0 :

a) Compute the partial derivative @E=@b1 and generalize to the arbitrary case
@E=@bn, 1 � n � N .

b) Show that

bn D 1

�

�Z

��

f .t/ sin.nt/ dt :

c) Write a function integrate_coeffs(f, N, M) that computes b1; : : : ; bN by
numerical integration, using M intervals in the trapezoidal rule.

d) A remarkable property of the trapezoidal rule is that it is exact for integralsR �

��
sin nt dt (when subintervals are of equal size). Use this property to

create a function test_integrate_coeff to verify the implementation of
integrate_coeffs.

e) Implement the choice f .t/ D 1
�

t as a Python function f(t) and call inte-
grate_coeffs(f, 3, 100) to see what the optimal choice of b1; b2; b3 is.

f) Make a function plot_approx(f, N, M, filename) where you plot f(t)
together with the best approximation SN as computed above, using M intervals
for numerical integration. Save the plot to a file with name filename.

g) Run plot_approx(f, N, M, filename) for f .t/ D 1
�

t forN D 3; 6; 12; 24.
Observe how the approximation improves.

h) Run plot_approx for f .t/ D e�.t��/ and N D 100. Observe a fundamental
problem: regardless of N , SN .��/ D 0, not e2� � 535. (There are ways to fix
this issue.)

Filename: autofit_sines.py.

Exercise 3.13: Derive the trapezoidal rule for a double integral
Use ideas in Sect. 3.7.1 to derive a formula for computing a double integralR b

a

R d

c
f .x; y/dydx by the trapezoidal rule. Implement and test this rule.

Filename: trapezoidal_double.py.

Exercise 3.14: Compute the area of a triangle by Monte Carlo integration
Use the Monte Carlo method from Sect. 3.7.3 to compute the area of a triangle with
vertices at .�1; 0/, .1; 0/, and .3; 0/.
Filename: MC_triangle.py.

3.8 Exercises 93

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

http://creativecommons.org/licenses/by-nc/4.0/

http://www.springer.com/978-3-319-32427-2

	3 Computing Integrals
	3.1 Basic Ideas of Numerical Integration
	3.2 The Composite Trapezoidal Rule
	3.3 The Composite Midpoint Method
	3.4 Testing
	3.5 Vectorization
	3.6 Measuring Computational Speed
	3.7 Double and Triple Integrals
	3.8 Exercises

