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Abstract. The number and impact of attack over the Internet have
been continuously increasing in the last years, pushing the focus of
many research activities into the development of effective techniques to
promptly detect and identify anomalies in the network traffic. In this
paper, we propose a performance comparison between two different his-
togram based anomaly detection methods, which use either the Euclid-
ean distance or the entropy to measure the deviation from the normal
behaviour. Such an analysis has been carried out taking into considera-
tion different traffic features.

The experimental results, obtained testing our systems over the pub-
licly available MAWILAb dataset, point out that both the applied
method and the chosen descriptor strongly impact the detection per-
formance.

1 Introduction

The ever increasing number of attacks over the Internet and the serious conse-
quences that these can have in the citizens life have pushed the focus of many
research activities into the design and development of effective tools to promptly
detect and identify anomalies in the network traffic. As a result, many different
approaches have been proposed in the last decade, but the ultimate solution is
still far from being identified.

Among the different proposals, promising results are offered by the methods
based on the estimation of the distribution of a given traffic feature (histogram
based methods).

Nonetheless, even these anomaly detection systems are still affected by seri-
ous limitations (mainly in terms of missed detections and false alarms), either
due to the intrinsic inability of the chosen method to deal with some kind of
anomalies or to the low appropriateness of the chosen traffic feature to properly
discriminate between normal and anomalous activities.

For this reason, in this paper, we propose an experimental study of two
distinct approaches:

– one based on the computation of the Euclidean distance between the his-
tograms of a given traffic descriptor computed in different time-bins (namely
the current time-bin and a reference anomaly-free time-bin);
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– one based on the variation of the entropy associated to the histograms of a
given traffic descriptor computed in different time-bins.

Apart from simply comparing such methods, in this paper we have also inves-
tigated if their “relative” performance is constant when varying the considered
traffic metric. In other words, we have verified if we can identify a method that
outperform the other despite the chosen traffic descriptor. For this reason, focus-
ing on volume anomalies as representative of a very widespread phenomenon, we
have chosen to take into consideration two distinct traffic descriptors, namely
the number of distinct flow destined to a given traffic aggregate and the quantity
of bytes received by the same aggregate.

Interestingly, the experimental results, obtained testing our systems over the
publicly available MAWILAb dataset, show that not only does the choice of
both the statistical detection method and the considered traffic descriptor have
a strong impact on the performance, but that the choice of the “best” detection
method also depends on the considered traffic feature (as pointed out by the
experimental results).

It is worth highlighting that for addressing the scalability issues, both the
methods work on top of traffic aggregates (not traffic flow). Given the literature
on the topic (see next section for more details), we have chosen to aggregate the
traffic using probabilistic data structures (i.e., reversible sketches).

The rest of the paper is organised as follows: Sect. 2 gives a brief overview of
the related works, and in Sect. 3 we provide a quick review of some background
knowledge. Then in Sect. 4 we detail the proposed anomaly detection method.
Hence, the used data-set for the experimental tests is described in Sect. 5, and
the achieved performance is discussed in Sect. 6. Finally, Sect. 7 concludes the
paper with some final remarks.

2 Related Work

Anomaly detection is a general framework including different analysis techniques,
so it is not surprising that several works have been published in recent years,
dealing with specific methods or providing a general overview of the different
approaches (see, for instance, [1–3], which focuses on the features of network
data and provides general guidelines for the design of IDSs). In the following,
we only discuss the most relevant contributions closely related to this work.

Sketches, by themselves, cannot be considered as a detection method, but
they are frequently used as a building block of several IDSs [4–8]. Indeed, random
aggregation performed by sketches “efficiently” reduces the dimension of the data
(wrt “classical” deterministic aggregations, such as according to input/output
routers [9]); moreover, through the use of reversible sketches [10] it is possible
to identify the flows responsible for the anomalies.

Regarding histogram based IDSs, in [11] the behavior of the monitored net-
work during every time bin is characterized by means of histograms represent-
ing the distribution of the number of flows, packets or bytes over the values
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of a traffic feature. Anomalies are detected by comparing, through a distance
function (namely, Euclidean distance, Manhattan distance, Mahalanobis dis-
tance, Kullback-Leibler divergence, and Jensen-Shannon divergence) the cur-
rent histogram with a reference one, built during the training phase. In [12] the
histogram cloning method is introduced: multiple randomized histograms are
obtained through independent hash functions and the Kullback-Leibler diver-
gence is used to detect anomalies.

Entropy has been applied to intrusion detection in different frameworks. For
instance, in [13] fast Internet worms are detected taking into account the entropy
contents (more precisely, the Kolmogorov complexity) of traffic parameters, such
as IP addresses, while [14] focuses on network traffic running over TCP. In
both cases an upper bound of Shannon entropy has been estimated through the
use of different state-of-the-art compressors. Instead, in [15] Shannon entropy
“summarizes” the distribution of specific traffic features to detect unusual traffic
patterns.

3 Theoretical Background

In this section we present some theoretical background information, necessary to
understand the proposed architecture. Note that we focus on the useful details
only, referring the reader to the provided references for a complete description
of the different topics.

3.1 Reversible Sketches

A sketch is a probabilistic data structure (a two-dimensional array) that can
be used to summarize a data stream, by exploiting the properties of the hash
functions [6]. Sketches differ in how they update hash buckets and use hashed
data to derive estimates.

In more detail, a sketch is a two-dimensional D × W array TD×W , where
each row d (d = 0, · · · ,D − 1) is associated to a given hash function hd. These
functions give an output in the interval (0, · · · ,W − 1) and these outputs are
associated to the columns of the array. As an example, the element T [d][j] is
associated to the output value j of the hash function hd.

When a new item (it, ct), where it is the key (e.g., a destination IP address)
and ct is the weight (e.g., the number of received bytes), arrives, the sketch is
updated as follows:

T [d][hd(it)] ← T [d][hd(it)] + ct (1)

and the update procedure is repeated for all the different hash functions.
Given the use of the hash functions, such data structures are not reversible,

which makes impossible, after the detection, to identify the IP addresses respon-
sible of an anomaly. To overcome such a limitation, in our system we have used
an improved version of the sketch, that is the reversible sketch [10].
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3.2 Entropy

The most basic concept in information theory is the entropy of a random variable
(RV) X, often called Shannon entropy [16]. Roughly speaking, it is a measure
of the uncertainty (or variability) associated with the RV.

In more detail, let P =
{
p1, p2, . . . , pL

}
be the probability distribution of the

discrete RV X, i.e.

0 ≤ pl ≤ 1 and
L∑

l=1

pl = 1

Then its Shannon entropy is defined as follows:

H(X) = −
L∑

l=1

pl log2 pl = E
[− log2 P (X)

]
(2)

where E denotes the expectation operator, and is measured in bits (or shan-
non). Note that a change in the base of the logarithm just corresponds to a
multiplication by a constant and a change in the unit of measure (nat for the
natural logarithm and hartley (or ban) for the base 10 logarithm). In particu-
lar, when the natural algorithm is considered, (2) coincides with the well-known
Boltzman–Gibbs entropy in statistical mechanics.

It is well-known that 0 ≤ H(X) ≤ log2 L, where the infimum corresponds to
the degenerate distribution (i.e., pl = δk−l for some integer k with 1 ≤ k ≤ L)
and the supremum is attained in case of uniform distribution (i.e., pl = 1/L ∀l).

3.3 Euclidean Distance

The Euclidean distance (or Euclidean metric) corresponds to the usual distance
between two points in an Euclidean space (in R

2 it is equivalent to the well-
known Pythagorean theorem). It can be seen as a special case (for p = 2) of the
Minkowski distance of order p

dp(P,Q) =

(
L∑

l=1

|pl − ql|p
)1/p

We recall that for p ≥ 1, the Minkowski distance is a metric (as a result of the
Minkowski inequality); instead for p < 1 the triangle inequality does not hold
(see, for instance, [17] for further details).

4 System Architecture

The proposed system takes as input traffic data over a predefined time-bin (in
the following we assume to have N distinct time-bins), whose length can be
arbitrarily set by the network administrator. Note that the duration of the time-
bin is a compromise between the detection delay (the decision is taken at the
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end of the time bin) and the need of collecting enough data in order to build
significant statistics. In more detail, the information associated to each time-bin
is a list of keys it (e.g., the list of destination IP addresses) observed during
that time-bin and the associated weights ct (in our case, the number of bytes
and flows for that IP address). Such information can be easily extracted from
standard network traffic data, for instance parsing NetFlow traces by using the
Flow-Tools [18].

The input data are processed to build the reversible sketch tables. In our case,
each bucket will contain an histogram, representing the empirical distribution
(estimated over L bins) of the weight values associated to all the keys that are
mapped, by the corresponding hash function, in the given bucket. In this way,
we have obtained T distinct sketches T t

D×W×L, where t ∈ [1, N ] is the time-bin
(in the experimental tests we have set W = 512, D = 16, and L = 64).

Then, the sketches are passed to the actual anomaly detection phase, where,
for each bucket of the current sketch T t[d][w][·], the system performs one of the
following operations:

– entropy based method: the system computes the entropy associated to the cur-
rent histogram and the difference between such a value and the entropy asso-
ciated to the same bucket in the reference sketch (i.e., the last non-anomalous
processed sketch);

– distance based method: the system computes the Euclidean distance between
the current histogram and the histogram stored in the same bucket of the
reference sketch.

Finally, such a value (either the entropy difference or the Euclidean distance)
is compared with a threshold to decide if there is an anomaly or not. Note that,
given the nature of the sketches, each traffic flow is part of D random aggregates
and hence it will be checked D times to verify if any anomaly is present (indeed,
an anomalous flow could be masked in a given traffic aggregate, while being
detectable in another one).

Due to this fact, a voting algorithm is applied for each time-bin: the algorithm
simply verifies if at least H (where H is a tunable parameter, with H = D/2+1
in our experiments) rows of the sketch contain at least one anomalous bucket. If
so, the system reveals an anomaly and the responsible IP addresses are identified
(by using the reversible sketch functionalities [10]).

5 MAWILab Dataset

The dataset used to evaluate our anomaly detection methods consists of packet
traces from the MAWI (Measurement and Analysis on the WIDE Internet)
archive (sample-points B and F), publicly available at [19]. Each trace in this
database collects the traffic captured for 15 min in a specific day, since 2001 until
nowadays, on a trans-Pacific link between Japan and the USA.

As in almost all existing databases, the key problem in testing the IDS perfor-
mance is represented by a precise knowledge of the anomalies existing in the cap-
tured traffic. Such information is essential for building a proper ROC (Receiver



Statistical Network Anomaly Detection: An Experimental Study 17

Operating Characteristic) curve and evaluating new approaches. Although also
for the MAWI archive, an exact description of the attacks is not available, the
dataset presents two important features that make it suitable for the perfor-
mance evaluation procedure:

– unlike the widely-used DARPA dataset, the network is not emulated and the
traffic mixture is representative of the current mixtures of network services
and applications;

– in the framework of the successive project MAWILab [20], every traffic flow is
classified by means of labels, which indicate the probability (according to well-
known anomaly detection algorithms) that an anomaly is present. Since these
labels are available together with the traces, they can be used as a common
reference for testing a new IDS.

In more detail, the traces classification has been obtained combining the out-
put of four anomaly detectors (based respectively on the Hough transform, the
Gamma distribution, the Kullback-Leibler divergence and the Principal Compo-
nent Analysis) [21]. As a result, the traffic is split into four categories:

– anomalous: traffic that is anomalous with high probability;
– suspicious: traffic that is probably anomalous, but not clearly identified by

the MAWI classification methods;
– notice: non anomalous traffic, but that has been reported by at least one of

the four anomaly detectors;
– benign: normal traffic.

The anomalies (anomalous and suspicious flows) are listed in an xml file for each
trace, identifying them by means of traffic features as source and destination IP
addresses, source port, destination port and transport protocol. Furthermore,
some information about the kind of anomaly are also given:

– attack : anomalies representing a well known attack;
– special : anomalies involving well known ports;
– unknown: unknown kinds of anomalies.

Hence, the effectiveness of an IDS can be evaluated comparing the alarms
generated by the new IDS with the labeled flows in the traffic traces, possibly
referring to the three above-mentioned anomalous behaviors. Nevertheless, it is
important to take into account the probabilistic nature of the MAWI classifica-
tion in the interpretation of the achieved results.

6 Experimental Results

In this section we discuss the experimental results over the MAWILab dataset.
The most widely used performance indicators are represented by the ROC curve
and the Area under the Curve (AuC). Taking into account the MAWI labels,
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we consider as “false positives” the flows that are not labeled as “anomalous”
or “suspicious” in the MAWI archive, but that are anomalous according to the
tested IDS, so the false alarm probability PFA is the ratio between the number
of “false positive flows” and the number of flows that are neither “anomalous”
nor “suspicious”.

On the other hand, the false negative rate PFN (note that the detection
probability PD can be obtained simply as PD = 1 − PFN ) is the ratio between
the number of false negatives and the number of “anomalous” flows. But, in this
case PFN depends on the actual interpretation of the MAWILab labels, and can
be defined in several ways.

In more detail, as discussed in [22], the number of false negatives can be
calculated as (the labels are used in the following figures to identifies the corre-
sponding definitions of PD):

– “all”: the number of unrevealed flows labeled as “anomalous”;
– “fn 2/3/4 detector”: the number of unrevealed flows labeled as “anomalous”

and detected at least by two/three/four of the four detectors used in MAWI
classification;

– “fn attack”: the number of unrevealed flows labeled as “anomalous” belonging
to the “attack” category (known attacks);

– “fn attack special”: the number of unrevealed flows labeled as “anomalous”
belonging to the “attack” category or the “special” category (attacks involving
well-known ports);
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– “fn unknown”: the number of unrevealed flows labeled as “anomalous” belong-
ing to the “unknown” category (unknown anomalous activities);

– “fn unknown 4 detector”: the number of unrevealed flows labeled as “anom-
alous” belonging to the “unknown” category and detected by all the four
detectors used in MAWI classification.

Given these definitions, in the following we discuss the results achieved by our
system when taking into consideration, as traffic descriptors, either the number of
flows with the same destination IP address (referred to as Flow in the following)
or the quantity of traffic received by each IP address expressed in bytes (referred
to as Byte in the following).

The first set of figures (namely Figs. 1, 2, and 3) refers to the Flow case. In
more detail Fig. 1 shows the results achieved when using the entropy, for all the
above mentioned definitions of PFN . As it appears clearly, the offered perfor-
mance strongly depends on the definition of PFN , ranging from the completely
unacceptable cases of “fn attack” and “fn attack special” to the very good case
of “fn unknown 4 detector” (with a detection rate of about 80% in correspon-
dence of a false alarm rate less than 20%). These results are very promising,
taking into consideration that the usage of an anomaly detection system (nor-
mally in cascade to a misuse-based detection system) is conceived for detecting
the “unknown” anomalies (given that the known attacks can be better detected
by the other system).

Table 1. AuC (Flow)

Method Label AuC

Euclidean distance All 0.546382

Euclidean distance fn 2 detector 0.546917

Euclidean distance fn 3 detector 0.546582

Euclidean distance fn 4 detector 0.570564

Euclidean distance fn attack 0.520335

Euclidean distance fn attack special 0.481449

Euclidean distance fn unknown 0.57054

Euclidean distance fn unknown 4 detector 0.590988

Entropy All 0.61949

Entropy fn 2 detector 0.621851

Entropy fn 3 detector 0.627007

Entropy fn 4 detector 0.699259

Entropy fn attack 0.362535

Entropy fn attack special 0.418059

Entropy fn unknown 0.693165

Entropy fn unknown 4 detector 0.768803
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Figure 2 presents the same analysis when using the Euclidean distance, show-
ing that such a method is far from providing good results, having for all of the
plots a behaviour very close to the diagonal.

A more precise comparison between the two methods is shown in Table 1 and
in Fig. 3, where we respectively present the AuC obtained by the two methods
when varying the definition of PFN and the ROC achieved in the “fn unknown 4
detector” case. Hence, we can easily conclude that the entropy method definitely
offers better performance than Euclidean distance when using Byte as traffic
descriptor.

A completely analogous performance analysis is presented in the subsequent
figures and table, where we show the ROCs and the AUC values for the two
systems, obtained when using Byte as traffic descriptor. In this case it is very
interesting to make two observations:

– the offered performance is, in any case, very far from those related to the use
of Flow as traffic descriptor (see Figs. 4 and 5, where “almost unacceptable”
ROC are shown), demonstrating how the choice of the correct traffic descriptor
is crucial in anomaly detection;

– contrarily to the Flow case, better performance is offered by the Euclidean
distance (see Fig. 6) , demonstrating how the anomaly detection method must
be properly chosen (also taking into account the used traffic descriptor).

Finally, Table 2 presents all the values of the AuC for the Byte case, confirm-
ing the results shown in Figs. 4 and 5.
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Table 2. AuC (Byte)

Method Label AuC

Euclidean distance All 0.566218

Euclidean distance fn 2 detector 0.566777

Euclidean distance fn 3 detector 0.567148

Euclidean distance fn 4 detector 0.593179

Euclidean distance fn attack 0.517885

Euclidean distance fn attack special 0.49092

Euclidean distance fn unknown 0.59376

Euclidean distance fn unknown 4 detector 0.619295

Entropy All 0.455644

Entropy fn 2 detector 0.455011

Entropy fn 3 detector 0.453766

Entropy fn 4 detector 0.436463

Entropy fn attack 0.515499

Entropy fn attack special 0.496697

Entropy fn unknown 0.440622

Entropy fn unknown 4 detector 0.421189

7 Conclusion

In this paper we have proposed an experimental comparison between tow differ-
ent histogram based anomaly detection methods. Moreover, the impact of the
considered traffic descriptor on the achieved performance has been investigated.

The experimental results, obtained testing our systems over the publicly
available MAWILAb dataset, have clearly demonstrated that

– the choice of the correct traffic descriptor is crucial in anomaly detection;
– the anomaly detection method must be properly defined (also taking into

account the used traffic descriptor).

These results show that the deployment of an anomaly detection tool requires
a fine tuning of the system, also based on a good knowledge of the considered
network scenario and traffic.
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