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Abstract. HOL Zero is a basic theorem prover that aims to achieve the
highest levels of reliability and trustworthiness through careful design
and implementation of its core components. In this paper, we concentrate
on its treatment of concrete syntax, explaining how it manages to avoid
problems suffered in other HOL systems related to the parsing and pretty
printing of HOL types, terms and theorems, with the goal of achieving
well-behaved parsing/printing and Pollack-consistency. Included are an
explanation of how Hindley-Milner type inference is adapted to cater for
variable-variable overloading, and how terms are minimally annotated
with types for unambiguous printing.

1 Introduction

1.1 Overview

HOL Zero [16] is a basic theorem prover for the HOL logic [8]. It differs from
other systems in the HOL family [7] primarily due to its emphasis on reliability
and trustworthiness. One innovative area of its design is its concrete syntax for
HOL types, term and theorems, and the associated parsers and pretty printers.
These are not only important for usability, to enable the user to input and read
expressions without fuss or confusion during interactive proof, but also for high
assurance work, when it is important to know that what has been proved is what
is supposed to have been proved.

In this paper we cover aspects of HOL Zero’s treatment of concrete syntax,
explaining how it manages to avoid classic pitfalls suffered in other HOL systems
and achieve, or so we claim, two desirable qualities outlined by Wiedijk [15],
namely well-behaved parsing/printing and Pollack-consistency.

In Sect. 2, we provide motivation for a thorough treatment of concrete syn-
tax. In Sect. 3, we cover the concrete syntax problems suffered in other HOL
systems. In Sect. 4, we explain the solutions provided in HOL Zero by its lex-
ical syntax. In Sect. 5, we describe HOL Zero’s solution for interpreting terms
involving variable-variable overloading, through its variant of the Hindley-Milner
type inference algorithm. In Sect. 6, we describe HOL Zero’s solution for printing
terms and theorems that would be ambiguous without type annotation, through
its algorithm for minimal type annotation. In Sect. 7, we present our conclusions.
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1.2 Concepts, Terminology and Notation

In [15], a theorem prover’s term parser and printer are well-behaved if the result
of parsing the output from printing any well-formed term is always the same as
the original term. This can be thought of as ∀ tm • parse(print(tm)) = tm. A
term parser is input-complete if every well-formed term can be parsed from con-
crete syntax. A term or theorem printer is Pollack-consistent if provably different
terms or theorems can never be printed the same. For any printer, by unambigu-
ous printing we mean that different internal representation can never be printed
the same. Note that well-behaved parsing/printing implies input-completeness,
unambiguous printing and Pollack-consistency for terms. Also note that none of
these notions fully address the issue of faithfulness, where internal representation
and concrete syntax correctly correspond. A printer that printed false as true
and true as false might be Pollack-consistent but would not be faithful.

By entity we mean a HOL constant, variable, type constant or type variable.
Note that the same entity can occur more than once in a given type or term. Two
different entities are overloaded if they occur in the same scope and have the same
name. A syntax function is an ML function dedicated to a particular syntactic
category of HOL type or term, for constructing a type or term from components,
destructing into components, or testing for the syntactic category. A quotation
is concrete syntax for a HOL type or term that can be parser input or printer
output. An antiquotation is an embedding of ML code within HOL concrete
syntax (this is only supported by some HOL systems). A symbolic name is a non-
empty string of symbol characters such as !, +, |, #, etc. An alphanumeric name
is a non-empty string of letter, numeric, underscore or single-quote characters.
An irregular name is a name that is neither symbolic nor alphanumeric. Note
that the precise definitions of symbolic and alphanumeric vary between systems.

In Table 1 we summarise the concrete syntax constructs used in this paper.

Table 1. Syntactic constructs used in our examples. Constructs are listed in increasing
order of binding power, so for example x + y <= z is the same as (x + y) <= z, but
note that equality binds less tightly than implication in HOL4.

Construct HOL4, HOL Light Isabelle/HOL ProofPower HOL
and HOL Zero

logical entailment P |- Q Q [P] P � Q

universal quantification !v. P ALL v. P ∀ v• P

existential quantification ?v. P EX v. P ∃ v• P

lambda abstraction \v. E %v. P λ v• E

implication P ==> Q P --> Q P ⇒ Q

disjunction P \/ Q P | Q P ∨ Q

conjunction P /\ Q P & Q P ∧ Q

equality x = y x = y x = y

non-equality x <> y x ∼= y x 	= y

less than or equals x <= y x <= y x � y

addition x + y x + y x + y
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2 The Need for Good Parsers and Printers

2.1 Proof Auditing

In recent years, HOL systems have been employed in large-scale high-assurance
projects such as the verification of the seL4 operating system kernel [10], the
verification of safety-critical avionics in the EuroFighter Typhoon [2], and the
Flyspeck project formalising the Kepler Conjecture proof [6], a major result in
mathematics. Projects of such importance should be independently audited to
reduce the risk that they contain fundamental errors. As argued in [13], not only
is it vital that the inference steps performed in a formal proof are correct, but
also that the formal proof is proving what is intended to be proved. In a soft-
ware verification project, there may be a large specification of required program
behaviour and/or various formal statements of properties that the program must
satisfy, and these should be reviewed. In a mathematics formalisation, the state-
ment of the ultimate theorem being proved should be reviewed. The definitions
of the constants used in any of these statements also need to be reviewed.

To be reviewed, these expressions need to be written in human-readable form.
But how can the auditor be sure that the expressions seen in concrete syntax
correctly correspond to their internal representation that gets manipulated in the
formal proof? They must rely on the parsers and/or pretty printers to faithfully
and unambiguously convert between the two representations. However, as with
most theorem provers that support concrete syntax, the parsers and printers of
HOL systems (other than HOL Zero) are known to suffer from problems such as
input-incompleteness, ambiguous printing and Pollack-inconsistency, as pointed
out in [15] and detailed further in Sect. 3.

As discussed in [1], the auditor can avoid the need to trust the system’s
parsers, as well as the need to review the project’s proof scripts, by examining
the system’s state after the formal proof has been processed. This would normally
require the full concrete syntax printers to be trusted.

Arguably, the auditor could also avoid the need to trust the full concrete syntax
printers, either by using relatively-simple primitive syntax printers, or by using
syntax functions to decompose expressions, or by directly viewing internal repre-
sentation in ML. However, any of these measures would greatly reduce readability
(for example, see how the small expression in Fig. 1 balloons up), and for non-
trivial content, the process of review would itself become error-prone. It would be
far better if the auditor could trust the correctness of the printers for full concrete
syntax, because this would greatly simplify the review process.

Many of the known problems with printing are obscure cases. However, we
do not consider it satisfactory to dismiss them as too unlikely to occur in prac-
tice. For two reasons, they are more likely than might be imagined. Firstly,
because industrial-sized formal proof projects inevitably involve extending the
theorem prover with bespoke automated proof routines, problematic obscure
syntax that would not be used in interactive proof could quite conceivably be
generated by poorly written code, for example in generating a variable name.
Secondly, because formal proofs can be outsourced, as was done in Flyspeck, we
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Fig. 1. Concrete and primitive syntax for the same expression in HOL Light.

cannot discount the possibility of users maliciously exploiting flaws in a pretty
printer in order to cheat the system and get paid for theorems they did not really
prove.

Neither do we consider it realistic that the auditor can properly rule out
the possibility of subtle printer exploits by reviewing the project’s proof scripts.
These can run to tens or even hundreds of thousands of lines of code, and unless
they adhere to a language subset that rules out exploits, they are virtually
impossible to review properly in reasonable time (e.g. see [1]).

Finally, the auditor not only needs to trust the pretty printers, but also needs
to know why they can be trusted. Thus it is preferable if their implementation is
simple or has a simple architectural argument for why it is fail-safe, or ideally a
formal proof of correctness. Complex code implementing a complex architecture
of interaction does not help in this regard.

2.2 Usability

Another concern, quite separate from the need to review results, is usability
during interactive proof. Users naturally expect not to be distracted with using
convoluted mechanisms to ensure their input gets parsed to the intended internal
representation, or with worries about whether a printed expression gets wrongly
printed, or whether it gets ambiguously printed and wrongly interpreted by the
user. In addition, users reasonably expect to always be able to parse back in
printed terms to result in the same internal term. However, there is no HOL
system (other than HOL Zero) that meets these expectations in basic usage.

3 Classic Problems with HOL Parsers and Printers

In this section, we attempt to enumerate all the common problems that exist in
the treatment of concrete syntax, and comment on how well they are addressed in
each of the four main HOL systems: HOL4 [14], Isabelle/HOL [12], HOL Light [9]
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and ProofPower HOL [3]. The problems relate to basic interaction with the sys-
tem, in monochrome and using the system’s standard character set (UTF-8 for
HOL4, ASCII for Isabelle/HOL and HOL Light, extended ASCII for Proof-
Power HOL). We illustrate some problems with examples, providing code for
reproducing simple but seemingly absurd theorem results (thus showing Pollack-
inconsistency). The reader need not understand the code, but just the concrete
syntax (see Table 1) of the resulting theorem, printed at the bottom.

Some systems have facilities that can be employed to help. Both HOL4
and Isabelle/HOL support coloured syntax highlighting in printed output when
used with certain GUIs, distinguishing between free variables, bound variables,
constants and keywords. However, this restricts choice of GUI, complicates
the trusted code base and does not help the parser parse the output. HOL4,
Isabelle/HOL and ProofPower HOL support antiquotation in parsed type and
term quotations, allowing entities to be constructed outside of concrete syntax.
However, such expressions are quite difficult to read, and the user must know how
to use syntax functions for constructing entities. Also, HOL4 and Isabelle/HOL
do not print using antiquotation, and so this facility does not help the auditor.

HOL4, Isabelle/HOL and ProofPower HOL each have a type annotation
printing mode for their term and theorem printers, which can provide solutions
but are unset by default. HOL4’s (set by the show types flag) annotates one
occurrence of each variable entity, and each instance of a polymorphic constant
unless it is a function with at least one argument supplied. Isabelle/HOL’s (set
by the show types flag) annotates one occurrence of each variable entity but
no constants. ProofPower HOL’s (set by the pp show HOL types flag) annotates
every occurrence of each variable but no constants.

3.1 Entities with Irregular Names

In HOL abstract syntax, there are no restrictions on the form of the name that
can be given to an entity.1 In HOL4 and Isabelle/HOL, irregular names can
only be parsed by using antiquotation, and are printed incorrectly and without
delimitation. In HOL Light, irregular names cannot be parsed, and are printed
incorrectly without delimitation. ProofPower HOL does cater for irregular entity
names, by allowing names to be enclosed within $"" delimiters, except that type
variable names that do not begin with the single-quote character cannot be
parsed, and entity names that begin with a double-quote character can only be
parsed using antiquotation and are printed with antiquotation.

Example 1. The following theorem about natural numbers gets misleadingly
printed in HOL Light due to the irregular variable name “!y. x”.

# let x = mk_var ("x",‘:num‘) and y = mk_var ("y",‘:num‘) in
let v = mk_var ("!y. x",‘:num‘) in
let tm1 = list_mk_comb (‘(+)‘,[v;y]) in
EXISTS (mk_exists (x, mk_eq (tm1,x)), tm1) (REFL tm1);;

val it : thm = |- ?x. !y. x + y = x

1 Although in hol90, type variable names must start with a single-quote character.
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3.2 Entities with Keyword Names

In HOL abstract syntax, there is nothing preventing an entity from having
the same name as a keyword from a given system’s concrete syntax. In HOL4,
such entities are prefixed with $ in their identifier for both parsing and print-
ing, and can also be distinguished from the keyword by syntax highlighting. In
Isabelle/HOL, such entities can only be parsed by using antiquotation, and in
printed output can only be distinguished from keywords by using coloured syn-
tax highlighting. In HOL Light, such entities cannot be parsed, and are printed
incorrectly as though they were keywords. ProofPower HOL uses $"" delimiters
for entities overloaded with keywords, and does not suffer from any problems
like those for irregular names because no keywords involve the single or double
quote characters.

3.3 Variable-Constant Overloading

In HOL abstract syntax, constants cannot be overloaded with other constants,
and type constants cannot be overloaded with other type constants.2 However,
variables may be overloaded with constants, and type variables overloaded with
type constants. In HOL4 and Isabelle/HOL, such variables and type variables
can only be parsed by using antiquotation, and in printed output can only be
distinguished from constants and type constants by using coloured syntax high-
lighting. In HOL Light, such variables and type variables cannot be parsed, and
are printed incorrectly as though they are the corresponding constants or type
constants respectively. In ProofPower HOL, such variables and type variables
can only be parsed by using antiquotation, and are printed using antiquotation.

3.4 Variable-Variable Overloading

HOL abstract syntax allows different variables with the same name but different
types to occur in the same scope. This causes problems for the term quotation
parser in any system that uses the basic algorithm for Hindley-Milner type infer-
ence, because this algorithm does not cater for variable-variable overloading (as
explained in Sect. 5.1). HOL4, Isabelle/HOL, HOL Light and ProofPower HOL
all use the Hindley-Milner algorithm, and so cannot parse terms with overloaded
variables, even if antiquotation is used. Neither can these systems show distinc-
tion between overloaded variables in default printed output, although the type
annotation printing modes of HOL4, Isabelle/HOL and ProofPower HOL do.

Example 2. The bound variable for the inner universal quantification in the fol-
lowing theorem proved in ProofPower HOL is a boolean x, rather than the
natural number x used elsewhere in the theorem.

2 We refer here to the “vanilla” version of the HOL language, implemented by all HOL
systems except Isabelle/HOL and HOL Omega.
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:) let val x1 = mk var ("x",�:N�) and x2 = mk var ("x",�:BOOL�)
and v = mk var ("a",�:N�)
val tm = mk eq (x1,v)

in
∀ intro x1
(∃ intro (mk ∃ (v, mk ⇒ (tm, mk ∀ (x2,tm))))

(⇒ intro tm (∀ intro x2 (asm rule tm))))
end;

val it = � ∀ x• ∃ a• x = a ⇒ (∀ x• x = a): THM

3.5 Type Ambiguity in Printed Terms

Typically, the default mode for printing in HOL systems, including in HOL4,
Isabelle/HOL, HOL Light and ProofPower HOL, is to not provide any type anno-
tation when printing terms and theorems. This is problematic because an expres-
sion involving variables or polymorphic constants then gets printed ambiguously
when there is more than one type-correct way of assigning types to the atoms
in the expression. However, HOL4’s type annotation printing mode will perform
sufficient annotation to remove ambiguity, except potentially in the obscure cir-
cumstance of a polymorphic function constant application with types not fully
resolved by the arguments supplied. Isabelle/HOL’s and ProofPower’s will also
suffice, so long as no constant annotation is required.

Example 3. The following theorem in HOL4 is proved for the one-valued type
unit, but by default is not printed with type annotation and so looks like it has
been proved for any type.

> let val x = ‘‘x:unit‘‘and y = ‘‘y:unit‘‘
in

GENL [x,y]
(DISCH ‘‘(x:unit)<>y‘‘

(TRANS (SPEC x oneTheory.one)
(SYM (SPEC y oneTheory.one)) ))

end;
# val it = |- !x y. x <> y ==> (x = y): thm

3.6 Juxtaposition of Lexical Tokens in Printed Expressions

Concrete syntax is generally printed with spacing characters separating lexi-
cal tokens, to ensure that the boundaries between tokens are obvious. In some
circumstances, however, it tends to be more readable to be more concise and
print without spacing, for example between parentheses and the expression they
enclose. This is safe providing that boundaries between tokens are still clear, so
that juxtaposed tokens without intervening space cannot be confused for a single
token, or vice versa. HOL Light, however, does not ensure boundaries still exist
when it prints without spacing in the printing of bindings, pairs and lists. We
do not know of any problem cases in HOL4, Isabelle/HOL or ProofPower HOL.
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Example 4. In the following theorem in HOL Light, no space is printed in the
second conjunct between the binder !, binding variable # and “.” keyword,
making it indistinguishable from the variable “!#.” in the first conjunct.

# let x = mk_var ("x",‘:num‘) and v1 = mk_var ("#",‘:num‘)
and v2 = mk_var ("!#.",‘:num->num‘) in
let tm1 = mk_comb (v2,v1) in
let tm2 = mk_exists (x, list_mk_comb (‘(<=)‘,[tm1;x])) in
CONJ (EXISTS (tm2,tm1) (SPEC tm1 LE_REFL))

(MESON [ARITH_RULE ‘!x. ~ (SUC x <= x)‘]
‘~ ?x. ! # . # <= x‘);;

val it : thm = |- (?x. !#. # <= x) /\ ~(?x. !#. # <= x)

4 Lexical Solutions

Some of the problems highlighted in Sect. 3 are tackled in HOL Zero purely
through lexical considerations. This section covers those solutions.

4.1 Identifier Delimiters

For the problems of irregular entity names (see Sect. 3.1) and entities with the
same name as keywords (see Sect. 3.2), HOL Zero allows an entity’s identifier to
wrap double-quote delimiters ("") around the entity name. Any entity name can
be wrapped with these delimiters, but an irregular or keyword name must be
wrapped in order to get properly parsed. An entity identifier gets printed with
the delimiters if and only if the entity name is irregular or a keyword.

This is essentially the same solution as used in ProofPower HOL, but there
are no corner cases that cause problems. The backslash character (\) functions
as an escape in the identifier, where double-quote and backslash are preceded by
a backslash, and unprintable ASCII characters (such as tab and line feed) and
back-quote (used in HOL Zero to delimit HOL type and term quotations) are
denoted by their 3-digit decimal ASCII code preceded by a backslash.

Example 5. The irregular variable name in Example 1 is parsed and printed in
HOL Zero using double-quote delimiters.

# ‘?x. "!y. x" + y = x‘;;
- : term = ‘?x. "!y. x" + y = x‘

4.2 Variable Marking

For the problem of variables being overloaded with constants (see Sect. 3.3),
HOL Zero allows a variable identifier to indicate that it denotes a variable, by
preceding the variable’s name with a percent character (%). This marking must
immediately precede the variable name, without intervening space. Similarly, a
type variable identifier can be marked as such by preceding the name with a
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single-quote character (’). If a variable is overloaded with a constant, or a type
variable with a type constant, then it necessarily gets marked as such in printed
output.

These marking characters must occur outside any double-quote delimiters
used in the entity identifier (see Sect. 4.1). Note that a single-quote mark at the
start of a type variable identifier cannot get confused with a single-quote at the
start of a type variable name, because alphanumeric names in HOL Zero cannot
start with a single-quote and so the name would be classed as irregular and get
enclosed within double-quote delimiters. Similarly, a percent mark at the start of
a variable identifier cannot get confused with a percent at the start of a variable
name, because in HOL Zero percent is not classed as a symbolic character.

Example 6. The variable true is overloaded with the constant, and so needs a
variable mark when parsed and printed.

# ‘%true + 1 < 5‘;;
- : term = ‘%true + 1 < 5‘

Example 7. The type variable nat is overloaded with the type constant for nat-
ural numbers, and so needs a type-variable mark when parsed and printed. Note
that, by default, all type variables are printed with the type variable mark.

# ‘!(x:’nat) (y:A). ?z. z = (x,y)‘;;
- : term = ‘!(x:’nat) (y:’A). ?z. z = (x,y)‘

4.3 Spacing Between Tokens

For the problem of juxtaposed lexical tokens (see Sect. 3.6), HOL Zero ensures
that in any situation where tokens get printed without any intervening space, a
check is performed to make sure that the two tokens are compatible, i.e. that
there is a lexical boundary between them when printed together, and if this
check fails then spacing is inserted.

Example 8. In HOL Zero, the juxtaposed symbolic tokens in the head of the
universal quantification in the second conjunct in Example 4 are printed with
spacing to make clear they are separate tokens.

# ‘(?x. !#. # <= x) /\ ~ (?x. ! # . # <= x)‘;;
- : term = ‘(?x. !#. # <= x) /\ ~ (?x. ! # . # <= x)‘

5 Type Inference for Variable-Variable Overloading

In order to cater for variable-variable overloading in the interpretation of HOL
concrete syntax (see Sect. 3.4), it is not sufficient to use the classic Hindley-Milner
type inference algorithm [11] that is used in other HOL systems. This algo-
rithm was originally designed for parsing the programming language ML, which
supports parametric polymorphism, needed for HOL’s polymorphic constants,
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but not ad-hoc polymorphism, needed for HOL’s variable-variable overloading.
In this section, we explain how the Hindley-Milner algorithm is adapted in HOL
Zero to cater for both.

Note that the discussion takes place at the level of HOL primitive syntax,
because this is the level of representation used in the abstract syntax tree (AST)
upon which type inference is carried out, and thus binding refers to lambda
abstraction.

5.1 Hindley-Milner Type Inference

The Hindley-Milner type inference algorithm first involves assigning provisional
types to all constant and variable atoms in the AST of the expression being
parsed. Each instance of a non-polymorphic constant is simply assigned the con-
stant’s type, each instance of a polymorphic constant is assigned the constant’s
generic type but with unique meta type variables replacing any placeholder
types, and each variable is given a unique meta type variable which is assigned to
each occurrence of the variable (according to the scoping rules explained below).
These meta type variables are then resolved bottom-up when function applica-
tions are encountered in ascending the AST, where the domain type of a function
is unified with the type of its argument.

The notion of a variable identifier’s syntactic scope in Hindley-Milner is
straightforward. All variable atoms with a given name refer to the same entity
throughout the AST of the expression up to the first common binding for a vari-
able with that name (if such a binding exists), or otherwise the top level of the
expression (when the variable is free). The types of all these variable atoms must
unify, or otherwise the expression is ill-typed. Above the binding in the AST, the
variable ceases to be in scope and any variable atoms with the given name refer
to a different entity. This notion of scope does not allow for variable-variable
overloading.

Example 9. Consider the following expression in HOL Zero concrete syntax:

x \/ (!(x:nat). x = 5 \/ true = x)

Using purely primitive syntax, this is written as follows (where $ is used to
strip an operator of its fixity):3

$\/ x ($! (\(x:nat). $\/ ($= x 5) ($= true x)))

We uniquely number variables that are different according to the Hindley-
Milner scoping rules, as well as each instance of the same polymorphic constant,
so that they can be treated distinctly.

$\/ x1 ($! (\(x2:nat). $\/ ($=1 x2 5) ($=2 true x2)))

3 Note that, in HOL Zero, numerals are not atoms of primitive syntax, but for illus-
trative purposes it suffices to treat 5 as an atom in this example.
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Provisional types get assigned as follows, with τn denoting the nth generated
meta type variable:

\/ bool → bool → bool x1 τ4
! (τ1 → bool) → bool x2 τ5
=1 τ2 → τ2 → bool
=2 τ3 → τ3 → bool
5 nat
true bool

Type inference on the AST then resolves meta type variables bottom-up,
starting as follows on the branches of the inner \/:

τ2 = τ5 = nat
τ3 = bool = τ5

At this point, there is a conflict: τ5 cannot be both nat and bool. Thus the
expression is ill-typed according to traditional Hindley-Milner rules.

5.2 A New Notion of Syntactic Scope for Variables

Clearly we need a new notion of a variable’s syntactic scope in order to cater
for variable-variable overloading. As in Hindley-Milner type inference, we want
this notion to be simple and intuitive for users, as well as relatively light in the
amount of type annotation required. We do not want this notion, for example,
to require every occurrence of every variable to be type-annotated, because this
would be too inconvenient for the user.

In HOL Zero, the scoping rules are exactly the same as for Hindley-Milner
for the basic case when there is no variable overloading – all variable atoms with
a given name denote the same entity up to the binding for the variable name, or
the top level of the expression if there is no such binding, so long as the types of
these variable atoms all unify. The difference lies in the case when the variable
atoms for a given variable name don’t all unify. Unlike Hindley-Milner, HOL Zero
allows for an extra case, for when the variable atoms each have fully-resolved
types (i.e. not involving meta type variables) purely from local type resolution
that can take place within the binding alone, i.e. not considering contextual type
information from outside the binding in the AST. In this special case, according
to the HOL Zero scoping rules there is a variable in scope for each of the fully
resolved types, and only the variable corresponding to the binding variable ceases
to be in scope above the binding in the AST.

Thus, in a nutshell, the HOL Zero scoping rules say that at a binding, all
variables with the same name as the binding variable must unify or otherwise
have types that can be fully resolved locally. Although more complicated than
in Hindley-Milner, this new notion of variable scope is still relatively straightfor-
ward to understand and to use. All expressions that parse under Hindley-Milner
type inference will still parse under HOL Zero type inference, to result in the
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same internal term. However, any expression involving variable-variable over-
loading can also be parsed, so long as there is sufficient type-annotation. Note
that one consequence of the rules is that the scope of a variable can only be
determined at the type inference stage of parsing, rather than earlier, but we do
not see this as a problem.

5.3 Adjustments to the Hindley-Milner Algorithm

To support the HOL Zero notion of variable scope, the Hindley-Milner algorithm
needs a few adjustments. The first is that, in the initial assignment of provisional
types throughout the AST, each variable atom, rather than variable entity, is
given its own unique meta type variable. This is because the variable referred to
by a given variable atom is only determined as type inference unfolds, and at the
start of type inference each variable atom could potentially refer to a different
variable.

The second adjustment is to the variable environment that is inevitably
passed around in the algorithm’s implementation, that provides the partially
resolved type for a given variable name. This environment needs to be adjusted
to carry a list of types, rather than a single type, with one type for each poten-
tially distinct variable.

The third adjustment is another restriction on how the algorithm is imple-
mented. In the Hindley-Milner algorithm, the variable environment for the com-
ponents of a compound expression may build on the variable environment for
a sibling component. However, this is not allowed in general in the HOL Zero
type inference implementation, because the scoping rules must consider whether
variables’ types are fully resolved purely locally.

The fourth adjustment is to type inference at a binding, to cater for the extra
case, of having variables overloaded with the binding variable, instead of simply
raising an error.

Example 10. In the expression from Example 9, we uniquely number each vari-
able atom, because at this stage they are potentially all different according to
the HOL Zero scoping rules.

$\/ x1 ($! (\(x2:nat). $\/ ($=1 x3 5) ($=2 true x4)))

Provisional types get assigned as follows:

\/ bool → bool → bool x1 τ4
! (τ1 → bool) → bool x2 τ5
=1 τ2 → τ2 → bool x3 τ6
=2 τ3 → τ3 → bool x4 τ7
5 nat
true bool
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Meta type variables are resolved bottom-up. On reaching the binding, the
following type information has been inferred:

τ2 = τ6 = nat
τ3 = bool = τ7
τ5 = nat

This means that types for the variables local to the binding are thus:

x2 nat
x3 nat
x4 bool

According to HOL Zero scoping rules, given that x is the name of the binding
variable and the types of the different x atoms do not all unify, all of the local
x atoms at this point must have fully resolved types, which they do. The atom
for the binding variable is x2 and has the same resolved type as x3, and so these
refer to the same variable, and are both removed from scope, leaving just x4 in
the local variable environment. Type inference can now proceed upwards from
the binding.

τ1 = τ5
τ4 = bool

Having reached the top level of the expression, there are no conflicts, so the
expression has passed type inference. The atoms are thus resolved as follows:

\/ bool → bool → bool x1 bool
! (nat → bool) → bool x2 nat
=1 nat → nat → bool x3 nat
=2 bool → bool → bool x4 bool
5 nat
true bool

Thus there are two variables with name x: one with type nat, which is a
bound variable, and one with type bool, which is free.

6 Minimal Unambiguous Type Annotation

Unless the types of its variables and polymorphic constants can be fully resolved
from context, a printed term or theorem needs to be type-annotated in order to
avoid type ambiguity (see Sect. 3.5). However, type annotating every variable and
constant atom significantly reduces readability of output. HOL4’s type annota-
tion printing mode offers a better solution by annotating each variable entity only
once in a given term, and only annotating instances of polymorphic constants.
However, this level of annotation can still be excessive for large expressions.
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In this section, we describe HOL Zero’s algorithm for minimal type annotation
when printing, so that there is just enough to avoid ambiguity and the output
stays readable. This algorithm works for HOL Zero’s notion of variable scoping
that caters for variable-variable overloading (see Sect. 5.2).

Example 11. No type annotation is necessary when types can be inferred, as in
the example in Fig. 1.

‘!x y. x > 1 /\ y > 1 ==> x * y > 1‘

Example 12. It is not necessary to type-annotate variable a from Example 2,
because its type can be inferred:

‘!x. ?a. x = a ==> (!(x:bool). (x:nat) = a)‘

The basic outline of the algorithm is first to make a copy of the term to be
printed but with each atom replaced with a provisional type, in exactly the same
way as is done for HOL Zero type inference, with unique meta type variables for
each variable atom and for each placeholder type in a polymorphic constant’s
generic type. The mapping from meta type variables to actual types is then
worked out by matching this term copy with the original term. A subset of
the atoms in the term copy is then picked for annotation, in such a way as
to be minimal but sufficient to remove ambiguity from the printed term. The
chosen atoms are then annotated with their types according to the meta type
variable mapping to actual types. Before being printed, the resulting annotated
term is passed to the type analyser to check that type resolution results in an
internal term that is identical to the original term. This final check means that
the relatively-complicated minimal type annotation algorithm does not need to
be trusted, at the expense of having to trust the relatively-simple type analyser.

The only part of this that needs any further description is the process for
picking atoms for annotation from the term copy. This first involves calculating
four lists of atoms from the term copy, corresponding to the overloaded variables,
the free variables, the bound variables and the polymorphic constants of the
expression. The atoms in these four lists are the candidates for type annotation.
Type inference is then performed on the term copy (with its meta type variables
in place of actual types), to result in a partial instantiation list for the meta type
variables based purely on what can be deduced from the term copy without any
type annotations added.

This partial instantiation list is then used as the basis for removing atoms
from the four atom lists, to remove those atoms that have types that can be
fully resolved without any type annotation. The remaining atoms are selected
down into a list to be type annotated. This is done by first ordering the atoms
according to priority, with overloaded variables having highest priority, then
bound variables, then free variables and polymorphic constants having lowest
priority. The list is then scanned to remove atoms coming later in the list that
will not need annotating because their types are inferred by annotating atoms
earlier on in the list. The remaining atoms are then returned for annotation.
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7 Conclusions

In this paper, we have enumerated the classic problems that have plagued default
usage of HOL system parsers and pretty printers over the years. Some HOL sys-
tems fare better than others, and offer a patchwork of solutions such as antiquo-
tation and coloured syntax highlighting which can be employed to solve some
problems. However, these complicate the trusted code base, complicate output
and restrict how the auditor can work, and in any case do not completely solve
all problems. Our view is that simpler and more comprehensive solutions are
possible, that work in monochrome ASCII and are easier to trust. We find it
surprising that such solutions are not already prevalent for a logic that is so
established as HOL.

We have shown how HOL Zero manages to overcome all the classic problems
we list and fit our criteria for simplicity, by employing three main solutions.
The first is a better lexical syntax regime that supports delimiting and mark-
ing for otherwise problematic entity names, and that ensures sufficient spacing
between lexical tokens. The second is an adapted form of Hindley-Milner type
inference that enables term quotations with variable-variable overloading to be
represented in concrete syntax. The third is an algorithm for performing minimal
type annotation on the atoms of a term, so that it can be printed in a way that
is both unambiguous and about as readable as can be expected.

Together, these solutions enable parsing and printing of concrete syntax to be
more complete and less ambiguous than in the other HOL systems. This boosts
HOL Zero’s credentials as a trustworthy system for auditing formal proofs. We
believe HOL Zero does not suffer from any incompleteness or ambiguity in its
parsers or printers, and printed output can always be parsed back in to give the
same internal representation. This would make HOL Zero’s parsers and printers
well-behaved and Pollack-consistent. As far as we know, this would be a first
amongst not only HOL systems, but also various other theorem proving systems
that support concrete syntax, such as Coq and Mizar.

It would be interesting to establish for certain whether our claims of correct-
ness in HOL Zero’s parsing and printing are true. HOL Zero has a bounty [16]
that, as well as for logical unsoundness, gets paid out for “printer unsoundness”,
i.e. if the pretty printer can be made to produce output that is ambiguous or
not faithful to internal representation. Six printer-related problems have been
reported, but none since August 2011. Trustworthiness could be further bolstered
by adding a check for well-behaved parsing/printing to the printers.

Ideally there would be a formal proof about the correctness of HOL Zero’s
parsers and printers, which would cover questions of faithfulness as well as well-
behaved parsing/printing and Pollack-consistency. The challenges in achieving
this would presumably be quite different from those in formally verifying [5]
the parser and printer of the Milawa theorem prover [4], which has no concrete
syntax as such and so effectively boiled down to verifying the underlying Lisp
implementation’s parser and pretty printer for s-expressions.

Our solutions could conceivably be implemented in other HOL systems,
to improve their usability as well as trustworthiness. It should be possible to
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incorporate type inference for overloaded variables and minimal type annota-
tion without any major backwards compatibility issues, because the former just
expands the set of term quotations that can be parsed, and the latter could be an
optional printing mode. Incorporating delimiters for problematic entity names
and marking for variables would require adjustment to the lexical syntax as well
as the parser, and may have knock-on effects, but these are unlikely to be severe.
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