
Chapter 2
Copson-Type Inequalities

Archimedes will be remembered when Aeschylus is forgotten,
because languages die and mathematical ideas do not.
“Immortality” may be a silly word, but probably a
mathematician has the best chance of whatever it may mean.

Godfrey Harold Hardy (1877–1947).

This chapter considers time scale versions of Copson type inequalities and their
converses. We prove extensions of Copson type inequalities proved by Walsh on
discrete time scales and we also consider converses of these inequalities. This
chapter is divided into four sections and is organized as follows. In Sect. 2.1, we
prove a time scale version of a Copson inequality and in Sect. 2.2, we consider
generalized Copson type inequalities. In Sect. 2.3, we present converses of Copson-
type inequalities. Section 2.4 considers extensions of Copson inequalities by
adapting the Walsh method.

2.1 Copson-Type Inequalities I

In 1927, Copson [48] proved that if g.x/ > 0, p > 1 and that gp.x/ is integrable over
.0;1/; then

R1
x .g.t/=t/dt converges if x > 0 and

Z 1

0

�Z 1

x

g.t/

t
dt

�p

dx � pp
Z 1

0

gp.x/dx: (2.1.1)

In 1928, Copson [49] (see also [77, Theorem 344]) proved the discrete version
of (2.1.1) which is given by

1P
nD1

�
nP

kDn

a.k/

k

�p

� pp
1P

nD1
ap.n/, (2.1.2)
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50 2 Copson-Type Inequalities

where p > 1 and a.n/ > 0 for n � 1: The inequalities switch order when 0 < p < 1
and the constant pp is the best possible. Hardy [65] had earlier stated a weak version
of (2.1.2) in the case p D 2, and as a result (2.1.2) is sometimes called the Copson-
Hardy inequality.

In 1927, Copson in [48] extended the inequality (2.1.2) by adapting Elliott’s
proof [57] and bringing into play the dual of Hardy’s inequality, a result now known
as the Copson inequality: if p > 1, a.n/ > 0 and 
.n/ > 0, ƒ.n/ D Pn

iD1 
.i/ andP1
nD1 
.n/ap.n/ is convergent then

1X
nD1


.n/

 1X
iDn

a.i/
.i/

ƒ.i/

!p

� pp
1X

nD1

.n/a.n/

 1X
iDn

a.i/
.i/

ƒ.i/

!p�1

� pp
1X

nD1

.n/ap.n/: (2.1.3)

The constant pp again is best possible.
In this section, we state and prove two different forms of (2.1.3) on time scales.

The results in this section are adapted from [163].

Theorem 2.1.1. Let T be a time scale with a 2 Œ0;1/T and p > 1. Let ƒ.t/ WDR t
a 
.s/�s and define

ˆ.t/ WD
Z 1

t


.s/g.s/

ƒ�.s/
�s; for t 2 Œa;1/T: (2.1.4)

Then Z 1

a

.t/.ˆ.t//p�t � p

Z 1

a
ˆp�1.t/
.t/g.t/�t; (2.1.5)

and
Z 1

a

.t/.ˆ.t//p�t � pp

Z 1

a

.t/gp.t/�t. (2.1.6)

Proof. First we prove the inequality (2.1.5). Consider the integral
R1

a 
.t/ˆp.t/�t;
and integrating by the parts formula (1.1.4) with v.t/ D ƒ.t/; and u.t/ D ˆp.t/; we
obtain

Z 1

a

.t/.ˆ.t//p�t D ƒ.t/ˆp.t/j1a C

Z 1

a
.ƒ�.t// .�ˆp.t//� �t. (2.1.7)

Using ˆ.1/ D 0 and ƒ.a/ D 0, we get that

Z 1

a

.t/ˆp.t/�t D

Z 1

a
.ƒ�.t// .�ˆp.t//� �t: (2.1.8)
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Applying the chain rule (1.1.5), we see that there exists d 2 Œt; �.t/� such that

� .ˆp.t//� D �pˆp�1.d/.ˆ�.t//: (2.1.9)

Since ˆ�.t/ D �
.t/g.t/=ƒ�.t/ � 0; and d � t, we have

� .ˆp.t//� .ƒ�.t// � p
.t/g.t/.ˆ.t//p�1: (2.1.10)

Substituting (2.1.10) into (2.1.8), we have

Z 1

a

.t/ˆp.t/�t � p

Z 1

a
.ˆ.t//p�1
.t/g.t/�t; (2.1.11)

which is the desired inequality (2.1.5). The inequality (2.1.11) can be written in the
form

Z 1

a

.t/ .ˆ.t//p�t � p

Z 1

a


.t/g.t/

.
.t//
p�1

p

h
.
.t//

p�1
p .ˆ.t//p�1i�t: (2.1.12)

Applying the Hölder inequality (1.1.8) on the term

Z 1

a

h
.
�1.t//

p�1
p 
.t/g.t/

i h
.
.t//

p�1
p .ˆ.t//p�1i�t;

with indices p and p=.p � 1/, we see that

Z 1

a


.t/g.t/

.
.t// p�1
p

h
.
.t//

p�1
p .ˆ.t//p�1i�t

�
"Z 1

a

"

.t/g.t/

.
.t//
p�1

p

#p

�t

#1=p �Z 1

a

.t/.ˆ.t//p�t

�1�1=p

: (2.1.13)

Substituting (2.1.13) into (2.1.12), we have

Z 1

a

.t/.ˆ.t//p�t

� p

�Z 1

a

.t/ .g.t//p�t

�1=p �Z 1

a

.t/.ˆ.t//p�t

�1� 1
p

: (2.1.14)

This implies that

Z 1

a

.t/.ˆ.t//p�t � pp

Z 1

a

.t/ .g.t//p�t: (2.1.15)

which is the desired inequality (2.1.6). The proof is complete. �
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Remark 2.1.1. As a special case of Theorem 2.1.1 when T D R and p > 1;we have
the following integral inequality of Copson type (note that when T D R, we have
ˆ�.t/ D ˆ.t/; ƒ�.t/ D ƒ.t/ and �.t/ D 0/

Z 1

a

.t/

�Z 1

t


.s/g.s/

ƒ.s/
ds

�p

dt � pp
Z 1

a

.t/gp.t/dt ; p > 1:

As a special case when 
.t/ D 1; we have inequality (2.1.1) due to Copson.

Remark 2.1.2. Assume that T D N in Theorem 2.1.1 and a D 1. Then usingR �.t/
a f .t/�t D P�.n/�1

sDa f .s/; we see that

ƒ�.n/ D ƒ.n C 1/ D
nC1�1P

sD1

.s/ D

nP
sD1


.s/:

Assume that
P1

sD1 
.n/gp.n/ is convergent and p > 1: Then the inequality (2.1.5)
becomes the discrete Copson inequality (2.1.3), namely

1P
nD1


.n/

�1P
iDn


.i/g.i/

ƒ.i/

�p

� pp
1P

nD1

.n/gp.n/, p > 1, (2.1.16)

where ƒ.n/ D 
1 C 
2 C : : :C 
n:

In the following theorem, we prove a time scale version of Copson’s type
inequality (2.1.3) on time scales. In this theorem we will replace ƒ�.s/ by ƒ.s/:

Theorem 2.1.2. Let T be a time scale with a 2 Œ0;1/T and ƒ.t/ WD R t
a 
.s/�s

and define

ˆ.t/ WD
Z 1

t


.s/g.s/

ƒ.s/
�s; for t 2 Œa;1/T: (2.1.17)

If p > 1, then

Z 1

a

.t/.ˆ.t//p�t � p

Z 1

a
.ˆ.t//p�1ƒ�.t/

ƒ.t/

.t/g.t/�t; (2.1.18)

and
Z 1

a

.t/.ˆ.t//p�t � pp

Z 1

a

ƒ�.t/

ƒ.t/

.t/gp.t/�t: (2.1.19)

Proof. We proceed as in the proof of Theorem 2.1.1 and integrating by the parts
formula (1.1.4) with v�.t/ D 
.t/; u.t/ D .ˆ.t//p ; and using ˆ.1/ D 0 and
ƒ.a/ D 0, we obtain
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Z 1

a

.t/.ˆ.t//p�t � p

Z 1

a
.ˆ.t//p�1ƒ�.t/

ƒ.t/

.t/g.t/�t;

which is the desired inequality (2.1.18). This inequality implies, by the Hölder
inequality (1.1.8), that

Z 1

a

.t/.ˆ.t//p�t � p

�Z 1

a

ƒ�.t/

ƒ.t/

.t/gp.t/�t

�1=p

�
�Z 1

a

.t/ˆp.t/�t

�1� 1
p

:

This implies

�Z 1

a

.t/.ˆ.t//p�t

�1�.1� 1
p /

� p

�Z 1

a

ƒ�.t/

ƒ.t/

.t/gp.t/�t

�1=p

;

and hence
Z 1

a

.t/.ˆ.t//p�t � pp

Z 1

a

ƒ�.t/

ƒ.t/

.t/gp.t/�t;

which is the desired inequality (2.1.19). The proof is complete. �

If we assume that

inf
t

ƒ.t/

ƒ�.t/
D L > 0; (2.1.20)

and use it in Theorem 2.1.2 then we obtain the following result.

Corollary 2.1.1. Let T be a time scale with a 2 Œ0;1/T and p > 1. Let ƒ.t/ and
ˆ.t/ be defined as in Theorem 2.1.2 such that (2.1.20) holds. Then

Z 1

a

.t/.ˆ.t//p�t � pp

L

Z 1

a

.t/gp.t/�t.

Remark 2.1.3. As a special case of (2.1.18), when T D R and p > 1; we have the
following integral inequality of Copson type

Z 1

a

.t/

�Z 1

t


.s/g.s/

ƒ.s/
ds

�p

dt � pp
Z 1

a

.t/gp.t/dt; p > 1:
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Remark 2.1.4. Assume that T D N in Theorem 2.1.2, p > 1 and a D 1: In this case
inequality (2.1.18) becomes the following discrete Copson type inequality

1P
nD1


.n/

� 1P
sDn


.s/g.s/

ƒ.s/

�p

� pp
1P

nD1
ƒ.n C 1/

ƒ.n/

.n/gp.n/, p > 1,

where ƒ.n/ D
n�1P
nD1


.s/:

2.2 Copson-Type Inequalities II

In 1928, Copson [49, Theorems 1.1, 1.2] extended the inequality (2.1.3) and proved
that if a.n/ > 0; 
.n/ > 0 for n � 1 and p � c > 1, then

1X
nD1


.n/

ƒc.n/

 
nX

iD1
a.i/
.i/

!p

�

 p

c � 1
�p 1X

nD1

.n/ƒp�c.n/ap.n/; (2.2.1)

where ƒ.n/ D Pn
iD1 
.i/: He also proved that if 0 � c < 1 < p; then

1X
nD1


.n/

ƒc.n/

 1X
iDn


.i/a.i/

!p

�

 p

1 � c

�p 1X
nD1


.n/ƒp�c.n/ap.n/: (2.2.2)

The original motivation for Copson type inequalities (2.2.1) and (2.2.2), was a
desire to generalize the inequalities (1.3.2) and (1.3.1) due to Hardy and Littlewood.
When 
.k/ D 1 for all k and c D p, inequality (2.2.1) becomes the Hardy
inequality (1.2.1). The constants are best possible.

In Eq. (2.2.1) Copson assumed that p > c and Bennett [22] observed that this
inequality continues to hold for c > p with constant .p=.p � 1//p instead of .p=.c �
1//p: In [60] Gao proved that the inequality (2.2.1) holds with the best constant
.p=.c � 1//p.

In 1976, Copson [50, Theorems 1 and 3] proved the continuous counterparts of
these inequalities. In particular he proved that if p � 1 and c > 1, then

Z 1

0


.t/

ƒc.t/
ˆp.t/dt �


 p

c � 1
�p
Z 1

0


.t/

ƒc�p.t/
gp.t/dt; (2.2.3)

where ƒ.t/ D R t
0

.s/ds and ˆ.t/ D R t

0

.s/g.s/ds; and if p > 1 and 0 � c < 1,

then Z 1

a


.t/

ƒc.t/
‰p.t/dt �


 p

1 � c

�p
Z 1

a


.t/

ƒc�p.t/
gp.t/dt; (2.2.4)

where ‰.t/ D R1
t 
.s/g.s/ds:
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In this section, we prove inequalities on time scales which as special cases
contain Copson inequalities (2.2.1)–(2.2.4). As special cases when T D R, we
obtain Hardy-Littlewood type inequalities (1.3.3) and (1.3.4). The results in this
section are adapted from [162].

Theorem 2.2.1. Let T be a time scale with a 2 Œ0;1/T and p � c > 1. Let

ƒ.t/ WD
Z t

a

.s/�s, ˆ.t/ WD

Z t

a

.s/g.s/�s; for t 2 Œa;1/T: (2.2.5)

Then
Z 1

a


.t/.ˆ�.t//p

.ƒ�.t//c
�t � p

c � 1
Z 1

a
ƒ1�c.t/
.t/g.t/.ˆ.t//p�1�t; (2.2.6)

and

Z 1

a


.t/.ˆ�.t//p

.ƒ�.t//c
�t �


 p

c � 1
�p
Z 1

a

.ƒ�.t//.p�1/c

.ƒ.t//p.c�1/ 
.t/g
p.t/�t: (2.2.7)

Proof. Integrating the left hand side of (2.2.6) using the integration by parts
formula (1.1.4) with v�.t/ D .ˆ�.t//p; and u�.t/ D 
.t/= .ƒ�.t//c ; we obtain

Z 1

a


.t/.ˆ�.t//p

.ƒ�.t//c
�t D u.t/ˆp.t/j1a C

Z 1

a
.�u.t// .ˆp.t//� �t, (2.2.8)

where

u.t/ WD �
Z 1

t


.s/

.ƒ�.s//c
�s D �

Z 1

t
.ƒ�.s//�c �ƒ�.s/



�s: (2.2.9)

By the chain rule (1.1.6) and the fact that ƒ�.t/ D 
.t/ � 0; we see that

� �ƒ1�c.t/

� D �.1 � c/

Z 1

0

ƒ�.t/

Œhƒ�.t/C .1 � h/ƒ.t/�c
dh

� .c � 1/ ƒ
�.t/

.ƒ�.t//c
:

This implies that

.ƒ�.s//�cƒ�.t/ � �1
c � 1

�
ƒ1�c.t/


�
,
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and then, we have

� u.t/ D
Z 1

t


.s/

.ƒ�.s//c
�s � �1

c � 1
Z 1

t

�s

.ƒc�1.s//�

� 1

.c � 1/ƒc�1.t/
: (2.2.10)

Applying the chain rule (1.1.5), we see that there exists d 2 Œt; �.t/� such that

.ˆp.t//� D pˆp�1.d/.ˆ�.t//: (2.2.11)

Since ˆ�.t/ D 
.t/g.t/ � 0 and �.t/ � d, we have

.ˆp.t//� � p
.t/g.t/.ˆ�.t//p�1: (2.2.12)

Using ˆ.a/ D 0, u.1/ D 0 and combining (2.2.8), (2.2.10) and (2.2.12), we get
that

Z 1

a


.t/.ˆ�.t//p

.ƒ�.t//c
�t � p

c � 1
Z 1

a


.t/g.t/.ˆ�.t//p�1

ƒc�1.t/
�t; (2.2.13)

which is the desired inequality (2.2.6). Now, we prove (2.2.7). From (2.2.13), we
see that Z 1

a


.t/

.ƒ�.t//c
.ˆ�.t//p�t

� p

c � 1
Z 1

a

ƒ1�c.t/
.t/g.t/

..ƒ�.t//�c 
.t//
p�1

p

�

.t/.ˆ�.t//p

.ƒ�.t//c

� p�1
p

�t: (2.2.14)

Applying the Hölder inequality (1.1.8) on the integral

Z 1

a

"
ƒ1�c.t/
.t/g.t/

..ƒ�.t//�c 
.t//
p�1

p

#"�

.t/

.ƒ�.t//c

� p�1
p

.ˆ�.t//p�1
#
�t;

with indices p and p=.p � 1/, we see that

Z 1

a

"
ƒ1�c.t/
.t/g.t/

..ƒ�.t//�c 
.t//
p�1

p

#"�

.t/

.ƒ�.t//c

� p�1
p

.ˆ�.t//p�1
#
�t

�
"Z 1

a

"
ƒ1�c.t/
.t/g.t/

..ƒ�.t//�c 
.t//
p�1

p

#p

�t

# 1
p

�
�Z 1

a


.t/

.ƒ�.t//c
.ˆ�.t//p�t

� p�1
p

: (2.2.15)
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Substituting (2.2.15) into (2.2.14), we have

Z 1

a


.t/.ˆ�.t//p

.ƒ�.t//c
�t � p

c � 1

"Z 1

a

"
ƒ1�c.t/
.t/g.t/

..ƒ�.t//�c 
.t//
p�1

p

#p

�t

#1=p

�
�Z 1

a


.t/

.ƒ�.t//c
.ˆ�.t//p�t

� p�1
p

:

This implies that

�Z 1

a


.t/.ˆ�.t//p

.ƒ�.t//c
�t

�1� p�1
p

� p

c � 1

"Z 1

a

"
ƒ1�c.t/
.t/g.t/

..ƒ�.t//�c 
.t//
p�1

p

#p

�t

#1=p

;

and then, we get

Z 1

a


.t/.ˆ�.t//p

.ƒ�.t//c
�t �


 p

c � 1
�p
Z 1

a

"
ƒ1�c.t/
.t/g.t/

..ƒ�.t//�c 
.t//
p�1

p

#p

�t:

This leads to

Z 1

a


.t/.ˆ�.t//p

.ƒ�.t//c
�t �


 p

c � 1
�p
Z 1

a

.ƒ�.t//.p�1/c

.ƒ.t//p.c�1/ 
.t/g
p.t/�t;

which is the desired inequality (2.2.7). The proof is complete. �

From Theorem 2.2.1, using condition (2.1.20), we have the following result.

Corollary 2.2.1. Let T be a time scale and p � c > 1. Letƒ.t/ andˆ.t/ be defined
as in Theorem 2.2.1 and assume (2.1.20) holds. Then

Z 1

a


.t/.ˆ�.t//p

.ƒ�.t//c
�t �


 p

c � 1
�p

L.p�1/c
Z 1

a
.ƒ.t//.p�c/
.t/gp.t/�t: (2.2.16)

Remark 2.2.1. As a special case of Theorem 2.2.1 when T D R and p > 1 and
c > 1; we have the following Copson integral inequality (note that when T D R,
we have �.t/ D t and then ƒ�.t/ D ƒ.t/ D R t

a 
.s/ds//

Z 1

a


.t/

ƒc.t/

�Z t

a

.s/g.s/ds

�p

dt �

 p

c � 1
�p
Z 1

a
ƒp�c.t/
.t/gp.t/dt:
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As a special case when 
.t/ D 1 and a D 0, we have the Hardy-Littlewood type
inequality

Z 1

0

1

tc

�Z t

0

g.s/ds

�p

dt �

 p

c � 1
�p
Z 1

0

1

tc�p
gp.t/dt;

and when c D p, we have the classical Hardy inequality
Z 1

0

1

tp

�Z t

0

g.s/ds

�p

dt �
�

p

p � 1
�p Z 1

0

gp.t/dt: (2.2.17)

Let G.t/ D R t
a g.s/ds in (2.2.17). Thus, we have (note that G.a/ D 0/ that

Z 1

a

1

tp
.G.t//p dt �

�
p

1 � p

�
 Z 1

a
.G

0

.t//pdt;

which can be considered as a generalization of Wirtinger’s inequality. Note also that
when p D 2; a D 0 and replacing 1 by 1, we get the well-known inequality

Z 1

0



G

0

.t/
�2

dt � 1

4

Z 1

0

1

t2
G2.t/; with G.0/ D 0;

due to Hardy with the best constant 1=4:

Remark 2.2.2. Assume that T D N in Corollary 2.2.1, and p > 1; a D 1 and

define ƒ1.n/ D
nP

kD1

.k/: In this case the inequality (2.2.16) becomes the following

discrete Copson type inequality (where p > 1; c > 1/

1P
nD1


.n/

ƒc
1.n/

�
nP

sD1

.s/g.s/

�p

�

 p

c � 1
�p

L.p�1/c 1P
nD1

ƒ
p�c
1 .n/
.n/gp.n/:

In the following, we prove a time scale version of the Copson type inequal-
ity (2.2.2) which as a special case contains the inequality (1.3.3) due to Hardy and
Littlewood.

Theorem 2.2.2. Let T be a time scale with a 2 Œ0;1/T; p > 1 and 0 � c < 1. Let
ƒ.t/ be defined as in (2.2.5) and define

ˆ.t/ WD
Z 1

t

.s/g.s/�s; for t 2 Œa;1/T: (2.2.18)

Then
Z 1

a


.t/

.ƒ�.t//c
.ˆ.t//p�t � p

1 � c

Z 1

a
.ƒ�.t//1�c 
.t/g.t/.ˆ.t//p�1�t;

(2.2.19)
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and
Z 1

a


.t/

.ƒ�.t//c
.ˆ.t//p�t �


 p

1 � c

�p
Z 1

a
.ƒ�.t//p�c
.t/gp.t/�t. (2.2.20)

Proof. Integrating the left hand side of (2.2.19) using integration by parts for-
mula (1.1.4) with u.t/ D .ˆ.t//p; and v�.t/ D 
.t/= .ƒ�.t//c ; we obtain

Z 1

a


.t/.ˆ.t//p

.ƒ�.t//c
�t D v.t/ˆ

p
.t/
ˇ̌̌1
a

C
Z 1

a
.v� .t//



�ˆp

.t/
��
�t, (2.2.21)

where

v.t/ WD
Z t

a


.s/

.ƒ�.t//c
�s D

Z t

a
.ƒ�.t//�c �ƒ�.s/



�s: (2.2.22)

By the chain rule (1.1.6) and the fact that ƒ�.t/ D 
.t/ � 0; we see that

�
ƒ1�c.t/


� D .1 � c/
Z 1

0

ƒ�.t/

Œhƒ�.t/C .1 � h/ƒ.t/�c
dh

� .1 � c/
ƒ�.t/

Œƒ�.t/�c
:

This implies that

v�.t/ D
Z �.t/

a


.s/

.ƒ�.t//c
�s �

�
1

1 � c

�Z �.t/

a

�
ƒ1�c.s/


�
�s

�
�

1

1 � c

�
.ƒ�.t//1�c: (2.2.23)

Applying the chain rule (1.1.5), we see that there exists d 2 Œt; �.t/� such that

�


ˆ

p
.t/
�� D �pˆ

p�1
.d/.ˆ

�
.t//: (2.2.24)

Since ˆ
�
.t/ D �
.t/g.t/ � 0 and d � t, we have

�


ˆ

p
.t/
�� � p
.t/g.t/.ˆ.t//p�1: (2.2.25)

Usingˆ.1/ D 0,ƒ.a/ D 0 and substituting (2.2.23) and (2.2.25) into (2.2.21), we
get that

Z 1

a


.t/.ˆ.t//p

.ƒ�.t//c
�t � p

1 � c

Z 1

a
.ƒ�.t//1�c
.t/g.t/.ˆ.t//p�1�t; (2.2.26)
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which is the desired inequality (2.2.19). Now, we use (2.2.26) to prove (2.2.20). The
inequality (2.2.26) can be written in the form

Z 1

a


.t/

.ƒ�.t//c
.ˆ.t//p�t

� p

1 � c

Z 1

a

.ƒ�.t//1�c
.t/g.t/

..ƒ�.t//�c 
.t//
p�1

p

 

.t/.ˆ.t//p

.ƒ�.t//c

! p�1
p

�t: (2.2.27)

Applying the Hölder inequality (1.1.8) on the integral

Z 1

a

"
.ƒ�.t//1�c
.t/g.t/

..ƒ�.t//�c 
.t//
p�1

p

#"�

.t/

.ƒ�.t//c

� p�1
p

.ˆ.t//p�1
#
�t;

with indices p and p=.p � 1/, we see that

Z 1

a

"
.ƒ�.t//1�c
.t/g.t/

..ƒ�.t//�c 
.t//
p�1

p

#"�

.t/

.ƒ�.t//c

� p�1
p

.ˆ.t//p�1
#
�t

�
"Z 1

a

"
.ƒ�.t//1�c
.t/g.t/

..ƒ�.t//�c 
.t//
p�1

p

#p

�t

#1=p

�
�Z 1

a


.t/

.ƒ�.t//c
.ˆ.t//p�t

� p�1
p

: (2.2.28)

Substituting (2.2.28) into (2.2.27), we have

Z 1

a


.t/.ˆ.t//p

.ƒ�.t//c
�t

� p

1 � c

"Z 1

a

"
.ƒ�.t//1�c
.t/g.t/

..ƒ�.t//�c 
.t//
p�1

p

#p

�t

#1=p

�
�Z 1

a


.t/

.ƒ�.t//c
.ˆ.t//p�t

� p�1
p

:

Hence

"Z 1

a


.t/.ˆ
�
.t//p

.ƒ�.t//c
�t

#1� p�1
p

� p

1 � c

"Z 1

a

"
.ƒ�.t//1�c
.t/g.t/

..ƒ�.t//�c 
.t//
p�1

p

#p

�t

#1=p

;
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and then

Z 1

a


.t/.ˆ.t//p

.ƒ�.t//c
�t �


 p

1 � c

�p
Z 1

a

"
.ƒ�.t//1�c
.t/g.t/

..ƒ�.t//�c 
.t//
p�1

p

#p

�t:

This implies

Z 1

a


.t/.ˆ
�
.t//p

.ƒ�.t//c
�t �


 p

1 � c

�p
Z 1

a
.ƒ�.t//p�c
.t/gp.t/�t;

which is the desired inequality (2.2.20). The proof is complete. �

Remark 2.2.3. As a special case of Theorem 2.2.2 when T D R; p > 1 and 0 �
c < 1; we have the following integral inequality which can be considered as a
generalization of Hardy’s inequality (note that when T D R, we have �.t/ D t/

Z 1

a


.t/

ƒc.t/

�Z 1

t

.s/g.s/ds

�p

dt �

 p

1 � c

�p
Z 1

a
ƒp�c.t/
.t/gp.t/dt:

As a special case when 
.t/ D 1 and a D 0, we have a Hardy-Littlewood type
inequality

Z 1

0

1

tc

�Z 1

t
g.s/ds

�p

dt �

 p

1 � c

�p
Z 1

0

1

tc�p
gp.t/dt:

Remark 2.2.4. Assume that T D N in Theorem 2.2.2, p > 1; a D 1 and define

ƒ.n/ D
nP

kD1

.k/. In this case inequality (2.2.20) becomes the following discrete

Copson-type inequality (where p > 1 and 0 � c < 1/

1P
nD1


.n/

ƒc.n/

� 1P
sDn


.s/g.s/

�p

�
�

p

.1 � c/

�p 1P
nD1

ƒp�c.n/
.n/gp.n/:

Remark 2.2.5. In [22] Bennett used the discrete inequality (2.2.2) due to Copson to
prove a generalization of the Littlewood inequality of the form

1P
nD1

ap
nAq

n

� 1P
kDn

a1Cp=q
k

�r

�
�

p.q C r/ � q

p

�q 1P
nD1

�
ap

nAq
n

	1Cr=q
; p; q; r � 1:

(2.2.29)
We mentioned here that the inequality (2.2.20) can be used to prove the time scale
version of (2.2.29) which takes the form

Z 1

t0

ap.t/ .A� .t//qƒr.t/�t �
�

p.q C r/ � q

p

�r Z 1

t0

Œap.t/.A� .t//q�1Cr=q�t;

(2.2.30)
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where

A� .t/ D
Z �.t/

t0

a.s/�s, ƒ.t/ WD
Z 1

t
a1Cp=q.s/�s; for t 2 Œt0;1/T: (2.2.31)

This will be discussed later in Chap. 4.

2.3 Converses of Copson-Type Inequalities

In 1928, Copson [49, Theorem 2.3] proved converses of the inequality (2.2.2) which
is given by

1P
nD1


.n/

.ƒ.n//c

�1P
iDn

.i/g.i/

�p

�

 p

1 � c

�p 1P
nD1


.n/

�
nP

iD1

.i/

�p�c

gp.n/, (2.3.1)

where g.n/ > 0; 
.n/ > 0 for n � 1, ƒ.n/ D Pn
iD1 
.i/ and 0 < p < 1 and c < 0.

The original motivation for Copson’s inequality (2.3.1), was a desire to generalize
the following inequality

1P
nD1

n�c

� 1P
kDn

g.k/

�p

� K
1P

nD1
n�c .ng.n//p , p > 0, c < 1;

which is the converse of the inequality (1.3.2) due to Hardy and Littlewood [74];
here K is a positive constant depending on p and c and g.n/ > 0 for n � 1. In 1976,
Copson [50] proved that if 0 < p � 1 and c < 1, then

Z 1

0


.t/

.ƒ.t//c

�Z 1

t

.s/g.s/ds

�p

dt �

 p

1 � c

�p
Z 1

0


.t/ .ƒ.t//p�c gp.t/dt.

(2.3.2)
He also proved that if 0 < p � 1 and c > 1, and ƒ.t/ ! 1 as t ! 1; then

Z 1

a


.t/

.ƒ.t//c

�Z t

a

.s/g.s/ds

�p

dt �

 p

1 � c

�p
Z 1

0


.t/ .ƒ.t//p�c gp.t/dt.

(2.3.3)
In 1987, Bennett [22] (see also Leindler [109]) proved the discrete version of (2.3.3)
which is given by

1P
nD1


.n/

.ƒ.n//c

�
nP

iD1

.i/g.i/

�p

�
�

pL

c � 1
�p 1P

nD1

.n/ .ƒ.n//p�c gp.n/; (2.3.4)

where c > 1 > p > 0; ƒ.n/ ! 1 as n ! 1, and L D inf 
.n/

.nC1/ : In this

section, we prove some dynamic inequalities which as special cases contain the
inequalities (2.3.1)–(2.3.4). The results in this section are adapted from [166].
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Theorem 2.3.1. Let T be a time scale with a 2 .0;1/T and c � 0 < p < 1. Let
ƒ.t/ D R t

a 
.s/�s; and

‰.t/ D
Z 1

t

.s/g.s/�s: (2.3.5)

Then
Z 1

a


.t/.‰.t//p

.ƒ�.t//c
�t �


 p

1 � c

�p
Z 1

a

.t/.ƒ�.t//p�cgp.t/�t: (2.3.6)

Proof. Integrating the left hand side of (2.3.6) by the parts formula (1.1.4) with
v�.t/ D 
.t/= .ƒ�.t//c ; and u.t/ D �

‰.t/

p
; we obtain

Z 1

a


.t/

.ƒ�.t//c
.‰.t//p�t D v.t/‰

p
.t/
ˇ̌̌1
a

C
Z 1

a
.v� .t//.�‰p

.t//��t; (2.3.7)

where v.t/ D R t
a


.s/
.ƒ� .s//c�s: From the inequality (2.3.7) and ‰.1/ D ƒ.a/ D 0;

we have Z 1

a


.t/

.ƒ�.t//c
.‰.t//p�t D

Z 1

a
v�.t/.�‰p

.t//��t: (2.3.8)

Applying the chain rule (1.1.5); we see that there exists d 2 Œt; �.t/� such that

� .‰p
.t//� D �p

‰
1�p
.d/
.‰

�
.t// D p
.t/g.t/

‰
1�p
.d/

: (2.3.9)

Since ‰
�
.t/ D �
.t/g.t/ � 0; and d � t, we see that ‰.t/ � ‰.d/, and then

p
.t/g.t/

‰
1�p
.d/

� p
.t/g.t/

.‰.t//1�p
; (note 0 < p < 1/:

This and (2.3.9) imply that



�‰p

.t/
��
/ � pg.t/
.t/

.‰.t//1�p
: (2.3.10)

From the chain rule (1.1.6) and the fact that .ƒ.t//� D 
.t/ � 0 and c � 0; we see
that

�
.ƒ.t//1�c


� D .1 � c/
Z 1

0


.t/

Œhƒ�.t/C .1 � h/ƒ.t/�c
dh

� .1 � c/

.t/

Œƒ�.t/�c
:
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This implies that

v�.t/ D
Z �.t/

a


.s/

.ƒ�.s//c
�s �

�
1

1 � c

�Z �.t/

a

�
ƒ1�c.s/


�
�s

D
�

1

1 � c

�
.ƒ�.t//1�c: (2.3.11)

Substituting (2.3.10) and (2.3.11) into (2.3.8) we have that

�Z 1

a


.t/

.ƒ�.t//c
�
‰.t/


p
�t

�p

�

 p

1 � c

�p
"Z 1

a

�
gp.t/
p.t/

.‰.t//p.1�p/.ƒ�.t//p.c�1/

�1=p

�t

#p

: (2.3.12)

Applying the Hölder inequality

Z b

a
F.t/G.t/�t �

�Z b

a
Fq.t/�t

� 1
q
�Z b

a
Gh.t/�t

� 1
h

;

on the term
2
4Z 1

a

 
gp.t/
p.t/

.ƒ�.t//p.c�1/ .‰.t//p.1�p/

!1=p

�t

3
5

p

;

with indices q D 1=p > 1, h D 1=.1 � p/ (note that 1q C 1
h D 1, where q > 1/ and

F.t/ D gp.t/
p.t/

.ƒ�.t//p.c�1/ .‰.t//p.1�p/
; and G.t/ D

�

.t/

.ƒ�/c.t/

�1�p

.‰.t//p.1�p/;

we see that
�Z 1

a
F1=p.t/�t

�p

D
2
4Z 1

a

 
gp.t/
p.t/

.ƒ�.t//p.c�1/ .‰.t//p.1�p/

!1=p

�t

3
5

p

�
R1

a F.t/G.t/�thR1
a .G.t//

1
1�p�t

i1�p

D
"Z 1

a

gp.t/ .
.t/.ƒ�.t//�c/1�p 
p.t/.‰.t//p.1�p/�t

.ƒ�.t//p.c�1/ .‰.t//p.1�p/

#
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�
�Z 1

a
..


.t/

.ƒ�.t//c
/1�p.‰.t//p.1�p///

1
1�p�t

�p�1

D
"Z 1

a


.t/gp.t/

.ƒ�.t//p.c�1/ ..ƒ�.t//c/1�p
�t

#�Z 1

a


.t/

..ƒ�.t//c
.‰.t//p�t

�p�1

D
�Z 1

a

gp.t/
.t/

.ƒ�.t//c�p�t

�
1hR1

a

.t/

.ƒ� .t//c .‰.t//
p�t

i1�p :

This implies that

2
4Z 1

a

 
gp.t/
p.t/.‰.t//�p.1�p/

.ƒ�.t//p.c�1/

!1=p

�t

3
5

p

�
R1

a gp.t/.ƒ�.t//p�c.t/
.t/�thR1
a


.t/
.ƒ� .t//c .‰.t//

p�t
i1�p :

(2.3.13)
Substituting (2.3.13) into (2.3.12), we get

�Z 1

a


.t/.‰.t//p

.ƒ�.t//c
�t

�p

�

 p

1 � c

�p
R1

a 
.t/ .ƒ�.t//p�c gp.t/�thR1
a


.t/
.ƒ� .t//c .‰.t//

p�t
i1�p :

This gives that

Z 1

a


.t/.‰.t//p

.ƒ�.t//c
�t �


 p

1 � c

�p
�Z 1

a

.t/ .ƒ�.t//p�c gp.t/�t

�
;

which is the desired inequality (2.3.6). The proof is complete. �

Remark 2.3.1. Assume that T D R in Theorem 2.3.1, c � 0 < p < 1 and a D 1:

In this case, we have the following integral inequality of Bennett-Leindler type (note
that when T D R, we have ƒ�.t/ D ƒ.t/ D R t

a 
.s/ds/

Z 1

1


.t/

.ƒ.t//c

�Z 1

t

.s/g.s/ds

�p

dt �

 p

1 � c

�p
Z 1

1


.t/ .ƒ.t//p�c gp.t/dt:

Remark 2.3.2. Assume that T D N in Theorem 2.3.1, c � 0 < p < 1 and
a D 1. In this case inequality (2.3.6) becomes the following discrete Bennett-
Leindler inequality

1P
nD1


.n/

.ƒ.n//c

� 1P
kDn


.k/g.k/

�p

�

 p

1 � c

�p 1P
nD1


.n/

�
nP

kD1

.k/

�p�c

gp.n/,

where ƒ.n/ D
nP

kD1

.n/:
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In the following theorem, we prove a time scale version of the Bennett-Leindler
type inequality (2.3.4) on time scales.

Theorem 2.3.2. Let T be a time scale with a 2 .0;1/T and 0 < p � 1 < c. Let
ƒ.t/ D R t

a 
.s/�s; such that

L WD inf
t2T

ƒ.t/

ƒ�.t/
> 0; (2.3.14)

and define ˆ.t/ WD R t
a 
.t/g.s/�s: Then

Z 1

a


.t/.ˆ
�
.t//p

.ƒ�.t//c
�t �

�
pL1�c

c � 1
�p Z 1

a

.t/.ƒ�.t//p�cgp.t/�t: (2.3.15)

Proof. Integrating the left hand side of (2.3.6) by the parts formula (1.1.4) with

u�.t/ D 
.t/
.ƒ� .t//c ; and v�.t/ D



ˆ
�
.t/
�p
; we obtain

Z 1

a


.t/.ˆ
�
.t//p

.ƒ�.t//c
�t D u.t/ˆ

p
.t/
ˇ̌̌1
a

C
Z 1

a
.�u.t//.ˆ

p
.t//��t;

where u.t/ D R t
a


.s/
.ƒ� .s//c�s: From the inequality (2.3.7) and ˆ.1/ D u.a/ D 0; we

have
Z 1

a


.t/

.ƒ�.t//c
.ˆ

�
.t//p�t D

Z 1

a
.�u.t//.ˆ

p
.t//��t: (2.3.16)

Applying the chain rule (1.1.5), we see that there exists d 2 Œt; �.t/� such that



ˆ

p
.t/
�� D p

ˆ
1�p
.d/
.ˆ

�
.t// D p
.t/g.t/

ˆ
1�p
.d/

: (2.3.17)

Since ˆ
�
.t/ D 
.t/g.t/ � 0; and �.t/ � d, we see that ˆ

�
.t/ � ˆ.d/, and then

p
.t/ g.t/

ˆ
1�p
.d/

� p
.t/g.t/

.ˆ
�
.t//1�p

(note 0 < p < 1/:

This and (2.3.17) implies that



ˆ

p
.t/
�� � p
.t/g.t/

.ˆ
�
.t//1�p

: (2.3.18)

From the chain rule (1.1.6) and the fact that .ƒ.t//� D 
.t/ � 0 and c > 1; we
see that
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�
.ƒ.t//1�c


� D .1 � c/
Z 1

0


.t/

Œhƒ�.t/C .1 � h/ƒ.t/�c
dh

� �.c � 1/ 
.t/

Œƒ�.t/�c
:

This and (2.3.14) imply that

� u.t/ D �
Z t

a


.s/

.ƒ�.s//c
�s �

�
1

c � 1
�Z t

a

�
ƒ1�c.s/


�
�s

D
�

1

c � 1
��

ƒ.t/

ƒ�.t/

�1�c

.ƒ�.t//1�c

�
�

L1�c

c � 1
�
.ƒ�.t//1�c : (2.3.19)

Substituting (2.3.19) and (2.3.18) into (2.3.16) yields

�Z 1

a


.t/

.ƒ�.t//c


ˆ
�
.t/
�p
�t

�p

�
�

pL1�c

c � 1
�p
2
4Z 1

a

 
gp.t/
p.t/

.ˆ
�
.t//p.1�p/.ƒ�.t//p.c�1/

!1=p

�t

3
5

p

:

The rest of the proof is similar to the proof of Theorem 2.3.1 and hence is omitted.
The proof is complete. �

Remark 2.3.3. Assume that T D R in Theorem 2.3.2, 0 < p � 1 < c and a D 1:

In this case, we have the following integral inequality of Leindler type (note that
when T D R, we have ƒ�.t/ D ƒ.t/ D R t

a 
.s/ds/

Z 1

1


.t/

.ƒ.t//c

�Z t

a

.t/g.s/ds

�p

dt �

 p

c � 1
�p
Z 1

1


.t/.ƒ.t//p�cgp.t/dt:

(2.3.20)

Remark 2.3.4. Assume that T D N in Theorem 2.3.2, 0 < p � 1 < c and a D 1: In
this case inequality (2.3.15) becomes the following discrete Bennett-Leindler type
inequality,

1P
nD1


.n/

.ƒ.n C 1//c

�
nP

kD1

.k/g.k/

�p

�t �
�

pL1�c

c � 1
�p 1P

nD1

.n/.ƒ.n C 1//p�cgp.n/;

(2.3.21)

where ƒ.n C 1/ D
nP

kD1

.n/:
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2.4 Extensions of Copson-Type Inequalities

In 1940, Walsh [188] extended the Copson type inequality (2.2.1) and proved that if
b � 1, c � 1, and for all n � 0, a.n/ > 0; 
.n/ > 0; p.n/ > 0; and

p.n/ƒ.n/=P.n/ � p.n C 1/ƒ.n C 1/=P.n C 1/ (2.4.1)

where

ƒ.n/ D
nX

sDa


.s/, A.n/ D
nX

sDa


.s/g.s/; P.n/ D
nX

sDa

p.s/
.s/;

then

1X
nDa


.n/ .A.n//c pb.n/ .ƒ.n//b�1

.P.n//bCc�1

�

 c

c � 1
�b 1X

nDa


.n/ .P.n//1�c .ƒ.n//b�1 gb.n/ .A.n//c�b : (2.4.2)

The inequality (2.4.2) was proved by employing a general algebraic inequality
designed and proved by Walsh of the form

c.1 � x/b � b˛b�1.1 � ˇ1�cxc/C b.c � 1/˛b�1.1 � ˇ/C c.1 � b/˛b; (2.4.3)

where

b � 1; c � 1; 0 � ˛ � 1; 0 � ˇ � 1

and x is assumed to lie in the range .0; 1/:
In this section, we follow Walsh’s method to prove some dynamic inequalities of

the form (2.4.2) on discrete time scales, i.e., where the domain of the unknown
function is a so-called discrete time scale T. The inequalities, as special cases,
contain the discrete Walsh inequality (2.4.2) when T D N, and can be used to derive
discrete inequalities when T DhN and other types of discrete time scales when
�.t/ ¤ 0. The results in this section are adapted from [165].

Theorem 2.4.1. Let T be a discrete time scale and b > 1; c > 1 and define

8<
:
ƒ.t/ WD R t

a 
.s/�s; A.t/ WD R t
a g.s/
.s/�s;

P.t/ WD R t
a p.s/
.s/�s;

for t 2 Œa;1/T: (2.4.4)
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If

.P� .t//1�c .A� .t//c � .P.t//1�c .A.t//c ; (2.4.5)

then

Z 1

a


.t/pb.t/ .A� .t//c

.P� .t//bCc�1 �t �

 c

c � 1
�b
Z 1

a


.t/gb.t/ .A� .t//c�b

.P� .t//c�1 �t: (2.4.6)

Proof. Let

x WD A.t/

A� .t/
< 1, ˇ WD P.t/

P� .t/
< 1, and ˛ WD �


.t/

ƒ�.t/
; (2.4.7)

where � is positive and will be determined later such that ˛ < 1: As a result of these
substitutions in (2.4.3), we get that

c

�
1 � A.t/

A� .t/

�b

D c

�
�.t/A�.t/

A� .t/

�b

D c

�
�.t/g.t/
.t/

A� .t/

�b

� b

�
�

.t/

ƒ�.t/

�b�1  
1 �

�
P.t/

P� .t/

�1�c � A.t/

A� .t/

�c
!

Cb.c � 1/

b�1.t/�.t/p.t/
.t/
.ƒ�.t//b�1 P� .t/

�b�1 C c.1 � b/
b.t/

.ƒ�.t//b
�b: (2.4.8)

Multiplying both sides by


1�b.t/ .A� .t//c .ƒ�.t//b�1 .P� .t//1�c ; (2.4.9)

gives

c
.t/.g.t/�.t//b .A� .t//c�b

.P� .t//c�1 .ƒ�.t//1�b

� b�b�1 h.P� .t//1�c .A� .t//c � .P.t//1�c .A.t//c
i

C 
.t/ .A� .t//c

�
�

b.c � 1/�.t/p.t/
.P� .t//c

�b�1 C c.1 � b/�b

.P� .t//c�1 ƒ�.t/

�
: (2.4.10)

Now, we consider the last term on the right hand side, namely

f .�/ WD M�b C K�b�1; (2.4.11)
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as a function of �; where

K WD b.c � 1/�.t/p.t/
.P� .t//c

; and M WD c.1 � b/ .P� .t//1�c

ƒ�.t/
:

By differentiation, we see that the function f .�/ has a maximum value at

� D c � 1
c

p.t/�.t/ƒ�.t/

P� .t/
> 0; (2.4.12)

and the maximum value of f .�/ is given by

max
�>0

f .�/ D .c � 1/b
cb�1

pb.t/�b.t/ .ƒ�.t//b�1

.P� .t//bCc�1 : (2.4.13)

From (2.4.7) and (2.4.12), we see that

˛ D �

.t/

ƒ�.t/
D c � 1

c

p.t/�.t/
.t/

P� .t/
D c � 1

c

�.t/P�.t/

P� .t/

D c � 1
c

P� .t/ � P.t/

P� .t/
;

satisfies 0 < ˛ < 1: Then (2.4.10) and (2.4.13) imply that

c
.t/.g.t/�.t//b .A� .t//c�b

.P� .t//c�1 .ƒ�.t//1�b

� b�b�1 h.P� .t//1�c .A� .t//c � .P.t//1�c .A.t//c
i

C .c � 1/b
cb�1


.t/�b.t/pb.t/ .A� .t//c .ƒ�.t//b�1

.P� .t//bCc�1 :

Using the condition (2.4.5), we have that

c
.t/gb.t/ .A� .t//c�b

.P� .t//c�1 � .c � 1/b
cb�1


.t/ .A� .t//c

p�b.t/.P� .t//bCc�1 : (2.4.14)

This implies after integration from a to T that

c
Z T

a


.t/gb.t/ .A� .t//c�b

.P� .t//c�1 �t � .c � 1/b
cb�1

Z T

a


.t/ .A� .t//c

p�b.t/.P� .t//bCc�1�t: (2.4.15)
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Thus

Z T

a


.t/ .A� .t//c

.P� .t//bCc�1p�b.t/
�t �


 c

c � 1
�b
Z T

a


.t/gb.t/ .A� .t//c�b

.P� .t//c�1 �t:

Finally, letting T ! 1; we have that

Z 1

a


.t/ .A� .t//c pb.t/

.P� .t//bCc�1 �t �

 c

c � 1
�b
Z 1

a


.t/gb.t/ .A� .t//c�b

.P� .t//c�1 �t;

which is the desired inequality (2.4.6). The proof is complete. �

As a special case of Theorem 2.4.1, when c > b, we have the following result.

Corollary 2.4.1. Let T be a discrete time scale and c > b > 1 and ƒ.t/, A.t/ and
P.t/ are defined as in Theorem 2.4.1. If (2.4.5) holds, then

Z 1

a


.t/ .A� .t//c pb.t/

.P� .t//bCc�1 �t �

 c

b � 1
�c
Z 1

a


.t/gb.t/ .A� .t//c�b

.P� .t//c�1 �t: (2.4.16)

As a special case when p.t/ D 1 for all t, we see that P� .t/ D ƒ�.t/ and
then (2.4.16) reduces to

Z 1

a


.t/ .A� .t//c

.ƒ�.t//b
�t �


 c

b � 1
�c
Z 1

a

.t/.A� .t//c�bgb.t/�t: (2.4.17)

As a special case when b D c and p.t/ D 1 for all t, we see that P.t/ D ƒ.t/ and
then (2.4.17) reduces to

Z 1

a


.t/ .A� .t//c

.ƒ�.t//c
�t �


 c

c � 1
�c
Z 1

a

.t/gc.t/�t: (2.4.18)

As a special case when 
.t/ D 1, we have the inequality

Z 1

a

 
1

�.t/ � a

Z �.t/

a
g.s/�s

!c

�t �

 c

c � 1
�c
Z 1

a
gc.t/�t: (2.4.19)

As a special case when T D N, we see that inequality (2.4.17) becomes a Copson
type inequality

1X
nDa


.n/Ac.n/

ƒb.n/
�

 c

b � 1
�c 1X

nDa


.n/.A.n//c�bgc.n/; (2.4.20)
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where c > 1 and b > 1, and for all n, a.n/ > 0; 
.n/ > 0 and

A.n/ D
nX

sDa


.s/g.s/; and ƒ.n/ D
nX

sDa


.s/: (2.4.21)

As a special case when T D N, we see that inequality (2.4.18) becomes the
following Copson discrete inequality

1X
nDa


.n/

�
A.n/

ƒ.n/

�c

�

 c

c � 1
�c 1X

nDa


.n/gc.n/; (2.4.22)

where c > 1 and A.n/ and ƒ.n/ are defined as in (2.4.21). As a special case when
T D N and a D 1, we see that inequality (2.4.18) becomes the following Hardy
discrete inequality

1X
nD1

 
1

n

nX
sD1

g.s/

!c

�

 c

c � 1
�c 1X

nD1
gc.n/:

Theorem 2.4.2. Let T be a discrete time scale and c > 1; b > 1 and ƒ.t/, A.t/
and P.t/ are defined as in Theorem 2.4.1. If

p� .t/ƒ�2.t/

P�2.t/
� p.t/ƒ�.t/

P� .t/
; (2.4.23)

then

Z 1

a


.t/�b�1.t/ .A� .t//c pb.t/

.P� .t//bCc�1 .ƒ�.t//1�b �t

�

 c

b � 1
�c
Z 1

a


.t/�b�1.t/gb.t/ .A� .t//c�b

.P� .t//c�1 .ƒ�.t//1�b �t: (2.4.24)

Proof. We proceed as in the proof of Theorem 2.4.1, to get

c
.�.t/g.t//b 
b.t/

.A� .t//b

� b .�.t//b�1 

b�1.t/



.P� .t//1�c .A� .t//c � .P.t//1�c .A.t//c

�
.P� .t//1�c .A� .t//c .ƒ�.t//b�1

Cb.c � 1/

b�1.t/�.t/p.t/
.t/
.ƒ�.t//b�1 P� .t/

�b�1 C c.1 � b/
b.t/

.ƒ�.t//b
�b: (2.4.25)
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Multiplying both sides of (2.4.25) by


1�b.t/ .A� .t//c .ƒ�.t//b�1 .P� .t//1�c

�.t/
;

we get that

c
.t/.g.t/�.t//b .A� .t//c�b

�.t/ .P� .t//c�1 .ƒ�.t//1�b

� b .�.t//b�1 h.P.t//1�c .A.t//c
i� C 
.t/ .A� .t//c

�.t/

�
�

b.c � 1/�.t/p.t/
.P� .t//c

�b�1 C c.1 � b/�b

.P� .t//c�1 .ƒ�.t//

�
: (2.4.26)

Now, we consider the last term on the right hand side, namely

f1.�/ WD M1�
b C K1�

b�1;

as a function of �; where

K1 WD b.c � 1/�.t/p.t/
.P� .t//c

; and M1 WD c.1 � b/ .P� .t//1�c

ƒ�.t/
:

By differentiation, we see that the function f1.�/ has a maximum value at

� D c � 1
c

p.t/�.t/ƒ�.t/

P� .t/
> 0;

and the maximum value of f1.�/ is given by

max
�>0

f1.�/ D .c � 1/b
cb�1

pb.t/�b.t/ .ƒ�.t//b�1

.P� .t//bCc�1 :

Integrating from a to T , we obtain

c
Z T

a


.t/.g.t/�.t//b .A� .t//c�b

�.t/ .P� .t//c�1 .ƒ�.t//1�b�t

� b
Z T

a
.�.t//b�1 h.P.t//1�c .A.t//c

i�
�t

C .c � 1/b
cb�1

Z T

a


.t/�b�1.t/ .A� .t//c .ƒ�.t//b�1

p�b.t/.P� .t//bCc�1 �t: (2.4.27)
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Using the integration by parts formula, we see that

Z T

a
.�.t//b�1 h.P.t//1�c .A.t//c

i�
�t

D
Z T

a
.�.t//b�1 h.P.t//1�c .A.t//c

i�
�t D .�.T//b�1 h.P.T//1�c .A.T//c

i

�
Z T

a



.�.t//b�1�� .P� .t//1�c .A� .t//c�t;

where A.a/P.a/ D 0: From the chain rule and condition (2.4.23), we see that



.�.t//b�1�� D .b � 1/ .�.t//�

Z 1

0

Œh�� C .1 � h/��b�2 dh

D .b � 1/
�.t/

 
p� .t/ƒ�2.t/

P�2.t/
� p.t/ƒ�.t/

P� .t/

!

�
Z 1

0

Œh .�/� C .1 � h/��b�2 dh � 0:

This implies that

Z T

a
.�.t//b�1

h
.P� .t//1�c .A� .t//c � .P.t//1�c .A.t//c

i
�.t/

�t

D
Z T

a
.�.t//b�1 h.P.t//1�c .A.t//c

i�
�t � 0:

Using this in (2.4.27), we obtain that

Z T

a

c
.t/gb.t/�b�1.t/ .A� .t//c�b

.P� .t//c�1 .ƒ�.t//1�b �t

� .c � 1/b
cb�1

Z T

a


.t/�b�1.t/ .A� .t//c .ƒ�.t//b�1

p�b.t/.P� .t//bCc�1 �t;

which is the desired inequality (2.4.24). The proof is complete. �

Remark 2.4.1. As a special case when T D N, we see that �.t/ D t C 1 and then
condition (2.4.23) becomes

p.n/ƒ.n C 1/

P.n C 1/
� p.n C 1/ƒ.n C 2/

P.n C 2/
; (2.4.28)
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where ƒ.n/ D
n�1X
sDa


.n/ and P.n/ D
n�1X
sDa


.n/p.n/: One can easily see that

condition (2.4.28) is the same condition (2.4.1) imposed by Walsh.

In the following, we prove a companion of inequality (2.4.6) on discrete time
scales which contains a discrete inequality of Walsh type.

Theorem 2.4.3. Let T be a discrete time scale and b > 1; c > 1 and define

8<
:
ƒ.t/ D R t

a 
.s/�s; �.t/ WD R1
t g.s/
.s/�s;

±.t/ WD R1
t p.s/
.s/�s;

for t 2 Œa;1/T: (2.4.29)

If

.±.t//1�c .�.t//c � .±� .t//1�c .��.t//c ; (2.4.30)

then

Z 1

a


.t/ .�.t//c .p.t//b .ƒ�.t//b�1

.±.t//bCc�1 �t

�

 c

c � 1
�b
Z 1

a


.t/.g.t//b .�.t//c�b

.±.t//c�1 .ƒ�.t//1�b�t: (2.4.31)

Proof. Let

x WD ��.t/

�.t/
< 1, ˇ WD ±� .t/

±.t/ < 1, and ˛ WD �

.t/

ƒ�.t/
; (2.4.32)

where � is positive will be determined later such that ˛ < 1: As a result of these
substitutions in (2.4.3), we get that

c

�
1 � ��.t/

�.t/

�b

D c

���.t/��.t/
�.t/

�b

D c

�
�.t/g.t/
.t/

�.t/

�b

� b

�
�

.t/

ƒ�.t/

�b�1  
1 �

�±� .t/
±.t/

�1�c �
��.t/

�.t/

�c
!

Cb.c � 1/�b�1 

b�1.t/�.t/p.t/
.t/
.ƒ�.t//b�1 ±.t/ C c.1 � b/
b.t/

.ƒ�.t//b
�b: (2.4.33)
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Multiplying both sides by


1�b.t/ .�.t//c .ƒ�.t//b�1 .±.t//1�c ; (2.4.34)

gives

c
.t/.g.t/�.t//b .�.t//c�b

.±.t//c�1 .ƒ�.t//1�b

� b .�.t//b�1 h.±.t//1�c .�.t//c � .±� .t//1�c .��.t//c
i

C 
.t/ .�.t//c

�
�

b.c � 1/p.t/�.t/
.±.t//c �b�1 C c.1 � b/

.±.t//c�1 .ƒ�.t//
�b

�
: (2.4.35)

Now, we consider the last term on the right hand side, namely g.�/ WD M1�
b C

K1�b�1; as a function of �; where

K1 WD b.c � 1/p.t/�.t/
± c.t/

and M1 WD c.1 � b/

.±.t//c�1 ƒ�.t/
:

The function g.�/ has a maximum value at

� WD c � 1
c

p.t/�.t/ƒ�.t/

±.t/ > 0; (2.4.36)

and the maximum value is given by

max
��0 g.�/ D .c � 1/b

cb�1
.p.t/�.t//b .ƒ�.t//b�1

.±.t//bCc�1 : (2.4.37)

From (2.4.32) and (2.4.36), we see that

˛ D �

.t/

ƒ�.t/
D c � 1

c

p.t/�.t/
.t/

±.t/ D c � 1
c

��.t/±�.t/
±.t/

D c � 1
c

�.±� .t/ � ±.t//
±.t/ D c � 1

c

±.t/ � ±� .t/
±.t/ ;

satisfies 0 < ˛ < 1: Then (2.4.30), (2.4.35) and (2.4.37) imply that

c
.t/.g.t/�.t//b .�.t//c�b

.±.t//c�1 .ƒ�.t//1�b

� b .�.t//b�1 h.±.t//1�c .�.t//c � .±� .t//1�c .��.t//c
i
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C .c � 1/b
cb�1


.t/ .p.t/�.t//b .�.t//c .ƒ�.t//b�1

.±.t//bCc�1

� .c � 1/b
cb�1


.t/ .p.t/�.t//b .�.t//c .ƒ�.t//b�1

.±.t//bCc�1 :

This implies after integration from a to T that

c
Z T

a


.t/.g.t//b .�.t//c�b

.±.t//c�1 .ƒ�.t//1�b�t

� .c � 1/b
cb�1

Z T

a


.t/ .�.t//c pb.t/ .ƒ�.t//b�1

.±.t//bCc�1 �t:

Thus

Z T

a


.t/ .�.t//c pb.t/ .ƒ�.t//b�1

.±.t//bCc�1 �t

�

 c

c � 1
�b
Z T

a


.t/gb.t/ .�.t//c�b

.±.t//c�1 .ƒ�.t//1�b�t:

Finally, letting T ! 1; we have that

Z 1

a


.t/ .�.t//c pb.t/ .ƒ�.t//b�1

.±.t//bCc�1 �t

�

 c

c � 1
�b
Z 1

a


.t/gb.t/ .�.t//c�b

.±.t//c�1 .ƒ�.t//1�b�t;

which is the desired inequality (2.4.29). The proof is complete. �

Remark 2.4.2. As a special case of Theorem 2.4.3 when T D N, we see that
�.t/ D 1 and

ƒ.n/ W D
nP

sDa

.s/�s; �.n/ D

1P
sDn

g.s/
.s/,

±.n/ D
1P

sDn
p.s/
.s/;

and condition (2.4.30) becomes

.±.n//1�c .�.n//c � .±.n C 1//1�c .�.n C 1//c :
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In this time scale the inequality (2.4.31) reduces to

1P
nDa


.n/ .�.n//c pb.n/ .ƒ1.n//
b�1

.±.n//bCc�1 �

 c

c � 1
�b 1P

nDa


.n/gb.n/ .�.n//c�b

.±.n//c�1 .ƒ.n//1�b :

Theorem 2.4.4. Let T be a discrete time scale and b > 1; c > 1 and define

8<
:
ƒ.t/ D R t

a 
.s/�s; A.t/ D R t
a a.s/
.s/�s,

±.t/ D R1
t p.s/
.s/�s;

for t 2 Œa;1/T: (2.4.38)

If

.±.t//1�c .A� .t//c � .±� .t//1�c .A.t//c ; (2.4.39)

then

Z 1

a


.t/ .A� .t//c pb.t/ .ƒ�.t//b�1

.±.t//bCc�1 �t

�

 c

c � 1
�b
Z 1

a


.t/gb.t/ .A� .t//c�b

.±.t//c�1 .ƒ�.t//1�b�t: (2.4.40)

Proof. Let

x WD A.t/

A� .t/
< 1, ˇ WD ±� .t/

±.t/ < 1, and ˛ WD �

.t/

ƒ�.t/
; (2.4.41)

where � is positive will be determined later such that ˛ < 1: As a result of these
substitutions in (2.4.3), we get that

c

�
1 � A.t/

A� .t/

�b

D c

�
�.t/A�.t/

A� .t/

�b

D c

�
�.t/g.t/
.t/

A� .t/

�b

� b

�
�

.t/

ƒ�.t/

�b�1  
1 �

�±� .t/
±.t/

�1�c � A.t/

A� .t/

�c
!

Cb.c � 1/�b�1 

b�1.t/p.t/�.t/
.t/
.ƒ�.t//b�1 ±.t/ C ˛

c.1 � b/�b
b.t/

.ƒ�.t//b
:
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Multiplying both sides by 
1�b.t/ .A� .t//c .ƒ�.t//b�1 .±.t//1�c ; we have that

c
.t/.g.t/�.t//b .A� .t//c�b

.±.t//c�1 .ƒ�.t//1�b

� b .�.t//b�1 h.±.t//1�c .A� .t//c � .±� .t//1�c .A.t//c
i

C
.t/ .A� .t//c
�

b.c � 1/p.t/�.t/
.±.t//c �b�1 C c.1 � b/�b

.±.t//c�1 .ƒ�.t//

�
:

The rest of the proof is similar to the proof of Theorem 2.4.1. The proof is
complete. �

Remark 2.4.3. As a special case in Theorem 2.4.4, when T D N and b > 1; c > 1;
we see that

ƒ.n/ W D
n�1X
sD1


.s/; A.n/ D
n�1X
sD1

g.s/
.s/,

±.n/ D
1X

sDn

p.s/
.s/; for n � 1;

and condition (2.4.39) becomes

.±.n//1�c .A.n C 1//c � .±.n C 1//1�c .A.n//c :

Then, we have the following discrete inequality

1X
nD1


.n/ .ƒ.n C 1//b�1 pb.n/

.±.n//bCc�1

 
nX

iD1

.i/g.i/

!c

�

 c

c � 1
�b 1X

nD1

 
nX

iD1

.i/g.i/

!c�b

.n/.g.n//b

.±.n//c�1 .ƒ.n C 1//1�b :

If c D b and p.n/ D 1 for all n, then we have the following inequality

1X
nD1


.n/ .ƒ.n C 1//c�1

.±.n//2c�1

 
nX

iD1

.i/g.i/

!c

�

 c

c � 1
�c 1X

nD1


.n/.g.n//c

.±.n//c�1 .ƒ.n C 1//1�c :
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