
Preface

The general availability of a powerful communication infrastructure (e.g., the Internet)
makes it possible to interconnect existing self-contained computer-systems— called
Constituent Systems (CS)— that already provide a useful service to their users. Such a
composition of a set of independent and autonomous systems that brings about novel
services to their stakeholders is called a System-of-Systems (SoS). The purpose of
building an SoS out of CSs is to realize emergent services that go beyond the services
provided by any of the isolated CSs. Emergence is thus at the core of SoS engineering.

Consider, for example, a local bank terminal that is connected to the worldwide
ATM system. This connection enables the novel service of worldwide accessibility of a
local bank account. A tourist in a remote country can withdraw money, denoted in the
currency of the host country, from his/her home bank that displays the transaction in
the currency of the home bank. Since the exchange rate of the currencies is time
dependent, the monetary value of this multi-currency transaction depends on the instant
when the transaction is executed. This simple example shows that new issues, such as
the appropriate representation of information in differing contexts or the time when an
action takes place, play an important role in such an SoS.

The vision of the Internet of Things (IoT) assumes that the networked connection of
smart things, i.e., Cyber-Physical System (CPS) with sensors and actuators that observe
and directly influence the physical environment, has the potential to provide disruptive
novel services to our society. We call such an integration of stand-alone CPSs that
provides services that go beyond the services of any of its isolated CPSs a
Cyber-Physical System of Systems (CPSoS).

Consider, for example, a smart grid where a multitude of autonomous energy
producers and energy consumers, controlled by their local CPSs and the control sys-
tems of the utility companies cooperate to provide a smooth flow of electric energy
from producers to consumers. Despite the fact that such a possibly gigantic CPSoS is in
a continuous state of evolution, it must provide a dependable service 24 hours a day,
seven days a week.

This book on Systems of Systems documents the main insights on CPSoS that we
gained during our work in the European research project AMADEOS (acronym for
Architecture for Multi-criticality Agile Dependable Evolutionary Open System-
of-Systems). The objective of this research was to bring time awareness, dynamicity,
and evolution into the design of SoS, to establish a sound conceptual model that
provides a well-defined language for describing SoS, to investigate the intricate topic of
emergence in an SoS, and to outline a generic architectural framework and an SoS
design methodology, supported by some prototype tools, for the modeling, develop-
ment, and evolution of time-sensitive SoS.

The AMADEOS partners from industry (Thales Nederlands, Resiltech, and ENCS)
and universities (University of Firenze, Vienna University of Technology and
Université Grenoble Alpes) joined efforts to arrive at results that are, on the one hand,



of wide-ranging value in an industrial context, and on the other hand, extend the
understanding of SoS beyond the current state of the art in the academic world.

It is the objective of this book to present in a single consistent body the foundational
concepts and their relationships in order to form a conceptual basis for the description
and understanding of SoS and to go deeper in what we consider the characterizing and
distinguishing elements of SoS: time, emergence, evolution, and dynamicity.

The first part of the book is devoted to this conceptual work. We start in
Chap. 1 with the set of definitions of the relevant concepts. The need for a new
approach and vision of interfaces is the topic of Chap. 2. In Chap. 3 we investigate the
phenomenon of emergence in CPSoS, with a definition of emergence in the SoS
context, and discuss some properties of emergent phenomena. Chap. 4 provides the
definition of the AMADEOS conceptual model that captures SoS basic concepts and
their interrelationships, and describes a SysML profile semi-formalization supporting
the definition of SoS platform independent models (PIMs).

Part 2 of the book deals with the engineering framework developed in AMADEOS
and the technical solutions adopted to deal with time, dynamicity, and evolution. More
precisely, Chap. 5 defines the overall tool-supported AMADEOS Architectural
Framework (AF), with its main building blocks and interfaces. Chap. 6 elaborates on
the role of time and clocks in SoS and presents the design of a Resilient Master Clock
(RMC), a hardware–software solution that has been developed in the course of the
AMADEOS project. The final chapter in this part presents the AMADEOS dynamicity
management and the different Monitor–Analyze–Plan–Execute (MAPE) components.

Part 3 of the book contains case studies of smart grid applications to demonstrate the
suitability of the AMADEOS methodology for the design of an advanced industrial
SoS.

In the following, we present a short overview of the main points covered in each one
of the chapters of this book.

The objective of Chap. 1 is the development of a set of coherent concepts and the
associated terms that can be used by domain experts to communicate their ideas about
SoS. We start form the fundamental notion of a Constituent System (CS) that is time
aware and consider an SoS as an integration of a finite number of CSs that are inde-
pendent and operable, and which are networked together for a period of time to achieve
a certain higher goal. The CSs interact by the timely exchange of information items (we
call them Itoms) across Relied Upon Interfaces (RUI). An Itom is an atomic triple of
data, explanation of the data and time. It follows a detailed model of time, based on
Newtonian physics, and time measurement by digital clocks is presented. This model
of time is used to define the notion of the state of a system at a given instant as the
totality of the information items from the past that can have an influence on the future
behavior of a system. We then discuss the characteristics of three basic communication
mechanisms in cyberspace: datagrams, event-triggered positive acknowledgment, and
retransmission protocols, as well as time-triggered protocols, followed by an elabora-
tion of the information flow across stigmergic channels in the physical environment.
After a short passage on interfaces (which are discussed at length in Chap. 2) the
concepts of dynamicity and evolution are treated in the last section of Chap. 1.

The focus of Chap. 2 is on the important role that interfaces play in the control of the
cognitive complexity of the models that explain the behavior of an SoS. The

VIII Preface



boundaries among the CSs within an SoS are formed by the RUI of the CSs. The
precise specifications of the syntactic, semantic, and temporal properties of these RUIs
hide the internals of a CS implementation and are a good example for the application
of the well-known divide and conquer principle. Interface layers allow for the dis-
cussion of system interface properties at different abstraction levels. Three interface
layers are introduced: the cyber-physical layer, the informational layer, and the service
layer. The cyber-physical layer is concerned with the reliable transport of
context-sensitive bit-patterns across RUIs, both via messages in cyber-space and stig-
mergic channels in the physical environment. The informational layer abstracts from the
context-sensitivity and the concrete technical implementations of the cyber-physical
layer. The service layer structures the behavior of a system into a set of capabilities
enabling management of dynamicity and evolution at the interface level. The specifi-
cation of the execution semantics of an RUI assumes a frame-based synchronous data
flow model. In many SoS the connections between the RUIs of the CSs are not static, but
dynamic. The sections in Chap. 2 on dynamicity and managed evolution give details on
the reaction and reconfiguration capabilities of an SoS that can be considered in the
CPSoS design at the interface level.

Chap. 3 deals with the important topic of emergence in CPSoS. As quoted earlier,
emergence is at the core of SoS engineering. The essence of the concept of emergence
is aptly communicated by the following quote, attributed to Aristotle: “The whole is
greater than the sum of its parts.” The interactions of parts (the CSs) can generate a
whole (the SoS) with unprecedented properties that go beyond the properties of any of
its constituent parts. The immense varieties of inanimate and living entities that are
found in our world are the result of emergent phenomena that have a small number of
elementary particles at their base. After a lengthy discussion about the importance of
multi-level hierarchies in the models of nearly decomposable complex systems, the
following definition of emergence is presented: A phenomenon of a whole at the
macro-level is emergent if and only if it is of a new kind with respect to the
non-relational phenomena of any of its proper parts at the micro level. In the following
sections of Chap. 3 the concepts of downward causation and supervenience are
explained and it is conjectured that in a multi-level hierarchy emergent phenomena are
likely to appear at the macro-level when there is a causal loop formed between the
micro-level that forms the whole and the whole (i.e., the ensemble of parts) that
constrains the behavior of the parts at the micro-level. A schema for the classification of
emergent phenomena is presented and four concrete examples of emergent phenomena
in computer systems are given. In the final section of Chap. 3, the focus is on the
analysis of detrimental emergent phenomena in safety-critical CPSoS.

Chap. 4 covers the AMADEOS SysML profile for SoS conceptual modeling. The
focus is on the definition of a SysML profile as a modeling support for representing the
AMADEOS SoS conceptual model. The basic SoS concepts and their relationships are
modeled using a SysML semi-formal representation according to different viewpoints,
which represent the key perspectives of AMADEOS: structure, dynamicity and evo-
lution, dependability and security, time, multi-criticality and emergence. Finally, a
Smart Grid household scenario is introduced to exemplify the application of the profile
and to instantiate the basic SoS concepts to a concrete case study from the Smart Grid
domain, focusing on the architecture and emergence viewpoints.

Preface IX



Chap. 5 introduces the overall tool-supported AMADEOS Architectural Framework
(AF) with its main building blocks and interfaces. The high-level representation of the
AMADEOS AF is shown as a pyramid made of four different layers, namely, mission,
conceptual, logical, and implementation. Apart from the mission block, all the
remaining levels are organized in slices, each corresponding to a specific viewpoint. The
following viewpoints of an SoS are explored: structure, dependability, security, emer-
gence, and multi-criticality. Finally, for SoS modeling, a supporting facility tool based
on Blockly is demonstrated. Blockly is a visual Domain-Specific Language (DSL) and
has been adopted to ease the design of SoS by means of a simple and intuitive user
interface; thus requiring minimal technology expertise and support for the SoS designer.

Chap. 6 stipulates that a global notion of time with known precision, shared by all
CSs, is essential for the dependable operation of an SoS. Such a global notion of time is
needed to specify the temporal properties of interfaces, to enable the interpretation of
timestamps in the different CSs, to limit the validity of real-time data, to synchronize
input and output actions across CSs, to provide conflict-free resource allocation, to
perform prompt error detection, and to strengthen security protocols. Since CSs can
join and leave the SoS dynamically, external clock synchronization is the preferred
alternative in an SoS. Such an external clock synchronization can be based on the
standardized time signal distributed worldwide by Global Navigation Satellite Systems
(GNSS), such as GPS, Galileo or GLONASS. Since a GNSS time signal can become
unavailable, a resilient master clock is proposed to extend the holdover interval after a
time-signal failure. In AMADEOS a prototype of such a resilient GPS disciplined
master clock has been developed and tested. The chapter describes the design,
implementation and validation of this resilient master clock prototype.

Chap. 7 is devoted to the management of dynamicity in SoS. The well-known
Monitor–Analyze–Plan–Execute (MAPE) control loop, developed by IBM in the
context of autonomic computing, provides the framework for the management of
dynamicity. When a Service Level Agreement (SLA) and its associated Service Level
Objectives (SLOs) are associated with the service of a managed element, the MAPE
control loop guarantees that these SLOs are met. If this is not the case, a new plan is
calculated and used to reconfigure the system. This chapter presents AMADEOS
dynamicity management and the components of MAPE.

Finally, Chap. 8 contains three case studies from the smart grid domain to
demonstrate the viability of the AMADEOS approach to the design of SoS. The three
case studies, electric vehicle charging, household management, and an integrated case
study that combines the first two together with ancillary services, are modeled by using
the AMADEOS Architectural Framework (AF) and the AMADEOS tool set. We utilize
the four levels of the AMADEOS AF – mission, conceptual, logical, and implemen-
tation – as well as the seven viewpoints that have been defined: structure, dynamicity,
evolution, dependability and security, time, multi-criticality, and emergence.

Modeling complex and pervasive infrastructures like the one used as case study
clearly highlights how the support of a precise conceptual model and of specific tools
for its instantiation is fundamental for a sound and comprehensive codification of the
various properties of the whole. At design time the identification of causal loops in the
lower levels of the hierarchy, enabled by the support for simulation through model
execution, is a mandatory step to identify possible emergent behaviors at the higher

X Preface



levels. In fact, such behaviors may lead, also in the future evolution of the SoS, to a
violation of system requirements. A correct representation of the environment has also
proven to be necessary. Finally, global time awareness and monitoring are fundamental
for the early detection and for containing the effect of detrimental emergence phe-
nomena at run time.

Although the chapters of the book are arranged in a logical order, an effort has been
made to keep each chapter self-contained. The book contains also a glossary of all the
terms and concepts used to ease reading and provide a reference for relevant terms in
the domain of SoS.

This book can be used as a textbook or supplemental reading for advanced teaching
on SoS, their concepts, and their design. In addition to this book, a set of slides is
available that helps a lecturer in the development of the teaching material for an
advanced course on Systems of Systems, (http://rcl.dsi.unifi.it/projects/amadeos/amad
eosteachingmaterial).

Finally, we would like to thank all the following experts for reviewing and helping
to improve this book: Wilfried Elmenreich (Alpen-Adria-Universität Klagenfurt,
Austria), and Wilfried Steiner (TTTech, Austria), Lorenzo Falai (Resiltech), Leonardo
Montecchi (University of Florence), and Antoine Boutet (LIRIS).

Hermann Kopetz
Andrea Bondavalli

Sara Bouchenak

Preface XI

http://rcl.dsi.unifi.it/projects/amadeos/amadeosteachingmaterial
http://rcl.dsi.unifi.it/projects/amadeos/amadeosteachingmaterial


http://www.springer.com/978-3-319-47589-9




