
Interfaces in Evolving Cyber-Physical
Systems-of-Systems

Bernhard Frömel(&) and Hermann Kopetz

Institute of Computer Engineering,
Vienna University of Technology, Vienna, Austria

froemel@vmars.tuwien.ac.at, h.kopetz@gmail.com

1 Introduction

In the past twenty years the view on how we engineer, operate and evolve indepen-
dently owned and managed Cyber-Physical Systems (CPSs) in order to realize and
optimize complex economical processes has started to change. Advances in telecom-
munications and automation accompanied by standardization efforts resulted in
sophisticated cross-domain information and communication technologies (e.g., the
Internet of Things (IoT) [2, 9], elastic processing and storage clouds, Web Services)
that allow for the integration of more and more existing and previously technologically
isolated CPSs. These legacy systems became cooperating Constituent Systems (CSs) of
evolving Cyber-Physical Systems-of-Systems (CPSoSs) and – by their physical and
cyber interaction – give rise to new emergent services that cannot be realized by any
single or small number of CSs alone.

One prototypical example of a CPSoS is a smart grid [14] where the interacting
CPSs (producers, consumers, and prosumers where, for example, electricity consuming
households are equipped with electricity producing photovoltaic power plants) coop-
erate to optimize energy distribution with respect to stability, dependability, and costs.
A smart grid handles high dynamicity as it constantly reconfigures in order to react to
changed energy production and demand conditions. Further they need to support
evolution during runtime as the service of the smart grid is adapted or extended towards
new requirements or technological advances. Finally, smart grids represent critical
infrastructure that may in the event of failure cost human lives or cause high eco-
nomical costs. Hence a smart grid needs to fulfill high expectations concerning its
dependability, including security and safety.

Central to the integration of CPSs as CSs of evolving CPSoSs are their interfaces,
i.e., their points of interaction with each other (direct interaction) and with their
common environment (indirect interaction) over time. The identification, proper
specification, standardization, and managed modification of these interfaces are of
paramount importance in order to tackle CPSoS key challenges related to emergence,
dynamicity, evolution and dependability. Specifically, time-sensitive physical interac-
tions and the role of delays in emergence impose the requirement of properly taking

This work has been partially supported by the FP7-610535-AMADEOS project.

© The Author(s) 2016
A. Bondavalli et al. (Eds.): Cyber-Physical Systems of Systems, LNCS 10099, pp. 40–72, 2016.
DOI: 10.1007/978-3-319-47590-5_2



time for all kinds of interactions in CPSoSs into account. To this end this work assumes
the availability of a sparse global timebase [25, 26] that can be used by all involved
CSs to temporally coordinate interactions at their interfaces. We call an SoS where its
CSs have access to such a global timebase a time-aware SoS.

The objective of this chapter is twofold: First, we conceptualize time-sensitive
interactions in CPSoSs at appropriate interface layers and propose a CS interface design
that simplifies engineering, operating and evolving such CPSoSs. Second, we discuss
evolution of CPSoSs and how to manage it by applying our proposed interface design.

The following section gives a brief overview of related work. Section 3 concep-
tualizes interfaces in CPSoSs and introduces the Relied Upon Interface (RUI) of a CS
which is an interface the operational service of the overall CPSoS relies upon. Sec-
tion 4 discusses the design of RUIs. Section 5 suggests how evolution can be managed
at the RUI. Section 6 concludes this chapter.

2 Related Work

In the domain of safety-critical real-time systems several simplification principles con-
cerning the integration of models of distributed computer systems with models of
physical processes have been suggested [25]: abstraction, separation of concerns,
causality by determinism, temporal segmentation, independence of entities, observ-
ability, and consistent time. In accordance with these simplification strategies the design
of linking interfaces [24] which realize cyber-interactions among nodes of a distributed
real-time system, and the design of sensor/actuator interfaces [10] that interact with the
physical process of a Cyber-Physical System (CPS) has been proposed.

Maier outlines in [30] fundamental differences in developing monolithic systems
compared to a System-of-Systems (SoS) where for example the single Constituent
Systems (CSs) are operationally and managerially independent, the SoS has an evo-
lutionary nature, and there are emergent behaviors. Maier postulates that SoS archi-
tecting might rely entirely on interface design and the specification of communication
standards at multiple abstraction levels.

The World Wide Web (WWW) running on top of the Internet is often considered as
one of the first examples of a human engineered SoS, also satisfying Maier’s definition
of SoSs. Fielding [15] suggests the concept of an architectural style, i.e., in his thesis
the “named, coordinated set of architectural constraints”, and uses it to obtain an
appropriate architectural design for networked software components. Fielding further
introduces the Representational State Transfer (REST) architectural style which he
applied in the definition of the Hypertext Transfer Protocol (HTTP) and Uniform
Resource Identifier (URI) specifications. Together they describe the generic interface
which is in its essential form still used in all interactions of the WWW.

Web Services (WSs) [3, 8] are a prominent web-inspired implementation of the
Service-oriented-Architecture (SoA). They are based on machine-interpretable inter-
face descriptions (Web Service Description Language (WSDL), and other WS-*
specifications) and give support for platform-independent machine-to-machine inter-
action over large-scale networks like the Internet. Highly distributed applications can

Interfaces in Evolving Cyber-Physical Systems-of-Systems 41



be integrated by means of Web Service (WS) that are provided and owned by possibly
many different entities. However, WSs are subject to the limitations of underlying
technologies and the expressiveness of the used description languages. For example,
the end-to-end delay of messages is in the scope of underlying technologies. Currently,
temporal and semantic interoperability is not part of the interface specification, hence –
while an agent might syntactically be able to interact with a WS – there might be a
temporal and/or semantic mismatch leading to undesired effects.

OPC Unified Architecture (OPC UA) [29] is a SoA machine-to-machine commu-
nication stack intended to tackle challenges related to semantic interoperability.
The OPC UA specifications are maintained by the Open Platform Communications
(OPC) Foundation and have been in part standardized in IEC 62541. The extensible
information model allows the description of arbitrary object structures where object
data and its meta data is managed.

Caffall and Michael propose in [7] the concept of service-oriented contract inter-
faces for an architectural framework for SoSs. Contract interfaces are based on the
principles of Design-by-Contract (DbC) and demand an explicit definition of interfaces
among CSs that formalize assumptions about the services provided by a CS to achieve
goals of the SoS.

3 Interfaces in Cyber-Physical Systems-of-Systems

This section introduces interfaces in the architectural context of time-aware
Cyber-Physical Systems-of-Systems (CPSoSs), discusses interface abstraction layers,
and presents different interface classes of Constituent Systems (CSs) that are part of a
CPSoS.

3.1 Architectural Elements of Cyber-Physical Systems-of-Systems

ACPSoS is a System-of-Systems (SoS) whose interacting Constituent Systems (CSs) are
Cyber-Physical Systems (CPSs). The architecture of a CPSoS defines the boundaries of
its elements (major building blocks), the relationships among them, and the relationship
between elements and their environment at abstraction levels that are useful for the
discussion of CPSoS attributes of interest. There are many important attributes (e.g.,
business, societal, legal) to investigate in CPSoSs, but this chapter focuses on behavioral
attributes, i.e., on interaction relations among architectural elements of CPSoSs. The
architectural elements in CPSoSs are: the Itom [27] as the unit of interaction, the CS as a
computing component that interacts physically and digitally with its environment, and
the environment of CSs that enables the interactions among CSs. An Itom is an infor-
mation atom comprising of data and explanation in an atomic unit. The environment of a
CS consists of all entities that have the capability to interact with the CS.

CSs process Itoms which they exchange with their environment at their interfaces.
There are two kinds of interactions a CS can have with its environment: message-based

42 B. Frömel and H. Kopetz



interactions with cyber space and physical or stigmergic interactions [28]. In order to
model stigmergic interactions it is useful to define the concept of an entourage of a CS,
i.e. all entities that are part of a CS, but are external of its computer system. It consists
of humans and things and may change over time. The entourage of two or more CPSs
may – not necessarily simultaneously – overlap during the Interval of Discourse (IoD).
Overlapping entourages provide a common environment which enables stigmergic
interactions among involved CPSs.

Itom
An Itom [27] is the basic information item exchanged in interactions of CSs. It is
defined as “a timed proposition about some state or behavior in the world” in some
representation (data) together with the explanation of this representation. For pro-
cessing in computer systems the representation and explanation can be both coded as
bit strings, i.e., digital data. The representation part is called object data, while the
explanation of the object data is called meta data. Depending on the Itom’s purpose, the
meta data might be based on an ontology (e.g., a conceptual model of Newtonian
physics), or can be a machine program for a (virtual) computer system which explains
the object data (cf. code mobility [17]). Interacting CSs may adhere to different con-
texts, i.e., often have implicit assumptions about the actual meaning and temporal
properties of exchanged object data. Conceptually, Itoms solve this context depen-
dency problem by tying information representation and explanation together. Hence
object data is interpreted consistently across all CSs that need to access and process the
information contained in the Itom.

The definition of Itoms is recursive and allows that an Itom contains other Itoms.
Take for example the object- and meta data of two or more Itoms and regard them as
object data of a higher level Itom. The explanation of this higher-level Itom describes
how to extract the contained Itoms. Consequently, Itoms can be – in principle –

arbitrarily complex constructs that might describe (virtual) computer machines and thus
(virtual) CSs.

To avoid misinterpretation of interactions the explicit definition of Itoms as the
basic unit of interaction is essential in modeling CPSoSs. Explicitly defined Itoms also
enable automatic Itom transformation systems which are able to map object data in
compliance to one explanation into object data conforming to another explanation and
vice-versa, provided the two meta data explanations can be put formally into relation,
i.e., a bijective function exists that maps one explanation (described by meta data) to
the other.

Constituent System
A Constituent System (CS) is a Cyber-Physical System (CPS) which consists of a
computer system (cyber part), optionally an influenced and/or observed object (physical
part) and possibly humans. The object, i.e., a thing obeying to physical laws in the dense
physical time of our reality, can be observed by sensors and/or influenced by actuators of
the cyber part (for example for the purpose to control it). The behavior of the computer
system and its ability to conduct actions in the physical environment adheres to a discrete
progression of time. Consequently, a sufficient alignment of the dense physical time and

Interfaces in Evolving Cyber-Physical Systems-of-Systems 43



the discrete computer time is essential for an influence or observation of the physical part
of a CPS that is precise enough for the application at hand.

The purpose of a CS regarding its integration in a collaborative SoS is the real-
ization of a service that allows the CS to benefit from the emergent CPSoS service. The
service of a CS is only provided at its interface thus an interface specification suffi-
ciently defines the CS’s interaction capabilities (all possible interactions) that the CS
internals must deliver. In CPSoSs a precise temporal coordination of the individual CSs
is required across the whole CPSoS. Hence, CSs have access to a sparse global
timebase [25], and are able to timestamp input actions (messages, sensor observations)
and timely generate output actions (messages, actuations) at the CS interface within the
precision of the global timebase.

The computer system of a CS processes Itoms that are received at the CS interface
by sensors observing a property of the physical state in the entourage of the CS, or are
received by messages. Further a CS generates new Itoms that can be implemented as
influences on the physical state in the entourage by actuators, or sent as messages into
cyber-space, possibly to other CSs.

In summary, a CS implements a time-aware computational element that operates on
Itoms which it exchanges with its environment according to its interface specification.

Environment
A CS interacts with two kinds of environments at its interface: cyber space which
allows message-based communication and the physical environment which enables
physical interactions among CSs.

Cyber Space
Cyber space is a distributed information processing system that enables message-based
interactions among CSs by means of direct and indirect cyber channels. For instance,
the IP-based Internet is a prominent example of a planet-scale cyber space where in
principle any two systems with a unique IP address can establish cyber channels and
exchange Itoms. The concept of (physical) proximity and neighborhood of CSs does
not necessarily play a significant role in cyber space. The physical distance between
two CSs exchanging messages via cyber space might only affect the delay of the
message, but has no other impact on the communication (e.g., does not change message
contents in the absence of faults).

A direct cyber channel conveys messages from one sending CS to one or more
receiving CS without any modifications.

An indirect cyber channel is established over the state of a shared memory which is
located somewhere in cyber space. The sendingCSsmodify the sharedmemory bymeans
of state messages. The shared memory is also possibly affected by cyber dynamics a form
of environmental dynamics. Cyber dynamics are autonomous processes inherent within
the cyber space and/or cyber interactions of other not explicitlymodeled systems. Finally,
receiving CSs obtain the (partial) state of the shared memory. For example, the
publish-subscribe [13] communication paradigm is supported by indirect cyber channels
where cyber-dynamics (that are in this example part of the system architecture) take
care about queueing published messages and notifying subscribers. Many popular

44 B. Frömel and H. Kopetz



message-based middleware platforms support publish-subscribe, e.g., the Robot Oper-
ating System (ROS) [34], or Eclipse paho1, based on MQTT [5].

Physical Environment
The physical environment consists of things and physical fields (energy) whose
properties we model as a dynamic network of physical state variables. Such a network
of state variables can be described in an environmental model (for example, see [21]
about an ontology-based environmental model) which captures the interrelationships
(e.g., transfer delays, functional dependencies, location) of the state variables. For
example, the temperature and the pressure of air are physically related and if one is
affected by an actuation, so is the other one. Our networked view on the relations of
physical state variables allows for a simple composition of environmental models, the
consideration of different levels of detail, and taking interfacing effects into account.
Note that one can reduce this network to a single set of physical state variables where
all relations among the variables need to be described explicitly.

In the physical environment the concept of proximity is essential, because many
physical interactions depend on distance (e.g., force fields). In case the entourages of
two or more CSs overlap during the IoD, a stigmergic information flow, i.e., a physical
interaction, can take place. Overlapping entourages help to limit the size of the envi-
ronmental model that needs to be considered for the interaction of CSs. Figure 1 shows
the network of physical state variables which is under the influence of environmental
dynamics, but also part of the entourage of multiple CSs. Environmental dynamics are
the time-sensitive effects of autonomous processes occurring in the environment.

Fig. 1. Overlapping entourage of CPSs enabling physical interaction

1 https://eclipse.org/paho/.

Interfaces in Evolving Cyber-Physical Systems-of-Systems 45

https://eclipse.org/paho/


An actuator is an interface device of a CS which allows the CS to apply changes to
one or more state variables of the physical environment that is currently part of the
CS’s entourage. Besides this actuation also other environmental dynamics may act on
the network of state variables. For example, a heating actuator might increase the state
variable ‘room temperature’, while environmental dynamics (heat dissipation) addi-
tionally affect the state variable over time. Concerning our environmental model,
actuators are connected to the environmental model such that their influences affect the
state variables appropriately by considering their placement, actuation delays, and
effect propagation through the environmental model.

Sensors within the interface of a CS can observe a state variable of the physical
environment. Usually these observations are limited with respect to measurement
resolution, temporal accuracy, and rate limits. Consequently, such an observation is
only partial and noisy. Similar to actuators, also the sensors need to be appropriately
connected with the environmental model in order to take their placement and their
capability to make observations (measurement delay) into account.

3.2 Interface Layers

Interface layers allow the discussion of system interface properties and their definition
in interface specifications at different abstraction levels and modeling viewpoints. In
the following, three interface layers are introduced: the cyber-physical, the informa-
tional, and the service layer. The informational layer is an abstraction over the
cyber-physical one, while the service layer structures the behavior of a system in a set
of capabilities.

Cyber-Physical Layer
At the cyber-physical layer information is represented by data items (e.g., a bit-pattern
in cyber space, or properties of things/energy in the physical world) that are transferred
among interacting systems during the Interval of Discourse (IoD). While in this layer
there is a distinction between cyber- and physical channels, both share many properties,
because cyber channels are implemented by physical channels. Consequently, any
interaction over cyber-physical channels is ruled by the progression of time and fun-
damentally constrained by the speed of light and distance among communicating
systems. Time is an elemental property of cyber- and physical interfaces and must be
considered at all interaction abstractions. Important properties of the cyber-physical
layer are: signals (i.e., prearranged representation of information), transmission med-
ium, characteristics of connectors, frequencies, bit rates, energy levels.

Interface properties at the cyber-physical layer are defined in the Cyber-Physical
Interface Specification (CP-Spec) which consists of the two disjoint specifications:
Interface Physical Specification (P-Spec) and the Interface Message Specification
(M-Spec).

Physical Interfaces
Physical interfaces of CSs are realized by energy transformers that are able to (1) take
observations from the physical environment, and (2) set actions initiated from the

46 B. Frömel and H. Kopetz



computer system of the CS in the physical environment. An observation in time-aware
CPSoSs is a time-stamped measurement of a physical state variable (a property of a
thing). A sensor is an interface device that measures the physical environment and
produces observations in the form of digital data (a bit pattern), whereas the sensor
design determines which property of the physical environment is observed.
Sensor-fusion and state estimation [22] are well researched techniques to improve the
fidelity of sensor observations. An actuator is an interface device that accepts digital
data and control information (e.g., an actuation deadline) from an interface component,
and realizes the intended effect in the physical environment (influences physical state
variables).

As physical interfaces enable the interaction with the time-sensitive physical envi-
ronment, they are time-sensitive as well. Hence, sensor/actuator latency and jitter affect
the temporal accuracy of an observation or the timely effect in the physical environment.

The design of sensors and actuators as well as their placement in the physical
environment determines the semantics of the digital in-, and/or, output bit-pattern, i.e.,
effectively form a basic Itom that contains the observation or actuation. In regard to
information theory, we often have that some property of a thing (e.g., voltage level) has
additional meaning to its receivers (e.g., digital zero and one), while the actual property
of the thing becomes irrelevant, after the measured value has been properly abstracted.
This refinement process takes place according to a receiver/sender shared conceptual
context. It removes intrinsic information and produced a higher level Itom that contains
only the extrinsic information. In computer systems, such overlay-meaning needs to be
added as meta data until an Itom is formed which the target CSs can interpret and
access correctly. The refinement process also removes unnecessary data that is not
needed to convey the intended information, i.e., transforms raw object data to refined
object data.

Take for example a speed limit sign at the side of the road which should be
interpreted as such by an autonomous car CS. First, a camera sensor of the CS produces
a bitmap Itom where the road side including the speed limit is contained as a large array
of pixels. Then, for instance machine learning-based methods take this bitmap Itom,
segment the image, and finally extract an Itom describing the speed limit sign. At this
point the bitmap Itom including its large object data becomes irrelevant and can be
removed from the computer system memory. The new Itom is then further contextu-
alized with surrounding/implicit information (e.g., which metric or non-metric system
the country where the road is located uses). Finally, it is possible to construct the speed
limit Itom consisting of object data that represents a numeric value and meta data which
explains (e.g., decimal, km/h, speed limit) the object data to be usable by the CS.

The Interface Physical Specification (P-Spec) describes the properties of sensors
and actuators (e.g., sample rates, value/time uncertainties, observation granularity) in
order to exchange Itoms with the physical environment according to a specified pur-
pose. On the input side the P-Spec specifies the formation of basic level Itoms from
sensor observations. On the output side the P-Spec defines how basic level Itoms are
implemented by actuators as influences on physical state variables. The P-Spec together
with an environmental model allows for the description of stigmergic channels.

Interfaces in Evolving Cyber-Physical Systems-of-Systems 47



Cyber Interfaces
Cyber interfaces produce and/or consume messages, i.e., bit-patterns in cyber space
(e.g., an email) according to the Interface Message Specification (M-Spec). The
M-Spec consists of three parts [25]: (1) the transport specification, (2) the syntactic
specification, and (3) the semantic specification. The transport specification describes
all properties of a message that are needed by the communication system to correctly
deliver the message from the sender to the receiver(s). A correctly transported message
adheres to all temporal and dependability specifications. The cyber interface consists of
ports (channel endpoints) where messages are placed for sending, or received messages
are read from. A port has the following properties:

• Direction: Each port has either the direction incoming (messages can be read from
the port), or the direction outgoing (messages can be written to the port).

• Size: The size of the data contained in the message determines the port size.
• Type: The port type specifies whether the message contains state data and should

adhere to a read/write paradigm or event data and should adhere to the
consume/produce paradigm.

• Temporal Properties: The temporal properties determine the temporal behavior of
a message with respect to maximum/minimum delay, maximum jitter, periodicity,
and bounds on send and receive instants.

• Dependability Properties: The dependability properties specify dependability
parameters (e.g., reliability, security, availability) of the message transport.

The named syntactic units of a message are called message variables [25] and are
defined in the syntactic specification. Additionally, the semantic specification links the
name of message variable to its explanation, i.e., syntactic and semantic specification
define the Itom contained in a cyber message.

For cyber interfaces we can differentiate among several types of compatibility:

• Context compatibility: The same data (bit pattern) is explained in the same way at
the sender and at the receiver.

• Context incompatibility: The same data (bit pattern) is explained differently at the
sender and at the receiver.

• Syntactic Compatibility: The syntactic chunks sent by the sender are received by
the receiver without any modification.

• Full Compatibility: The Itom that is sent by the sender is received by the receiver
without modification.

In case of context compatibility, syntactic compatibility suffices to realize full
compatibility. In case of context incompatibility a gateway is required to translate the
data representation of the sender to a data representation that is compatible with the
context of the receiver.

Informational Layer
This interface layer concerns the timely exchange of Itoms by unidirectional channels
across interfaces. It provides an abstraction over cyber-physical channels to
context-independent [27], direct and indirect information flows among systems and

48 B. Frömel and H. Kopetz



their environment [28]. The abstraction over cyber-physical channels removes any
lower-level details of the interactions that is not relevant for describing the information
processing behavior of CSs. Itoms at this layer are maximally refined and explicitly
specified, i.e., their meta data is available to the extent necessary for all CSs that are
possibly involved with these Itoms. Their realization at the lower-level cyber-physical
layer must adhere to the semantics specified at the informational layer, otherwise the
abstraction is invalid and there is risk of property mismatch among interacting CSs. All
for the CPSoS service relevant cyber-physical interactions must be taken into account
at the informational layer. Otherwise there are hidden channels at the informational
layer which might compromise security, safety, or may lead to unexpected behavioral
detrimental emergence.

Further, the informational layer focuses on modeling the direct and indirect com-
munication among CSs. There are cases where it is beneficial not to model every
system involved in an interaction explicitly, but regard them as anonymous common
environment of a smaller set of systems of interest which indirectly interact over this
common environment. Indirect communication also allows for decentralized coordi-
nation of systems [36] and the description of cascading effects [16].

• Direct Communication: Itoms are transferred directly and unmodified from one
sending to one or more receiving CSs. Consequently, we model a direct channel by
a system that simply forwards Itoms from its input to its outputs according to given
temporal and dependability properties.

• Indirect Communication: The Itoms of a sending CS affects the state of the
common environment of one or more CSs. Additionally, the state of this common
environment is possibly affected by environmental dynamics, i.e., time-sensitive
processes that act autonomously and independently of the explicitly modeled sys-
tems. Finally, receiving CSs read Itoms from the common environment by taking
observations. The received Itoms represent a superposition of all influences carried
out by other CSs or environmental dynamics. In contrast to direct communication,
not all CSs participating in an interaction need to be modeled explicitly, as long as
their effects are appropriately considered in the model of the environmental
dynamics. We model an indirect channel by instantiating an additional Environ-
mental CS (ECS) which incorporates the behavior of the common environment of
indirectly interacting CSs.

An Itom channel is characterized by what kind of Itoms the channel can transport,
the sender, one or more recipients, temporal properties, and dependability properties.
The Interface Itom Specification (I-Spec) describes the Itoms exchanged at the system
interface, independently of how the information transfer is actually realized. For
example: a system ‘car’ notifies cars behind about its sudden change of velocity to an
immediate stop by ‘emergency brake’ Itoms. In the cyber-physical layer these Itoms
might be implemented by: (1) a stigmergic channel between the braking car and the
cars behind who observe that the car in front suddenly slows down, (2) a stigmergic
channel realized by the brake light of the sender and the human operators of the cars
behind, and (3) a wireless car2car cyber channel between the braking car and the cars
behind.

Interfaces in Evolving Cyber-Physical Systems-of-Systems 49



Service Layer
At the service layer, the interface exposes the system behavior structured as capabili-
ties. In contrast to the informational layer, Itom channels are not individually described
at the service layer, but only the interdependencies between the exchanged Itoms are
specified. If a system with a need is matched with a system that offers the needed
capability, the interdependencies must be resolved in the information interface layer
with concrete Itom channels. Hence, at the service interface layer there is an instan-
tiable collection of Itom channels per offered capability where generic properties of the
Itom channels and their interaction pattern are described.

Systems may provide many services through their interfaces provided that their
internal structure can rely on required services. This concept is a fundamental principle
in the Service-oriented Architecture (SoA) [12] where components in need of capa-
bilities and components that offer capabilities are brought together by means of a
service registry, service discovery, and service composition. A service provider is a
component that provides a service, while a service consumer is a component that uses a
service. The service registry is a repository of Interface Service Specifications (S-Specs)
of capabilities that can be provided by a service provider. Service discovery is the
process where service consumers match their service requirements against the available
S-Specs in a service registry. Finally, service composition is the integration of multiple
services into a new service. The benefits of this service-based view are twofold:

First, there is an immediate reduction of complexity, because one does not need to
regard component relations on the basis of single Itom channels anymore. Service
consumers can discover services they depend on, and a scheduler can instantiate the
necessary unidirectional Itom channels automatically. Further service composition
enables the formation of higher-level services based on low-level services. Take the
example of a service that provides a humanoid robot the capability to open doors. Such a
service would need to implement planning and re-planning of the complex movements
realized by lower-level actuation services while constantly taking into account obser-
vations (e.g., position of arms, state of the door) from lower-level sensing services.

Second, the coupling of components (integrated in one system) is loose, because
the actual constituents of composed services are unimportant background details in the
service-based view. This freedom in service composition allows for self-organized
system reconfiguration such that the system is able to perform optimally in case new
services become available and previously active services become un-available. For
example, a service consumer does not depend on a single component to provide the
required service, but the service consumer can lookup multiple suitable services from
the service registry and choose the optimal regarding computational, communicational,
or other costs.

These benefits have been originally observed in the context of free market economy
where trading among buyers and sellers led to efficiency in the production and dis-
tribution of products.

An S-Spec also includes a set of quality metrics that are available for an inde-
pendent observer to determine the quality of a provided service. Based on these quality
metrics, service providers can offer their service under a Service Level Agreement (SLA)
which consists of Service Level Objectives (SLOs) together with the price of a service,

50 B. Frömel and H. Kopetz



and compensation actions in case an SLO of a committed service was not achieved.
An SLO describes a quantifiable service objective based on measurable quality metrics
that can be monitored independently of the service provider. Service providers can
publish their SLA with a reference to the S-Spec of an offered service at the service
registry, such that prospective service consumers can find and choose an appropriate
service provider.

3.3 Interfaces of a Constituent System

Interfaces within Constituent Systems (CSs) that are not exposed to other CSs or the CS’s
environment are called internal interfaces. A CS is embedded in its environment by its
external interfaces. When applying the principle of separation of concerns, there are
three subtypes of external interfaces: Time-Synchronization Interface (TSI), Relied Upon
Interface (RUI), and utility interfaces. The TSI enables external time-synchronization to
establish a global timebase for realizing time-aware CPSoS. Most important for the
integration of a CS in a CPSoS is its RUI which is the interface the emergent and
operational CPSoS service relies upon. The optional utility interface is an interface of a
CS that does not need to be considered for the operational service of CPSoSs.

The purposes of the utility interfaces are to (1) configure and update the CS, (2)
diagnose the CS, and (3) let the CS interact with its remaining local environment which
is unrelated to the operative service of the CPSoS. These three purposes justify the
introduction of the following utility interfaces: Configuration Interface (C-Interface),
Diagnostic Interface (D-Interface), and Local I/O Interface (L-Interface). Figure 2
shows all external interfaces of a CS.

In time-aware CPSoSs, the CSs have access to a synchronized global time base
with bounded precision. Such a global time base can be established by external clock
synchronization over the TSI to, for example, a Global Navigation Satellite System
(GNSS) like GPS. Time-awareness allows for temporally ordering observed events and
temporally correctly executing timely available actions in a distributed setting. Natu-
rally, in case the communication or computation subsystem or both fail to deliver or
execute an action at its deadline, the execution cannot be guaranteed to be temporally
correct. However, in a time-aware CPSoS the temporal order of observed events – no
matter which CS observed them – can be always determined.

We briefly discuss the utility interfaces. The C-Interface is an interface of a CS that
is used for the integration of the CS into a CPSoS and the reconfiguration of the CS’s
RUIs while integrated in a CPSoS. In time-aware CPSoSs the C-Interface allows to
update the interface specification of RUIs to realize time-controlled evolution (see
Sect. 5.3). A predefined validity instant which is part of the interface specification
determines when all affected CSs need to use the updated RUI specification and
abandon the old RUI specification. This validity instant should be chosen appropriately
far in the future (e.g., in the order of the update or maintenance cycle of all impacted
CSs). Service providers guarantee that the old interface specification remains active
until the validity instant such that service consumers can rely on them up to the
reconfiguration instant. The D-Interface is an interface that exposes the internals of a
CS for the purpose of diagnosis. Finally, the L-Interface is an interface that allows a CS

Interfaces in Evolving Cyber-Physical Systems-of-Systems 51



to interact with its surrounding physical reality that is not accessible over any other
external interface, for example to realize Human Machine Interfaces (HMIs), or provide
other CS-local only services.

A connected interface is an interface that is connected to at least one other interface
by a channel. Some external interfaces are always connected with respect to the cur-
rently active operational mode of a correct system. A disconnected external interface
might be the cause of a fault [4] (e.g., a loose cable that was supposed to connect a
joystick to a flight controller) which might even lead to a catastrophic failure.

CSs may connect their RUIs according to a RUI connecting strategy that searches
for and connects to RUIs of other CSs. The RUI connecting strategy is a part of the
interface specification of RUIs and searches for desired, with respect to connections
available, and compatible RUIs of other CSs and connects them until they either
become undesirable, unavailable, or incompatible. For instance, in the global Auto-
mated Teller Machine (ATM) network, a cardholder together with a smartcard based
payment card form a CS that is most of the time disconnected from any other CSs.
The RUI connecting strategy of the payment card CS is influenced by the cardholder’s
need for cash (desire), nearby located and operational ATM terminals (availability) and
whether the ATM terminal accepts the payment card (compatibility).

4 Relied Upon Interfaces

This section discusses the Relied Upon Interface (RUI) model at the previously
introduced interface layers, also showing how interface layers are connected. Then the
section proposes appropriate execution semantics of the RUI model at the informa-
tional layer and closes with a brief discussion of how CPSoS dynamicity is handled by
the RUI specification.

Fig. 2. Interfaces of a Constituent System (CS)

52 B. Frömel and H. Kopetz



4.1 RUI Model Overview

The Relied Upon Interface (RUI) establishes a system boundary of a CS by separating
it from its environment. The part of the CS behavior which the CPSoS service relies
upon can be observed at the RUI of the CS. Consequently, the interface specification of
a CS’s RUI hides the possibly complex internal behavior of a CS from the overall
CPSoS. However, even more importantly the complexity of the overall behavior of a
possibly enormous CPSoS is also hidden from a CS at its RUI. Hence, the RUI
specification can be regarded as a complexity firewall because it regulates all inter-
actions taking place across the specified interface. Innate to RUIs, i.e., the points of
interactions of CSs, is the transfer of information occurring over these interfaces. It
follows an examination of RUIs for each of the three interface layers that we introduced
in Sect. 3.2.

RUI Cyber-Physical Layer
Figure 3 gives an overview of cyber-physical interactions at the RUIs of two CSs that
are externally time-synchronized and have access to a global timebase. The RUI
consists of two sub-interfaces: the Relied Upon Message Interface (RUMI) a cyber
interface, and the Relied Upon Physical Interface (RUPI).

The RUPI consists of sensors and actuators that take and time-stamp observations
of and/or act at a defined deadline on some physical state (e.g., the temperature of a
room) in the physical environment according to their design. Environmental dynamics
(e.g., heat dissipation through walls) act additionally to other CSs on the physical state.
CSs that interact with each other over a common physical environment establish a
stigmergic channel [28], i.e., they communicate indirectly by influencing and mea-
suring the physical state.

The RUMI allows (1) for the unidirectional transport of state and event messages
[25] by means of conventional direct cyber channels, and (2) for the indirect coordi-
nation with other CSs by means of indirect cyber channels. A state message contains
only state observations, i.e., the observed state (e.g., temperature of a room) at a
specific instant.

RUI Informational Layer
The informational layer abstracts over informational context-sensitivity, and focuses on
direct and indirect information flows among CSs. An indirect channel (cyber or stig-
mergic) is modelled by instantiating an additional Environmental CS (ECS).

This interface layer is useful during the design of CPSoSs (e.g., model-based
design, design space exploration), as well as in the analysis of CPSoSs. For example,
we believe that identifying causally related interactions among CSs is paramount for
detecting and predicting emergence (see Chap. 3). Naturally, for finding such causal
relationships the RUI specifications, the associated interface models, and the envi-
ronmental models need to be accurate regarding reality, i.e., there should not be any
hidden channels. A hidden channel is a latent information flow among CSs that has not
been considered by the modeler. Hidden channels might close feedback loops that are
believed to be liable for possibly undesired detrimental emergence [28]. In case some

Interfaces in Evolving Cyber-Physical Systems-of-Systems 53



behavior is observed at the RUIs of CSs during CPSoS operation, but cannot be
reproduced in a simulation at the informational layer, there are hidden channels present
that should be identified.

RUI Service Layer
At the service interface layer, we introduce Relied Upon Services (RUSs) that are
provided at the RUI of a CS. They are described in the Service Specification (S-Spec)
of the RUI as a set of RUS-related operations. A service operation is a behavioral
abstraction over one or more unidirectional Itom channels. It groups them together and
defines their interaction pattern, i.e., the sequence of all operation-related Itoms over all
channel endpoints from the perspective of the service provider. Examples of interaction
patterns are: request-response, notify, or solicit. Actual Itom channels, or consequently
cyber-physical channels are only instantiated (or their provisioning considered) if a
RUS is committed to a service requester.

Besides defining the operations of a RUS, the S-Spec also includes a set of quality
metrics that allow an independent observer (e.g., a monitoring CS) to determine the
quality of a RUS provided at a CS. Based on this quality metrics, a RUS provider can
publish its Service Level Agreement (SLA) at the service registry such that service
requesters are able to find and request suitable services. RUS providers and consumers
are CSs. The service registry – depending on dynamicity and business requirements of

Fig. 3. Relied Upon Interfaces (RUIs) at the cyber-physical layer

54 B. Frömel and H. Kopetz



the particular CPSoS – can be either realized as another CS (operated by an SoS
authority) to allow for a runtime RUS composition, or it is realized in an off-line
manner.

At the service level we model the emergent CPSoS service as a set of dependencies
on the required RUSs, such that any CS that wants to use or benefit from the emergent
CPSoS service needs to provide these RUSs. However, a CS does not need to directly
provide all or even any RUSs a given emergent CPSoS service depends on, as long as
the CS is able to request and consume them from other RUS providers.

Example
This section shows in a small example how the interface layers of the RUI are con-
nected. The example CPSoS consists of n interacting CSs. At the cyber-physical
interface layer, it contains CSs that interact by using direct and indirect cyber-physical
channels. In the informational layer these channels correspond to Itom channels and
Itom processing subsystems that implement the behavior of indirect communication.
Finally, at the service layer we are able to group channels that are associated with a
service and express service dependency relationships.

Cyber-Physical Layer
Figure 4 shows cyber-physical interactions realized by some concrete technology (e.g.,
data exchanged in cyber space by a TCP/IP network stack, physical location of the CS
on a street influenced by actuators). To relate the channels among the CSs and their
environment across all interface layers, we draw all channels related to a distinguish-
able service with the same style. Cyber Channels (CCs) are drawn with a solid line
style, while Physical Channels (PCs) are drawn with a dashed line style. Some of the
CCs and some of the PCs are labeled for easier identification.

CC 1 and CC 2 are direct cyber channels of the same service (e.g., a database
lookup service realized by a request and a response channel). CC 3 and CCs originating
from CSs 3 to n-1 are writers of an indirect channel. For example, they publish
information whether an alarm occurred. This indirect channel has only one reader (CC
4): CS n which could be an alarm monitor. Further, there is a stigmergic channel
realized by PC 1 (actuator which is part of the CS 1 RUPI), physical state variables, and
PC 2 (a sensor device of the CS 2 RUPI). Another stigmergic channel (realized in the
figure via the overlapping entourages in the lower right of the physical environment) is
shown where all CSs are able to influence physical state variables and also observe
them, for example the position of CSs on a street.

Informational Layer
Figure 5 shows the example CPSoS at the informational layer. All direct CCs have a
corresponding Itom Channel (IC), for example see IC 1 corresponds to CC 1. The
indirect CC is realized by an additional Environmental CS (ECS) which implements the
behaviour of the indirect CC described by an appropriate environmental model (shared
memories with all acting cyber dynamics). Also for each stigmergic channel an
additional ECS realizes the environmental model (environmental model with all acting
environmental dynamics).

Interfaces in Evolving Cyber-Physical Systems-of-Systems 55



Service Layer
The service layer of the example CPSoS consists of four services in the dependency
relation shown in Fig. 6. For example, service A depends on the environmental services
C and D. Service A might be a database lookup service provided by CS 2. The incoming
and outgoing arrows on the left of the service vertex symbolize the two Itom channel
ports from the perspective of the service provider (one input port and one output port).
The three environmental services B, C, and D are provided by ECSs (e.g., environmental
service D is provided by ECS 3 in the informational layer). CSs that consume such
services need to either act as an influence/writer, or as an observer/reader. The ports on
the left side of an environmental service represents the influence/writer service consumer

Fig. 4. Constituent Systems (CSs), Cyber Channels (CCs), and Physical Channels (PCs) at the
cyber-physical interface layer

Fig. 5. Constituent Systems (CSs) and Itom Channel (ICs) at the informational interface layer

56 B. Frömel and H. Kopetz



(e.g., CS 1 is an influence/writer of ECS 2), and the ports on the right side of an
environmental service stand for the observer/reader service consumer (for instance, CS 2
is an observer/reader of ECS 2).

4.2 Execution Semantics of the Informational RUI Model

The interface model describes the part of the system behavior which is observable at
that interface. In the previous section we presented an overview of the RUI model. In
this section we want to enrich our interface design by suggesting a Frame-based
Synchronous Dataflow Model (FSDM) as an execution semantic for the informational
layer. Having such execution semantics, allows the detailed study of CPSoSs with
respect to behavioral properties at the informational layer in the value domain and in
the temporal domain.

Frame-Based Synchronous Dataflow Model
The FSDM is prominent in modeling dependable real-time systems that interact with
physical systems or models of them. Further, there are many high-quality tools and
languages to design, execute/simulate, and verify such synchronous models, e.g.,
GIOTTO [20], and Lustre [18].

In the FSDM the dense physical time is discretized into frames, i.e., periodic
sequences of constant duration. Each of the frames consists of a synchronization phase
and a processing phase. During the synchronization phase the input is received (in a
sample and hold manner) from the system environment and the output is sent to the
environment. In the processing phase the system’s function calculates the next state and
the output from the input and the current state. Only during the synchronization phase
there is interaction between a CS and its otherwise free-running environment. Under
the synchronous hypothesis [33] a frame duration is short enough such that the system
appropriately reacts to changes in its environment. Hence, the frame duration is
determined by the environmental dynamics. For instance, for a keyboard-based Human
Machine Interface (HMI) a frame duration of 50 ms is appropriate for most applica-
tions, while for a crash detection system in a car a frame duration lower than 1 ms is
more appropriate.

Fig. 6. Service interface layer

Interfaces in Evolving Cyber-Physical Systems-of-Systems 57



It follows a brief overview of the implementation of the CPSoS elements at the
informational layer by means of the FSDM:

• Itom: Data flows in the FSDM transport Itoms. They are the input and output
elements of Constituent Systems (CSs) and Environmental CSs (ECSs) that access,
process, or generate them in each frame. Itoms can be described by markup lan-
guages, like XML.

• Direct Itom Channel Model: A direct channel is connected among one sending
and one or more receiving RUI models. It acts in a store-and-forward manner, i.e.,
the output of this model usually is a delayed copy of the input. Important model
attributes are delay, jitter, and optional fault behavior.

• CS and ECS RUI Models: RUI models can connect to channel models according
to their connecting strategy (see Sects. 3.3 and 4.3). In time-aware CPSoS the
internal state of a CS includes the current global time on which input, output and
computation actions can be based. ECS RUI models describe the behavior of the
common environment of indirectly interacting CSs. They need to integrate the
Itoms received from connected CS RUI models in their internal state and apply
specified environmental dynamics to this internal state at each frame. The output of
ECSs reflects their internal state according to the (often limited) observation
capabilities of the receiving connected RUI models. ECSs that model large state
spaces and computational intensive environmental dynamics of the physical envi-
ronment can limit the considered interactions to the overlapping entourages of the
involved CSs.

Implementation Considerations
In time-aware CPSoSs the CSs as well as the cyber channels might not be able to
guarantee the reaction time constraints imposed by the FSDM. Still, if inputs (and
outputs) adhere to the state semantics, there are sophisticated state estimation tech-
niques [22] available to tolerate occasional violations of the synchronous hypothesis
(even to the extent of incorporating state observations with significant delay and jitter,
e.g., cf. [11], Fig. 2).

In time-aware CPSoSs the CSs can use the available global timebase to drive a
periodic control subsystem of a CS as follows: Frame start instants are aligned with a
tick event of the global time and frame durations are multiples of the granularity of the
global time. Further, the periodic control subsystem is responsible in the processing
phase to activate application tasks, and during the synchronization phase to conduct
send and receive actions. There is implementation technology available that readily
supports the FSDM. Examples are: TTEthernet [35], TTP/C, or the ACROSS
Multi-Processor System-on-Chip [37].

58 B. Frömel and H. Kopetz



4.3 RUIs Under Dynamicity

Dynamicity describes the reaction or reconfiguration capabilities that have been already
considered in the CPSoS design. Therefore, any supported dynamicity needs to be
defined in the RUI specifications. We examine three prototypical dynamicity cases:

• dynamicity with respect to connecting two or more CSs at their RUIs,
• dynamicity in making (partial) CS or emergent CPSoS services available to other

CSs (RUS composition), and
• dynamicity to adapt to changes in the environment.

RUIs might be connected only for a finite duration within an Interval of Discourse
(IoD). A disconnected RUI might be a normal, fault-free interface state and may result
at most in CS service degradation, but not in CS failure. This key aspect of RUIs is
responsible for the impossibility to establish a static system boundary of a CPSoS. CSs
may disconnect and reconnect and they might even be part of multiple CPSoSs (e.g., a
modern day NFC enabled smartphone can be part of the global telephone network, the
Internet, and the global ATM network which are three large and independently oper-
ating CPSoSs).

The RUI connection strategy is part of the interface specification of RUIs that
regulates how CSs establish connections. All RUI connecting strategies are local to
their respective CS. Still, they influence the dynamic global network topology of a
CPSoSs. Consequently, they are co-responsible for the occurrence and regulation of
self-organization and emergent phenomena.

At the cyber-physical and informational layers of RUIs it is cognitively complex to
describe the dynamic CS interaction that is necessary for accessing a service on the
basis of individual channels, because the specific client CSs are unknown before
runtime. For example, take a CS that offers a database service. This database service
requires a request and a response Itom channel per client CS. For n client CSs one
would need to specify 2n dedicated channels at the cyber-physical or informational
interface layer. When considering the same situation at the service layer, only the
database service together with the two required channels needs to be specified. The
mechanisms of service discovery and service composition allow a scheduler to auto-
matically instantiate the request and response channels for each client CS during
runtime.

Finally, CSs might need to react to the changing environment and need to recon-
figure the set of offered services in order to: (1) accomplish overall CPSoS goals (e.g.,
limit total energy budget, enter a safe state, …), or (2) tolerate faults (e.g., suddenly
disconnected CSs or failing CSs). At the service interface layer, paradigms known from
the Service-oriented Architecture (SoA) are readily available for use. For example, one
such paradigm is to replace services with a degraded version, or to replace failed
services altogether with services from other (redundant) CSs [21].

Interfaces in Evolving Cyber-Physical Systems-of-Systems 59



5 Interfaces in Evolving Cyber-Physical Systems-of-Systems

Evolution of Cyber-Physical Systems-of-Systems (CPSoSs) concerns design modifica-
tions introduced into the interacting Constituent Systems (CSs) that are triggered by
changes in the CPSoS environment. Changes of the CPSoS environment might include,
for example, advances in technology, or are changes in societal or business needs. Often
these needs originate from the desire to change a service towards increased efficiency or
the wish to introduce new services altogether. Ultimately, evolutionary changes to the
design and consequently operation of the CPSoS should counteract obsolescence in
order to keep the CPSoS relevant, increase its business value for involved stake holders,
while not deteriorating already provided and still needed services.

When discussing evolution in possibly large and complex systems like CPSoSs we
distinguish between unmanaged and managed evolution [32]. In unmanaged evolution
there is no guidance about how a CPSoS evolves. Owners of CSs are free to change
services and cooperation with other CSs is motivated by each CS owner’s own gain in
perceived business value. Facebook, Wikipedia, Google services, and Twitter mes-
saging are examples of CSs whose interfaces are controlled and evolved by the
respective owning companies. The composition of such CSs is not driven by a specific
central purpose and leads to virtual SoSs (e.g., Twitter/Facebook integration of fitness
tracking and training applications, or a clever integration of Wikipedia and Facebook to
realize file-sharing services). Consequently, unmanaged evolution is most suitable for
virtual SoSs where there is no clear central purpose.

In this section we focus on the technical realization of managed evolution [32]
which is most appropriate for collaborative SoSs (but also directed and acknowledged
SoSs, see Chap. 1 for details about SoS classifications). Managed evolution has been
originally suggested in the context of large, long-term operational software systems that
also show many similarities with CPSoSs (complex functional, semantical, temporal,
technical, and operational interdependencies of interacting systems with non-trivially
replaceable legacy subsystems). In collaborative SoSs, managed evolution must be
planned and supervised by an SoS authority, i.e., an organizational entity (for example
established by a CPSoS consortium or enterprise), such that “the efficiency of devel-
oping and operating the system is preserved or even increased” [32]. The SoS
authority has a specific CPSoS purpose in mind, maintains the specifications of Relied
Upon Interfaces (RUIs), and has a set of capabilities in order to manage CPSoS
evolution. The capabilities are:

• means to introduce changes into a CPSoS by ultimately modifying RUI specifi-
cations of CSs,

• monitor the evolutionary performance of the evolving CPSoS, and
• give incentives to steer the evolutionary process forward, i.e., influence CSs to

implement modified RUI specifications.

In the followingwe discuss scope and challenges ofmanaged evolution in time-aware
CPSoSs and in particular investigate evolution at Relied Upon Interfaces (RUIs) of CSs.
We attempt to confine risks associated with unexpected detrimental emergence and
finally suggest a set of guidelines how to handle evolution in time-aware CPSoSs.

60 B. Frömel and H. Kopetz



5.1 Scope and Challenges

Managed evolution as described in [32] discusses and addresses challenges related to
large, complex, and long-term operational software systems. The comprehensive
findings of the authors apply to collaborative SoSs, because they share all character-
istics of the systems discussed in [32]. For example, one important challenge the
authors address is maintaining agility (i.e., the ability to efficiently implement evolu-
tionary changes) while also carrying out necessary changes to increase the system’s
business value.

Further, the authors extensively examine organizational, governance, and even
cultural or people aspects of evolving systems, while in this chapter we mostly con-
centrate on technical aspects. In the following, we identify challenges specifically
occurring in the evolution of time-aware CPSoSs that we want to tackle:

• Continuous Evolution: Compared to traditional monolithic systems, CPSoSs need
to continuously evolve, because replacement of the overall CPSoS as well as a
redesign from scratch (green-lawn or greenfield approach) are infeasible with
respect to involved costs, risks, or inacceptable operational discontinuities. For
example, in the global Automated Teller Machine (ATM) SoS at one point in time a
more secure chip-based payment card has been introduced. It is immediately clear
that an instantaneous replacement of all payment cards together with the replace-
ment of all Points of Sale (PoS) and ATM terminals worldwide cannot be done
because of scaling issues. Consequently, CPSoSs need to evolve continuously,
usually during runtime.

• Multi-version Evolution: An unavoidable consequence of continuous evolution is
that parts of an CPSoS are at different evolutionary states. In large and long-term
operational CPSoSs the CSs cannot be replaced or upgraded simultaneously. Hence
CSs need to be able to interact with older versions of themselves. Further, CSs
cannot be arbitrarily updated and might become at some point legacy CSs that need
wrapping to be able to interact with the further evolved CPSoS. In CPSoSs we have
CSs in multiple versions and need to take care about appropriately wrapping legacy
CSs.

• Unexpected Detrimental Emergence: Evolutionary changes might lead to unex-
pected emergence that is highly undesired (e.g., compromised security or safety
properties of an CPSoS). Unfortunately, unexpected emergence cannot be easily or
reliably predicated and may only be discovered by accident, because the boundary
of a CPSoS is not static and there might by unforeseen environmental effects. For
example, consider the British Airways Flight 38 where a Boeing 777 crashed on
January 17th, 2008 shortly before the runway at its destination: both engines sud-
denly failed during landing. The investigation concluded that ice has formed in the
fuel system which restricted the fuel flow to both engines [1]. At that time the
formation of ice was an unconsidered environmental effect which was only revealed
after an accident occurred.

• Evolving CPSoS Dynamicity: AMADEOS CPSoSs feature architectural support
for adaptive monitoring, analyzing and planning via cognitive and predictive
models, and execution of reaction strategies. These architectural means to handle

Interfaces in Evolving Cyber-Physical Systems-of-Systems 61



CPSoS dynamicity need to evolve together with changes in the CPSoS service. For
example, in case an evolutionary change allows more efficient use of crossroads and
use of street lanes, different traffic situations might arise which require different
reaction strategies in order to optimize traffic flow and minimize detrimental effects
of faults.

Note that we do not claim that this list of challenges is complete. There might be
more challenges related to evolution, especially, if one wants to discuss CPSoSs of
specific application domains.

5.2 Local and Global Evolution

We call changes within a CS that do not affect its interactions with other CSs local
evolution. Local evolution does not modify any of the CS’s RUI specifications and
consequently remains invisible at the CPSoS level. Still, local evolution is important to
optimize the operation of CSs, introduce new or change local-only CS services, or
prepare CSs for a pending global evolutionary step.

Local evolution harbors the risk of introducing hidden channels (i.e., unconsidered
interactions) among CSs which could lead to emergent effects. Hence, local evolution
must carefully respect RUI specifications which forbid – in principle – any interaction
of a CS with its environment that is not explicitly defined. However, in praxis this is
difficult to achieve, especially in relation to stigmergic interactions over a common
physical environment. For example, a processor may leak information via its power
consumption. In case some local evolutionary change enables an attacker to measure
the power consumption, CPSoS security might be compromised.

In contrast to local evolution, we call changes that affect the interactions of CSs and
thus the service of the overall CPSoS global evolution. As such, global evolution
concerns the change of RUI specifications and how these changes are coming into
effect. In CPSoSs we have continuous evolution. Consequently, CPSoSs cannot be
changed radically, but need to evolve gradually towards changed or new goals in
evolutionary steps of limited scope preferably with predictable effects.

Inspired by biological evolution of life (cf. Darwin and natural selection) we regard
CPSoS evolution as a tree-like search towards adaptation to environmental conditions.
The search space consists of all possible changes that can be realized to address
(changed) environmental conditions. Naturally this search space is too large to explore
exhaustively; only some of the possible changes are actually realized and can be
represented as a tree-like search space exploration. Figure 7 sketches how we view the
process of global evolution in CPSoSs. Each of the vertices of the acyclic graph
represents a specific evolutionary state or version of the CSs making up a CPSoS. The
edges in the graph represent evolutionary steps. The vertical dashed line represents the
instant now which separates the past (versions of CSs that exist and may or may not be
in operation) from the future (versions of CSs that are planned and are not operational
yet). We assume that some versions of CSs are compatible at the present. In the figure
we have indicated two overlapping sets of versions of CSs that are compatible (upper
and lower lassos containing a set of vertices each).

62 B. Frömel and H. Kopetz



Three fundamentally different types of evolutionary steps have been identified:

• Basic Step: A basic evolutionary step is a linear, incremental update from one
version of a CPSoS to the next one. In Fig. 7 a basic step is represented for example
between the two most left vertices.

• Fork: In this case two or more different versions evolve from the same ancestor
version. For example, a smart grid CPSoS might have evolved in one country up to
a certain version which is adopted by a different CPSoS consortium in a different
country. Over time these two versions might diverge further up to a point where
CSs from one evolved version are not compatible anymore with the CSs from the
other evolved version. Figure 7 exemplifies this case after the second vertex from
the left where there is a fork into three different versions.

• Merge: Finally, two versions of CSs that are part of the same CPSoS might merge
in a later version in order to reduce unnecessary functional redundancies, benefit
from standardization efforts, or consolidated interfaces. In Fig. 7 this case is
depicted in the vertex that has two incoming edges.

Note that in some cases a version can be abandoned and not evolved further as we
have illustrated in Fig. 7 by using the shaded version vertex which has no outgoing
edge. CSs of such an abandoned version will turn into legacy CSs until they become
obsolete.

In terms of managed evolution, forks create mostly business value, while merges
increase agility. Basic steps either increase business value or agility. It is in the
responsibility of the involved SoS authorities to appropriately control evolutionary
steps such that the business value for all stakeholders stays viable while simultaneously
agility is not reduced. Both, business value and agility are quality metrics that are
composed of CPSoS application-specific quality metrics. For example, the business
value of a CPSoS consisting of autonomous cars that should transport humans in a city
while minimizing environmental pollution can be assessed by average transportation
time per km and average pollution per km.

Fig. 7. Tree-like search towards adaptation

Interfaces in Evolving Cyber-Physical Systems-of-Systems 63



5.3 Managing Global Evolution at Relied upon Interfaces

Integral to managing evolution in CPSoSs is the establishment of an SoS authority over
RUI specifications. The SoS authority needs to carefully plan and execute evolutionary
steps that – depending on their magnitude – may require considering the possibility of
unexpected detrimental emergent effects, and modifying the management of CPSoS
dynamicity.

SoS Authority and Management of RUI Specifications
We consider the SoS authority as a mandatory organizational entity in collaborative
SoSs that has societal, legal, or business responsibilities in order to keep the CPSoS
relevant to its stakeholders. For this purpose, the SoS authority has monitoring and
amelioration powers within the CPSoS in order to steer it towards a desired target
version. In particular the SoS authority manages RUI specifications and controls how
changes of these specifications are rolled out. An SoS authority might be composed of
representatives of key CPSoS stakeholders, like CS manufacturers or governments.

SoS authorities select and adopt a suitable set of standards developed by stan-
dardization organizations such as the Institute of Electrical and Electronics Engineers
(IEEE), the Society of Automotive Engineers (SAE), or the Object Management Group
(OMG). The role of standardization organizations in CPSoSs is to provide a stable and
broadly accepted conceptual and technological basis for the realization of RUI speci-
fications. For example, the SAE J1708 standard specifies the serial communication
(physical layer) of Electronic Control Units (ECUs) in heavy duty vehicles.

In the following we outline a technical realization of RUI specification management
on a Service-oriented-Architecture (SoA) approach. Authorized Relied Upon Service
(RUS) specifications (S-Specs) are administrated at a service registry (see Sect. 3.2).
Only the SoS authority can authorize and publish S-Specs at the service registry. For
example, a CS owner2 participates in the CPSoS by being a RUS provider that offers
the RUS in compliance to an authorized S-Spec. In support of multi-version evolution
the service registry needs to feature version management for authorized S-Specs, i.e.,
the SoS authority can add new versions of S-Specs to the service registry that coexist
with older S-Spec versions. Now owners of CSs that provide RUSs have the possibility
to specify in their respective SLAs to which specific version of an authorized S-Spec
they refer to. For each supported S-Spec version a different SLA needs to be offered by
the CS owner.

Besides managing RUI specifications the SoS authority needs to assess and steer
the overall evolutionary process of the CPSoS. The performance of the evolutionary
process of a CPSoS is derived from measurable quality metrics describing business
value and agility of the CPSoS. Consequently, the measurement of the evolutionary
performance can be efficiently integrated in the monitoring and analyzing blocks of the
AMADEOS solutions concerning the management of CPSoS dynamicity (see
Chap. 7). One example of an important quality metric for the assessment of the

2 For the sake of brevity we assume here that the owner of a CS is also its manufacturer and user.

64 B. Frömel and H. Kopetz



evolutionary performance in CPSoSs is the adoption rate of existing or newly intro-
duced CSs to new or changed versions of S-Specs.

The adoption rate is controllable by the SoS authority who can give incentives in
order to move the evolutionary process towards a desired target version. Incentives can
be advantages or disadvantages where even monetary penalties apply in case a CS is
not upgraded to a more recent version. For example, in the global Automated Teller
Machine (ATM) network SoS the payment card industry shifted liability at a specified
deadline from money institutes to the Point of Sale (PoS) operators (usually mer-
chants), if they used old and insecure equipment to process payment cards. As the
deadline of the liability shift approached and passed, PoS operators risked compen-
sating monetary losses caused by fraud from their own pocket, if an insecure PoS
terminal under their responsibility was involved. This strong incentive forced PoS
operators to upgrade to more secure PoS terminals where they are not liable in the event
of fraud.

Magnitude and Effects of Evolutionary Steps
We define the magnitude of an evolutionary step by considering which of the interface
layers (see Sect. 3.2) of RUIs are affected by it:

• Cyber-Physical Layer: Technological advances (e.g., different communication
protocols, more energy efficient sensors and actuators) may lead to a change of how
cyber-physical interactions are carried out. In the case that other interface layers
remain unaffected (i.e., there is no change in the information flows) we have a minor
evolutionary step. A minor evolutionary step does not require any further consid-
erations concerning emergence and managing CPSoS dynamicity. In the context of
the AMADEOS Architectural Framework (AF) detailed in Chap. 5, a minor evo-
lutionary step only concerns differences in the implementation level.

• Informational Layer: We consider changes at the informational layer as a major
evolutionary step, because a change in the Itom interactions of CSs needs to be
carefully assessed with respect to emergence and the management of CPSoS
dynamicity. Regarding the AMADEOS AF a major evolutionary step implies
changes at the logical, conceptual or even up to the mission level.

• Service Layer: Changes at the service layer are always accompanied by changes in
the underlying interface layers. Consequently, a change at the service level also
represents a major evolutionary step that has implications on emergence and the
management of CPSoS dynamicity.

Methods from Scenario-based Reasoning (SBR) [6] can be employed to
pre-evaluate effects of evolutionary steps according to CPSoS-specific quality metrics
under quantified uncertainty.

Handling Continuous Evolution
It remains to discuss the transition from one CPSoS version to an evolved version.
Continuous evolution in CPSoSs is based on the principle of backward compatibility of
its CSs. This backward compatibility needs to be established by upgrading or intro-
ducing new CSs that also support the interaction with non-upgraded CSs.

Interfaces in Evolving Cyber-Physical Systems-of-Systems 65



We have already described a multi-version service registry and that Relied Upon
Service (RUS) providing CSs can support multiple versions of S-Specs. Now we want
to emphasize that also CSs requesting RUS have the possibility to consume different
versions of a RUS. In fact, the more versions of RUSs a CS is able to provide or
consume, the ‘smoother’ a CPSoS is able to evolve. Naturally, newly introduced RUSs
should not disrupt existing or legacy RUSs.

At some point conflicting or obsolete RUSs need to be retired and old,
non-upgradable CSs that depend on them or provide them become incompatible with
more recent CSs. In case these old and non-upgradable CSs are still essential for the
operation of the CPSoS they become legacy CSs and their service needs to be
appropriately wrapped. For example, a wrapping CS can be introduced in an evolu-
tionary step. The wrapping CS is able to offer the service of the legacy CS encapsulated
in a version of a RUS that is compatible with all non-legacy CSs.

In time-aware CPSoSs there is the benefit of a global time that allows temporally
coordinating the execution of an evolutionary step. The SoS authority can define
validity instants in new versions of RUI specifications such that they are switched on at
a specific instant. For example, a desired emergent effect may only occur if a critical
number of CSs adhere to the new RUS version simultaneously. Also, for some CPSoSs
it might be useful to steer its CSs first to a safe, ground, or dormant state, then perform
further (physical) upgrades, and finally awake them to interact in the evolved CPSoS
(see car-recalls and repair procedures in the automotive domain).

5.4 Avoiding Detrimental Emergence

The occurrence of unexpected detrimental emergence is a problematic case in engi-
neering, operating and evolving CPSoSs. Against our expectations and current pre-
dictive capabilities something harmful and possibly catastrophic happened. Why can
we not prevent unexpected emergence by design? While the engineering process is
indeed responsible for the interaction abilities of the CSs, CPSoSs are also open
systems that interact with their environment. This environment of a CPSoS may change
over time and/or might be insufficiently understood, i.e., in general we cannot be
certain that our models of the CPSoS environment are complete. Also the boundary of
a CPSoS is dynamic and influences how the CPSoS environment affects the CPSoS
itself. For example, consider a fault-tolerant CPSoS: If the number of its redundant CSs
is small, an environment that causes intermittent faults in CSs at a constant rate (e.g.,
radiation) is much more hostile than compared to the same CPSoS where the number of
redundant CSs is large.

An evolving CPSoS attempts to adapt to changes in its environment (real changes
or a changed understanding of the environment). Consequently, there are two
co-dependent causes that enable the occurrence of unexpected detrimental emergence
in CPSoSs:

• An evolutionary step that changes how CSs interact, and
• a change in the CPSoS environment and/or hidden channels.

66 B. Frömel and H. Kopetz



To the best of our knowledge there is currently no scalable theory to eliminate the
first cause with certainty. The number of possible interactions in real-world CPSoSs
(physical environment!) diminishes any hope to exhaustively test for all known
emergent phenomena, and to evaluate them with respect to their possibly detrimental
effects. Even if there was a theory solving this issue, one fundamental problem remains:
Identifying unknown emergence, i.e., effects or properties that are conceptually novel at
the macro-level (SoS level), but are not present in the non-relational phenomena of the
parts at the micro-level (level of CSs).

Unfortunately, the situation is even worse concerning the second presumed cause
that enables the occurrence of unexpected emergence. Changes in the CPSoS envi-
ronment are outside the sphere of control of a CPSoS consortium. Some of these
changes may lead to the occurrence of previously rare or unlikely interactions of CSs
which may in return result in a (detrimental) unexpected emergent phenomenon.
Finally, hidden channels are an unfortunate consequence of our ignorance about the
CPSoS environment. They may close causal loops or enable cascading effects which
again could trigger (detrimental) unexpected emergence.

In summary, it appears that in principle we cannot prevent all first occurrences of
detrimental emergent phenomena with absolute certainty. Further, both an ill-conceived
evolutionary step, and (unlucky) changes in the CPSoS environment may lead to
undesired emergent phenomena. In the following subsections we discuss a mitigation
strategy based on results described in Chap. 3.

Mitigation Strategy
In order to minimize occurrence and subsequent damage due to unexpected detrimental
emergence we suggest a mitigation strategy consisting of the following procedures:

• Augmentation of CPSoS design with expectations about nominal operation:
Relied Upon Service (RUS) specifications should contain assertions that indicate
whether the RUS is provided and consumed nominally and according to the
designer’s expectations. Runtime monitoring implemented in the management of
CPSoS dynamicity (see Chap. 7) can check the defined assertions against all
interactions of CSs and log as well as timestamp any occurring anomalies.

• Discovery of the onset of unexpected emergent phenomena: Quality metrics
associated with the onset of emergence (e.g., critical slow-down, density), unex-
plainable anomalies, and patterns of previously diagnosed and analyzed emergence
should lead to the discovery of the onset of (detrimental) unexpected emergence.
Again this procedure should be implemented in the management of CPSoS
dynamicity.

• Diagnosis and analysis of unexpected emergence: After an unexpected emergent
phenomenon has been discovered, it must be carefully diagnosed and analyzed.
This procedure must reveal the trans-ordinal law and it might expose hidden
channels or changes in the CPSoS environment that have not been noticed yet.
Based on the result of the analysis inaccurate (environmental) models should be
corrected and an appropriate evolutionary step planned to prevent the now expected
detrimental emergence.

• Prevention of detrimental emergence by design: As soon as new expected
detrimental emergence has been found an evolutionary step should be performed

Interfaces in Evolving Cyber-Physical Systems-of-Systems 67



that ameliorates ongoing detrimental emergence and prevents its further occurrence.
Amelioration can be implemented in the management of CPSoS dynamicity by
deploying suitable reaction strategies (e.g., introduction of randomness to break
unintended synchronization [31]). Prevention of detrimental emergence should be
implemented by appropriately constraining the RUIs of CSs such that their inter-
actions do not lead to the detrimental emergent effect anymore.

• Prediction of detrimental emergence: When planning an evolutionary step, we
can predict/search for detrimental emergence by applying analytical methods (e.g.,
finding causal loops, cascading effects) as well as simulation of models of the
CPSoS and its environment.

Detecting Unknown Emergence
Often emergent phenomena are associated with some kind of regularities or shift in
densities, but looking for something unknown that does not appear to have any generic
and unique characteristics limits our detection abilities. Mogul [31] suggests building a
library of signatures of emergence that occur in distributed computer systems and gives
interesting examples: trashing caused by ‘unlucky’ scheduling (not just overprovi-
sioning), unintended synchronization, unintended oscillation or periodicity, detectable
by spectral analysis, deadlock and livelock, phase change, chaotic behavior.

While building such a library still requires some decision procedure to classify
anomalies as emergent, it would – together with monitoring – allow for efficient
detection of already encountered emergence. A decision procedure to classify
anomalies could be supported by unsupervised machine learning. Self-organizing Maps
(SOMs) appear to be a particularly interesting technique where clusters of structure or
density differences in data can be found (see Fig. 8, right).

The SOM [23] is an unsupervised machine learning approach that is based on an
artificial neural network of a usually low-dimensional topology (e.g., two-dimensional
as depicted in Fig. 8, left). During the training process possibly high-dimensional input
data is (after appropriate pre-processing [19]) firstly vector quantized and secondly
mapped to the SOM while attempting to preserve the original topology of the input
data. Various visualizations for SOMs exist to both make the information contained in
the SOM accessible for analysis, but also to allow for assessments concerning the
quality of the vector quantization and the quality of the topology preservation. Con-
sequently, visualizations are critical for the interpretation of SOMs. Visualizations
often focus on a single or a few aspects of the SOM, i.e., for analyzing SOMs, it is
often necessary to study multiple visualizations of them in combination. For example,
visualizations can express structural information about input vector density relations,
distance relations among mapped input vectors (also called topology), or class infor-
mation. Further, SOMs can be used to both semantically relate different input samples
among one another, and to predict the relation of new input samples to input samples
used in training.

68 B. Frömel and H. Kopetz



5.5 Design Guidelines for Evolvable Systems-of-Systems

We conclude this section with a list of design guidelines for evolving CPSoSs that in
particular apply to collaborative SoSs:

• Precisely specify temporal properties of RUIs. Local evolution might inadvertently
violate RUI specifications, particularly in the temporal domain. Such violations may
lead to hidden channels enabling undesired interactions among CSs. The undesired
interactions possibly cause unexpected detrimental emergence. Therefore, CSs need
to be checked (e.g., by the CPSoS dynamicity management) concerning their
conformance to authorized RUI specifications.

• Adopt managed evolution to steer CPSoS evolution in a way such that necessary
changes are implemented and the CPSoS remains flexible concerning future
changes.

• Implement an SoS authority that has the capabilities to change RUI specifications,
to assess the evolutionary state of the CPSoS, and to give incentives to control the
onset of the evolutionary process.

• Define evolutionary steps that move the CPSoS towards its changed goal, but limit
them in scope such that they remain predictable (with respect to the current
knowledge of the CPSoS consortium) in their effects.

• Use the global timebase to temporally coordinate evolutionary steps.
• Use executable CPSoS models (see Sect. 4.2) in simulations and historic data

recorded in the evolving CPSoS during runtime to pre-validate planned evolu-
tionary steps.

• Use monitoring and assertion checks at the RUIs (e.g., by management facilities of
the CPSoS dynamicity) to validate evolutionary steps. In case of hints about the
onset of unexpected emergence update the models and take corrective actions, if
possible before a detrimental effect manifests.

• Unexpected emergence appears to be unpredictable in principle even in carefully
managed evolution. First occurrence might not be preventable in all cases, therefore
use the mitigation strategy described in Sect. 5.4.

Fig. 8. Self-Organizing Maps (SOMs) reveal emergent regularities in high-dim input data

Interfaces in Evolving Cyber-Physical Systems-of-Systems 69



• Keep human domain experts in the design loop of evolutionary steps. The CPSoSs
that we want to engineer and operate integrate humans, affect humans and should
co-evolve with humans. Consequently, only humans are fully capable of judging
how to best address a change in the environment of CPSoSs.

6 Conclusion

In this chapter we discussed interfaces in time-aware Cyber-Physical Systems-
of-Systems (CPSoSs) for the purpose to investigate behavioral properties of CPSoSs.
First, we characterized relevant architectural elements of CPSoSs and introduced three
interface layers: the cyber-physical layer, the informational layer, and the service layer.
Based on this conceptual groundwork, we identified (among other interfaces) the
Relied Upon Interface (RUI) of a Constituent System (CS) as the fundamental interface
responsible for the operational behavior of CPSoSs and managing CPSoS evolution.

The RUI is a CS interface on which the global, operational CPSoS service relies
upon. We described the RUI model at each of the introduced interface layers, and
outlined execution semantics for the informational layer to support the exploration of
behavioral effects, like the occurrence of emergence.

In the second part of the chapter we focused on CPSoS evolution and how to
manage it at the RUI of CSs. To this end we introduced an SoS authority that is in
control of RUI specifications, plans evolutionary steps, and carries them out by
changing RUI specifications. We discovered that both – changes in the CPSoS envi-
ronment and evolutionary changes – harbors the risk of unpredicted detrimental
emergence and suggested a mitigation strategy.

Acknowledgments. Warm regards to Sorin Iacob and Andrea Bondavalli for the insightful
discussions about stigmergic channels. We thank the following experts for reviewing and helping
to improve the chapter: Wilfried Elmenreich (Alpen-Adria-Universität Klagenfurt, AT), Sorin
Iacob (Thales, NL), and Wilfried Steiner (TTTech, AT).

References

1. Air Accidents Investigation Branch: Aircraft Accident Report AAR1/2014 – Boeing
777-236ER, G-YMMM, 17 January 2008. Formal report (2008). https://www.gov.uk/
aaib-reports/1-2010-boeing-777-236er-g-ymmm-17-january-2008. Accessed 1 Sept 2016

2. Al-Fuqaha, A., et al.: Internet of things: a survey on enabling technologies, protocols, and
applications. IEEE Commun. Surv. Tutorials 17(4), 2347–2376 (2015)

3. Alonso, G., et al.: Web Services. Data-Centric Systems and Applications, pp. 123–149.
Springer, Heidelberg (2004)

4. Avižienis, A., Laprie, J.-C., Randell, B.: Dependability and Its Threats: A Taxonomy.
Building the Information Society, pp. 91–120. Springer, Boston (2004)

5. Banks, A., Gupta, R.: MQTT Version 3.1.1. OASIS standard (2014)

70 B. Frömel and H. Kopetz

https://www.gov.uk/aaib-reports/1-2010-boeing-777-236er-g-ymmm-17-january-2008
https://www.gov.uk/aaib-reports/1-2010-boeing-777-236er-g-ymmm-17-january-2008


6. Conrado, C., de Oude, P.: Scenario-based reasoning and probabilistic models for decision
support. In: 2014 17th International Conference on Information Fusion (FUSION). IEEE
(2014)

7. Caffall, D.S., Michael, J.B.: Architectural framework for a system-of-systems. In: 2005 IEEE
International Conference on Systems, Man and Cybernetics, vol. 2. IEEE (2005)

8. Curbera, F., et al.: Unraveling the web services web: an introduction to SOAP, WSDL, and
UDDI. IEEE Internet Comput. 6(2), 86 (2002)

9. Da Xu, L., He, W., Li, S.: Internet of things in industries: a survey. IEEE Trans. Industr. Inf.
10(4), 2233–2243 (2014)

10. Elmenreich, W., Haidinger, W., Kopetz, H.: Interface design for smart transducers. In:
Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference,
IMTC 2001, vol. 3. IEEE (2001)

11. Engel, J., Sturm, J., Cremers, D.: Camera-based navigation of a low-cost quadrocopter. In:
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE (2012)

12. Erl, T.: Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services.
Prentice Hall PTR, Upper Saddle River (2004)

13. Eugster, P.T., et al.: The many faces of publish/subscribe. ACM Comput. Surv. (CSUR) 35
(2), 114–131 (2003)

14. Fan, Z., et al.: Smart grid communications: overview of research challenges, solutions, and
standardization activities. IEEE Commun. Surv. Tutorials 15(1), 21–38 (2013)

15. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architec-
tures. Dissertation University of California, Irvine (2000)

16. Fisher, D.: An emergent perspective on interoperation in systems of systems (2006)
17. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding code mobility. IEEE Trans. Soft. Eng.

24(5), 342–361 (1998)
18. Halbwachs, N., et al.: The synchronous data flow programming language LUSTRE. Proc.

IEEE 79(9), 1305–1320 (1991)
19. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam

(2011)
20. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: a time-triggered language for

embedded programming. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS,
vol. 2211, pp. 166–184. Springer, Heidelberg (2001). doi:10.1007/3-540-45449-7_12

21. Höftberger, O., Obermaisser, R.: Ontology-based runtime reconfiguration of distributed
embedded real-time systems. In: 16th IEEE International Symposium on
Object/Component/Service-Oriented Real-time Distributed Computing (ISORC). IEEE
(2013)

22. Khaleghi, B., et al.: Multisensor data fusion: a review of the state-of-the-art. Inf. Fusion 14
(1), 28–44 (2013)

23. Kohonen, T.: The Basic SOM. Self-organizing Maps, pp. 105–176. Springer, Heidelberg
(2001)

24. Kopetz, H., Suri, N.: Compositional design of RT systems: a conceptual basis for
specification of linking interfaces. In: Sixth IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, 2003. IEEE (2003)

25. Kopetz, H.: Real-time Systems: Design Principles for Distributed Embedded Applications.
Springer Science & Business Media, Heidelberg (2011)

26. Kopetz, H.: Why a Global Time is Needed in a Dependable SoS. arXiv preprint arXiv:1404.
6772 (2014)

27. Kopetz, H.: A conceptual model for the information transfer in systems-of-systems. In: 2014
IEEE 17th International Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing. IEEE (2014)

Interfaces in Evolving Cyber-Physical Systems-of-Systems 71

http://dx.doi.org/10.1007/3-540-45449-7_12
http://arxiv.org/abs/1404.6772
http://arxiv.org/abs/1404.6772


28. Kopetz, H., Frömel, B., Höftberger, O.: Direct versus stigmergic information flow in
systems-of-systems. In: 2015 10th IEEE System of Systems Engineering Conference (SoSE)
(2015)

29. Mahnke, W., Leitner, S.-H., Damm, M.: OPC Unified Architecture. Springer Science &
Business Media, Heidelberg (2009)

30. Maier, M.W.: Architecting principles for systems‐of‐systems. INCOSE Int. Symp. 6(1)
(1996)

31. Mogul, J.C.: Emergent (mis) behavior vs. complex software systems. ACM SIGOPS
Operating Syst. Rev. 40(4), 293–304 (2006). ACM

32. Murer, S., Bonati, B., Furrer, F.J.: Managed evolution (2011)
33. Potop-Butucaru, D., de Simone, R., Talpin, J.-P.: The synchronous hypothesis and

synchronous languages. In: The Embedded Systems Handbook, pp. 1–21 (2005)
34. Quigley, M., et al.: ROS: an open-source Robot Operating System. ICRA Workshop Open

Source Softw. 3(3.2), 5 (2009)
35. Steiner, W., et al.: Ttethernet dataflow concept. In: 2009 Eighth IEEE International

Symposium on Network Computing and Applications, NCA 2009. IEEE (2009)
36. Valckenaers, P., Kollingbaum, M., Van Brussel, H.: Multi-agent coordination and control

using stigmergy. Comput. Ind. 53(1), 75–96 (2004)
37. El Salloum, C., et al.: The ACROSS MPSoC–a new generation of multi-core processors

designed for safety–critical embedded systems. Microprocess. Microsyst. 37(8), 1020–1032
(2013)

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
duplication, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the work’s Creative

Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

72 B. Frömel and H. Kopetz

http://creativecommons.org/licenses/by/4.0/


http://www.springer.com/978-3-319-47589-9


	Interfaces in Evolving Cyber-Physical Systems-of-Systems
	1 Introduction
	2 Related Work
	3 Interfaces in Cyber-Physical Systems-of-Systems
	3.1 Architectural Elements of Cyber-Physical Systems-of-Systems
	3.2 Interface Layers
	3.3 Interfaces of a Constituent System

	4 Relied Upon Interfaces
	4.1 RUI Model Overview
	4.2 Execution Semantics of the Informational RUI Model
	4.3 RUIs Under Dynamicity

	5 Interfaces in Evolving Cyber-Physical Systems-of-Systems
	5.1 Scope and Challenges
	5.2 Local and Global Evolution
	5.3 Managing Global Evolution at Relied upon Interfaces
	5.4 Avoiding Detrimental Emergence
	5.5 Design Guidelines for Evolvable Systems-of-Systems

	6 Conclusion
	Acknowledgments
	References


