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1 Introduction

Automata over finite words have been widely studied since their introduction
by Kleene in the last fifties, because they are a natural model for sequential
computation with bounded memory, and they are linked to many other areas,
as for example formal logic, coding theory or formal series. The depth of those
links and the richness of the results led the community to develop generalizations
o f Kleene automata, as for example automata over trees [18], ω-words [6,17],
ordinals [7], and more recently, over linear orderings [5].

Among those generalizations, Lodaya and Weil proposed a notion of
branching-automata that are a natural model for parallel computation with the
Fork/Join principle. The Fork/Join principle splits an execution flow f into
n concurrent flows f1, . . . , fn and joins f1, . . . , fn before it continues. Divide-
and-conquer concurrent programming naturally uses this Fork/Join principle.
Traces of execution of programs are in this case finite N-free posets, or equiva-
lently, finite series-parallel posets [19,22]. Lodaya and Weil extended some fun-
damental results of automata on words to branching-automata, as for exam-
ple a Kleene-like Theorem or algebraic recognizability [13–16]. Unfortunately,
and contrarily to the finite words case, the algebraic counterpart of branching
automata may be infinite, leading to difficulties regarding the generalization
of fundamental results over finite words to finite N-free posets. Kuske [11,12]
extended branching-automata to recognition of ω-N-free posets, and established
a connection with monadic second-order logic (MSO[<]) in the particular case
of languages of N-free posets with bounded-size antichains. The logical charac-
terization of languages of finite N-free posets recognized by branching automata
of Lodaya and Weil is provided in [3] in the general case.
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In [4], branching automata are generalized to N-free posets with finite
antichains and countable and scattered chains, and a Kleene-like Theorem is
provided. The connection with MSO[<] is established in [2] in the particular
case of languages of N-free posets with bounded-size antichains. In this paper,
we prove that the class of languages recognized by the generalization of branch-
ing automata of [4] is closed under complement. The (effective) proof relies on an
algebraic approach of branching automata, on the use of Simon’s factorization
forests proposed by Colcombet in [9] for regular languages of linear orderings,
and on the closure under complementation of the class of rational sets of finitely
generated commutative monoids [10].

2 Notation and Basic Definitions

Let E be a set. We denote by |E|, P(E), P+(E) and M>1(E) respectively the
cardinality of E, the set of subsets of E, the set of non-empty subsets of E and
the set of multi-subsets of E with at least two elements. For any integer n, the
set {1, . . . , n} is denoted by [n] and the group of permutations of [n] by Sn.

We start by some basic definitions on linear orderings. We refer to [20] for a
survey on the subject. Let J be a set equipped with an order <. The ordering
J is linear if all elements are comparable : for any distinct j and k in J , either
j < k or k < j. For any linear ordering J , we denote by −J the backward linear
ordering obtained from the set J with the reverse ordering. A linear ordering J
is dense if for any j, k ∈ J such that j < k, there exists an element i of J such
that j < i < k. It is scattered if it contains no dense sub-ordering. The orderings
ω = (N, <) and ζ = (Z, <) are scattered. Ordinals are also scattered orderings.
We denote by O the class of countable ordinals and S the class of countable
scattered linear orderings. An interval K of J ∈ S is a subset K ⊆ J such that
∀k1, k2 ∈ K,∀j ∈ J , if k1 < j < k2 then j ∈ K.

A poset (P,<) is a set P partially ordered by <. In order to lighten the
notation we often denote the poset (P,<) by P . An antichain is a subset P ′

of P such that all elements of P ′ are incomparable (with <). The width of
P is wd(P ) = sup{|E| : E is an antichain of P} where sup denotes the least
upper bound of the set. If x, y ∈ P , we denote by x− = {z ∈ P : z < x},
x+ = {z ∈ P : x < z} and x ∼< y if x− ∪ x+ ∪ {x} = y− ∪ y+ ∪ {y}. In this
paper, we restrict to countable scattered posets of finite width which are thus
partially ordered countable sets without any dense sub-ordering. Let (P,<P )
and (Q,<Q) be two disjoint posets. The parallel composition of (P,<P ) and
(Q,<Q) is the poset (P ∪Q,<) where x < y if and only if (x, y ∈ P and x <P y)
or (x, y ∈ Q and x <Q y). The sum (or sequential composition) P + Q of P and
Q is the poset (P ∪ Q,<) such that x < y if and only if one of the following
three conditions is true: (1): x ∈ P , y ∈ P and x <P y; (2): x ∈ Q, y ∈ Q
and x <Q y; (3): x ∈ P and y ∈ Q. The sum of two posets can be generalized
to any linearly ordered sequence of pairwise disjoint posets: if J is a linear
ordering and ((Pj , <j))j∈J is a sequence of posets, then

∑
j∈J Pj = (∪j∈JPj , <)

such that x < y if and only if (x ∈ Pj , y ∈ Pj and x <j y) or (x ∈ Pj and
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y ∈ Pk and j < k). The sequence ((Pj , <j))j∈J is called a J-factorization, or
factorization for short, of the poset

∑
j∈J Pj . A nonempty poset P is sequential

if it admits a J-factorization where J contains at least two elements, or P is a
singleton. It is a parallel poset otherwise. The only poset (∅, <) of width 0 is called
empty poset and is denoted by ε. The class SP � of series-parallel scattered and
countable posets is the smallest class of posets containing ε, the singleton and
closed under finite parallel composition and sum indexed by countable scattered
linear orderings. It has a nice characterization in terms of graph properties: SP �

coincides with the class of scattered and countable N -free posets without infinite
antichain (see [4]). We denote by SP �+ = SP � − {ε}.

The sets of (Dedekind-MacNeille) cuts of a poset P is defined as a general-
ization of cuts of linear orderings. It is the set of all pairs (A,B), with A,B ⊆ P ,
such that B consists of all the elements of P greater than all the elements of A,
and reciprocally, A consists of all the elements of P less than all the elements
of B. The cuts are partially ordered with inclusion on the first component,
and with the elements of P with (A,B) < x if x ∈ B. The partially ordered
set of all cuts of P is denoted P̂ , and we usually denote by P ∪ P̂ the partially
ordered set consisting of the elements of P with its cuts. Note that an equivalence
class of cuts of P for ∼< is totally ordered. The notation P̂ ιι′

with ι, ι′ ∈ {[, ]}
excludes or not the minimum and maximum elements from P̂ . We denote also
by P̂ ∗ = P̂ − {(∅, P ), (P, ∅)}. We define the partial ordering � over the cuts of
P by (A,B) � (A′, B′) if and only if A ∪ B = A′ ∪ B′ and A ⊆ A′.

An alphabet is a nonempty set whose elements are called letters. In this paper,
we use only finite alphabets, thus the term “finite” is omitted. A poset labeled by
A is a poset (P,<) equipped with a labeling map P → A which associates a letter
to any element of P . The notion of a labeled poset corresponds to the notion of
a pomset in the literature. Also, the finite labeled posets of width 1 correspond
to the usual notion of words. In order to shorten the notation, we make no
distinction between a poset and a labeled poset, except for operations. The
sequential product (or concatenation, denoted by P ·P ′ or PP ′ for short) and the
parallel product (denoted by P ‖ P ′) of labeled posets are respectively obtained
by the sequential and parallel compositions of the corresponding (unlabeled)
posets. The class of posets of SP � labeled by A (or over A) is denoted by
SP �(A). We set A� = {P ∈ SP �(A) : wd(P ) ≤ 1}. Observe that the elements
of A� are precisely the usual words on scattered and countable linear orderings,
as defined in [5]. A language of SP �(A) is a subset of SP �(A). Let A and B
be two alphabets and let P ∈ SP �(A), L ⊆ SP �(B) and ξ ∈ A. The labeled
poset P in which each occurrence of the letter ξ is non-uniformly replaced by a
labeled poset of the language L is denoted by L◦ξP . The substitution, sequential
and parallel products can be easily extended from labeled posets to languages
of posets.

3 Rational Languages and Branching Automata

Let A be an alphabet and ξ ∈ A. Using the definition of substitution ◦ξ, we define
the iterated substitution on languages. By the way the usual rational operations
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on linear orderings are recalled. Let L and L′ be languages of SP �(A):

L ◦ξ L′ =
⋃

P∈L′
L ◦ξ P , L∗ = {

∏

j∈n

Pj |n ∈ N, Pj ∈ L}

L∗ξ = ∪
i∈N

Liξ with L0ξ = {ξ} and L(i+1)ξ = ( ∪
j≤i

Ljξ) ◦ξ L

Lω = {
∏

j∈ω

Pj |Pj ∈ L} L−ω = {
∏

j∈−ω

Pj |Pj ∈ L}

L� = {
∏

j∈α

Pj |α ∈ O, Pj ∈ L} L−� = {
∏

j∈−α

Pj |α ∈ O, Pj ∈ L}

L 
 L′ = {
∏

j∈J∪Ĵ∗

Pj : J ∈ S − {0} and Pj ∈ L if j ∈ J and Pj ∈ L′ if j ∈ Ĵ∗}

A language L ⊆ SP �(A) is rational if it is empty, or obtained from the
letters of the alphabet A using usual rational operators : finite union ∪, finite
concatenation ·, and finite iteration ∗, ω and −ω iterations, iteration and reverse
iteration on ordinals � and −� as well as diamond operator 
, and using also the
rational operators of finite parallel product ‖, substitution ◦ξ and iterated sub-
stitution ∗ξ, provided that the letter ξ ∈ A appears only inside parallel factors.
This latter condition excludes from the rational languages those of the form
(aξb)∗ξ = {anξbn : n ∈ N}, for example, which are known to be not Kleene
rational. Observe also that the usual Kleene rational languages are a particular
case of the rational languages defined above, in which the operators ‖, ◦ξ and
∗ξ are not allowed. Note also that the rational expressions are precisely those
of Bruyère and Carton [5] over labeled posets on scattered and countable linear
orderings, with additional operators ‖, ◦ξ and ∗ξ for parallelism and substitution.

Example 1. Let A = {a, b, c} and L = c ◦ξ (a ‖ (bξ))∗ξ. Then L is the smallest
language containing c and such that if x ∈ L, then a ‖ (bx) ∈ L. Thus we have
L = {c, a ‖ (bc), a ‖ (b(a ‖ (bc))), . . . }. �

Let L be a language where the letter ξ is not used. In order to lighten the
notation we use the following abbreviation: L� = {ε} ◦ξ (L ‖ ξ)∗ξ = {‖i<n Pi :
n ∈ N, Pi ∈ L} and L⊕ = L� −{ε}. A subset L of A� is linear if it has the form
L = a1 ‖ · · · ‖ ak ‖ (∪i∈I(ai,1 ‖ · · · ‖ ai,ki

)
)� where the ai and ai,j are elements

of A and I is a finite set. It is semi-linear if it is a finite union of linear sets. The
class of ‖-rational languages of A� is the smallest containing the empty set, {ε},
{a} for all a ∈ A, and closed under finite union, parallel product ‖, and finite
parallel iteration �. The notions of rational, ‖-rational, linear and semi-linear
languages, which are defined over free algebras, also naturally apply to non-free
algebras. It is known (see [10]) that the ‖-rational sets of a commutative monoid
M are precisely the semi-linear sets of M . Observe also that when L is a rational
language of SP �+(A), then L ⊆ A� if and only if L is ‖-rational.

We refer to [4] for a proof of the following Lemma:
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Lemma 2 (Lemma 19 of [4]). Let A be an alphabet and let ξ, X be two
new symbols. Let M ⊆ SP �(A) and let L ⊆ SP �(A ∪ {X}) \ SP �(A). Then
M ◦ξ (ξ ◦X L)∗ξ is the unique solution of the equation X = M + L.

Automata on countable, scattered and series-parallel posets are a gen-
eralization of automata on finite series-parallel posets [13–16], series-parallel
ω-posets [12] and automata on linear orderings [5]. A branching automaton
over an alphabet A is a tuple A = (Q,A,E, I, F ) where Q is a finite set of
states, I ⊆ Q is the set of initial states, F ⊆ Q the set of final states, and
E is the set of transitions of A. The set of transitions E is partitioned into
E = (Eseq, Ejoin, Efork), according to the different kinds of transitions. The set
Eseq ⊆ (Q×A×Q)∪ (Q×P+(Q))∪ (P+(Q)×Q) contains the sequential transi-
tions, which are usual transitions (elements of (Q × A × Q)) or limit transitions
(elements of (Q × P+(Q)) ∪ (P+(Q) × Q)). The sets Efork ⊆ Q × M>1(Q) and
Ejoin ⊆ M>1(Q)×Q are respectively the sets of fork and join transitions. Tran-
sitions (p, a, q) ∈ Q × A × Q and (P, q) ∈ P+(Q) × Q are sometimes respectively
denoted by p

a→ q and P → q. A path γ from a state p to a state q is either the
empty poset (in this case p = q), or a non-empty poset labeled by transitions,
with a unique minimum and a unique maximum element. The states p and q
are respectively called source (or origin) and destination of γ. Two paths γ and
γ′ are consecutive if the destination of γ is also the source of γ′. The paths
γ labeled by P ∈ SP �(A) and of content C(γ) ∈ P+(Q) in A are defined as
follows. For all p ∈ Q there is an empty path from p to p labeled by ε and of
content {p}. For all sequential transition t = (p, a, q), γ = t is a path from p to
q labeled by a and of content {p, q}. For any finite sequence (γj)j≤k of paths
(with k ≥ 1) respectively labeled by P0, . . . , Pk, from p0, . . . , pk to q0, . . . , qk, if
t = (p, {p0, . . . , pk}) is a fork transition and t′ = ({q0, . . . , qk}, q) a join tran-
sition, then γ = t(‖j≤k γj)t′ is a path from p to q, labeled by ‖j≤k Pj and of
content C(γ) = {p, q}: observe that C(γ) does not depend on the parallel parts
γ0, . . . , γk of γ. Furthermore, if the paths (γj)j≤k are consecutive with respec-
tive contents (C(γj))j≤k, then

∏
j≤k γj is a path labeled by

∏
j≤k Pj from the

source of γ0 to the destination of γk, and of content ∪j≤kCj . Finally, for any
sequence (γj)j∈ω of consecutive paths respectively labeled by (Pj)j∈ω and of
contents (C(γj))j∈ω, if R = {q ∈ Q : ∀i ∈ ω ∃j > i q ∈ C(γj)}, then for any
transition t = (R, q), (

∏
j∈ω γj)t is a path from the source of γ0 and to q, labeled

by
∏

j∈ω Pj and of content (∪j∈ωCj) ∪ {q}. The case −ω is symmetrical to ω.

In A, a path γ from p to q labeled by P of content C is denoted by γ : p
P=⇒

C,A
q.

The label, content or automaton can be omitted in the notation of a path when
they are implicit or of no interest. A labeled poset is accepted by an automaton
if it is the label of a successful path leading from an initial state to a final state.
The language L(A) is the set of labeled posets accepted by the automaton A.

Note that branching automata without fork and join transitions are precisely
the automata on scattered and countable linear orderings defined by Bruyère
and Carton [5]. The same way, if limit transitions are removed, we get branching
automata for finite labeled posets of Lodaya and Weil [13–16]. As for finite words,
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rational languages and branching automata for scattered series-parallel posets
are connected with a Kleene-like Theorem:

Theorem 3 [4]. Let L ⊆ SP �(A). Then L is the language of a branching
automaton if and only if it is rational.

Example 4. The automaton A = ([6], {a, b, c}, E, {1}, {6}) defined by Eseq =
{(2, a, 4), (3, b, 5), (6, c, 1), ({1, 6}, 6), (6, {1, 6})}, Efork = {(1, {2, 3})} and
Ejoin = {({4, 5}, 6)} verifies L(A) = (a ‖ b) 
 c. �

An automaton is sequentially separated if, for all pairs (p, q) of states, all
labels of paths from p to q are parallel posets, or all labels of paths from p to q
are sequential posets. For every automaton A there is a sequentially separated
automaton B such that L(A) = L(B). Also, for every pair of states (p, q) of an
automaton, it is decidable whether there is a path from p to q or not.

The following Theorem states the main result of this paper:

Theorem 5. Let A be an alphabet. The class of rational languages of SP �+(A)
is effectively closed under complement.

Section 5 is devoted to a sketch of its proof, which essentially relies on the alge-
braic approach of automata.

4 Algebras

We now focus on the definitions of algebras for the recognition of languages of
SP �(A), with A an alphabet. Recall that an algebra is finite if it is composed of a
finite number of elements. Even if in this paper we deal with infinite algebras, we
use notions of universal algebras which are usually defined on finite algebras, and
that can be easily generalized to our case. We refer to [1] for the basic algebraic
definitions. A semigroup (S, ·) is a set S equipped with an associative binary
operation · called product. A ‖-semigroup [13–16] (S, ·, ‖) is an algebra such
that (S, ·) is a semigroup and (S, ‖) is a commutative semigroup. In ambiguous
contexts, the · and ‖ products are respectively called sequential (or series) and
parallel. The 
-semigroups are a generalization of semigroups for the recognition
of words of A� (see [8] for more details): a 
-semigroup (S,

∏
) is a set equipped

with a map
∏

(also called sequential product) which associates an element of
S to any countable and linearly ordered sequence s = (sj)j∈J (with J ∈ S)
of elements of S, such that

∏
(t) = t for any t ∈ S and

∏
is associative (i.e.

for any factorization of the sequence s into a sequence of sequences (tj)j∈J ′ ,∏
(s) =

∏
((

∏
tj)j∈J ′)). Finally, a ‖-
-semigroup (S,

∏
, ‖) is an algebra such

that (S,
∏

) and (S, ‖) are respectively a 
− and a commutative semigroup. In
order to lighten the notation we often denote an algebra by its set of elements: for
example, we denote the semigroup (S, ·) by S. We denote by S1 the algebra S if S
has an identity 1 for all its operations, S ∪{1} otherwise. We also denote by A+,
SP (A) and A� respectively the free semigroup, ‖-semigroup, and 
-semigroup
over the alphabet A. In this paper we particularly focus on SP �(A) which is the
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free ‖-
-semigroup over A. Let S and T be two algebras of the same type. A
morphism ϕ : S → T recognizes a subset X of S if ϕ−1ϕ(X) = X. We say that T
recognizes X if there exists a morphism from S into T recognizing X. A subset
X of an algebra S is recognizable if there exist a finite algebra T with the same
type as S and a morphism ϕ : S → T that recognizes X. Recognizable languages
of SP+(A) are rational. However, in general, rational languages of SP+(A) are
not recognizable. As an example, (a ‖ b)⊕ is not recognizable, since its syntactic
‖-semigroup is isomorphic to Z (see [13]). Let (S,

∏
, ‖) be a ‖-
-semigroup. Its

sequential product
∏

is a finite projection if there exists X ⊆ S such that
(X,

∏
) is a finite 
-semigroup and

∏
maps every sequential product of at least

two elements of S to an element of X. By extension of the work of Wilke [23]
on ω-words, when

∏
is a finite projection, it can be equivalently replaced by an

associative binary sequential product · and two maps ω : S → S and −ω : S → S
such that, for all s, t ∈ S, s · (t · s)ω = (s · t)ω, (s · t)−ω · s = (t · s)−ω, (sn)ω = sω

and (sn)−ω = s−ω for all n ∈ N
∗. Observe that it suffices to define ω and −ω

over finitely many elements: the idempotents (for the sequential product) of S.

Example 6. Let A = {a, b} and L ⊆ SP �+(A) be the language of non-empty
posets P such that P has width at most 2 and each letter a that appears into a
parallel part of P is incomparable with a b. Let S = (X,

∏
, ‖) be the finite ‖-
-

semigroup defined by X = {a, b, ab, p, 0}, the following ‖ commutative product:
a ‖ a = ab ‖ a = 0, p ‖ x = 0 for all x ∈ S, a ‖ b = ab ‖ b = ab ‖
ab = b ‖ b = p and the sequential product

∏
such that, for any non-empty

sequence (sj)j∈J (J ∈ S − {∅}) of elements of S,
∏

((sj)j∈J ) = a if (sj)j∈J

contains only as,
∏

((sj)j∈J ) = ab if (sj)j∈J contains at least one a and one
b,

∏
((sj)j∈J ) = b if (sj)j∈J contains only bs, and

∏
((sj)j∈J) = p if (sj)j∈J

contains only p, a, b, ab, with at least one p. The element 0 is a zero for both
∏

and ‖. Let ϕ : SP �+(A) → S be the morphism defined by ϕ(a) = a and ϕ(b) = b.
Then L = ϕ−1({a, b, ab, p}). Furthermore, the sequential product of S is a finite
projection since S has a finite number of elements. Then S can be equivalently
defined by W = (X, ·, ω,−ω, ‖) where x · x′ =

∏
(x, x′) and xω = x−ω = x for

all x, x′ ∈ X. �

The following notions are adapted from [9]. Let P be a partially ordered
set and S a semigroup. A mapping σ from ordered pairs (x, y) ∈ P 2 such that
x ∼< y, to S, is an additive labeling from P to S if σ(x, y)σ(y, z) = σ(x, z)
for all x < y < z in P . From a morphism of semigroups ϕ : (SP �(A), ·) → S
and P ∈ SP �(A), one can build an additive labeling ϕP : (P̂ ,�) → S with
ϕP ((A,B), (A′, B′)) = ϕ(B∩A′). A split of height n of P is a mapping s : P → [n]
(n = 0 is possible; in this case P = ∅). Two elements x, y such that x ∼< y and
s(x) = s(y) = k are k-neighbors if s(z) ≥ k for all z ∈ [x, y] with z ∼< x.
Note that k-neighborhoodness is an equivalence relation over the elements of P .
Let σ be an additive labeling from P to a semigroup S. Then a split s of P is
Ramseyan for σ if for every equivalence class C for k-neighborhoodness there
exists an idempotent e such that σ(x, y) = e for all x < y in C.
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The notion of a finite projection of a semigroup S is self-understanding from
its definition on ‖-
-semigroups. Theorem 4 of [9] can be reformulated for posets
as follows:

Theorem 7. For every poset P ∈ SP �, every semigroup S with a finite projec-
tion fp(S) and additive labeling σ from P to S, there exists a Ramseyan split of
P for σ of height at most 2|fp(S)| + 1.

5 Sketch of the Proof of Theorem5

Let A be an alphabet, A = (Q,A,E, I, F ) a branching automaton, and L =
L(A). When X ⊆ SP �+(A), we denote by Seq(X) the set of sequential posets
of X. Denote also by Lp,q (resp. Lp,q,C with C ∈ P+(Q)) the set of non-empty
labels of paths from state p to state q (resp. of content C) in A.

The proof of Theorem 5 consists in constructing a rational expression e for
SP �+(A) − L. When φ : SP �+(A) → S is a morphism of ‖-
-semigroups and
D ∈ P(Q2 × P+(Q)), denote by Δφ

D = {φ(P ) : p
P=⇒

C,A
q iff (p, q, C) ∈ D}. The

first step is to construct a ‖-
-semigroup from A, by a generalization of the
usual technique used to construct a finite semigroup from a Kleene automaton
on finite words. This consists in defining a congruence ∼A of ‖-
-semigroups
over the posets of SP �+(A), by P ∼A P ′ if and only if P can be substituted
by P ′ in any part of any path γ : p

R=⇒
C,A

q of A in order to build another path

γ′ : p
R′

=⇒
C,A

q of same source, destination and content and whose label R′ is R in

which some occurrences of P have been replaced by P ′. The natural morphism
ϕ∼A : SP �+(A) → SP �+(A)/∼A which associates to each poset P ∈ SP �+(A)
its equivalence class in SP �+(A)/∼A recognizes Lp,q,C for each p, q, C ∈ Q2 ×
P+(Q), and L. Note that SP �+(A)/∼A may be infinite, as it is illustrated by
the following example.

Example 8. Consider the automaton A of Fig. 1 of language L(A) = (a ‖ b)⊕ 
c.
For all k1, k2, k3, k4 ∈ N such that k1 − k2 = k3 − k4 and k2, k4 > 0 we have
a‖k1 ‖ b‖k2 ∼A a‖k3 ‖ b‖k4 . Also, P ∼A P ′ for all P, P ′ ∈ (a ‖ b)⊕ 
 c − (a ‖ b)⊕.

Let S = Z ∪ {a, b, c, 0c, c0, 0c0,⊥}. Equip S with a commutative parallel
product with z ‖ z′ = z +Z z′, a ‖ z′ = 1 ‖ z′, b ‖ z′ = −1 ‖ z′ for all
z, z′ ∈ Z, a ‖ b = 0, and all other parallel product are sent to ⊥. Equip also
S with a sequential product such that for all sequence s = (si)i∈I of elements
of S, I ∈ S − {0, 1},

∏
i∈I si = 0c0 if s ∈ 0 
 c, c0c = c, z2 = zx = xz =

c2 = ⊥2 = ⊥ for all z ∈ Z ∪ {a, b}, x ∈ S. As the sequential product of S is
a finite projection and the idempotents for the sequential product are 0c, c0,⊥,
it can equivalently be defined by the binary product as above and (0c)ω =
0c0 = (c0)−ω, (0c)−ω = 0c, (c0)ω = c0. Note that (S, ‖) is finitely generated
by {−1, 1, a, b, c, 0c, c0, 0c0,⊥}. Let ϕ : SP �+(A) → S defined by ϕ(x) = x for
all x ∈ A. Then L = ϕ−1({0, 0c0}). Furthermore, SP �+(A)/∼A is isomorphic
to S. �
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0

1

2

3

4

a

b

{0, 9} → 9

0 → {0, 9}

5

6

7

8

a

b

9c

Fig. 1. An automaton A for (a ‖ b)⊕ � c. Fork transitions are (0, {1, 5}), (5, {5, 5}) and
(1, {1, 1}), join transitions are ({2, 3}, 4), ({6, 7}, 8), ({4, 8}, 9), ({4, 4}, 4), ({8, 8}, 8)
and ({3, 6}, 9)

However, (SP �+(A)/∼A, ‖) is finitely generated by ϕ∼A(Seq(SP �+(A))),
ϕ∼A(Lp,q) is a ‖-rational set of SP �+(A)/∼A for all p, q ∈ Q, and thus, so
is ϕ∼A(L). We also have ϕ−1

∼A(Δ
ϕ∼A
D ) = Δid

D for all D ∈ P(Q2 × P+(Q)). Recall
that the ‖-rational sets of a commutative monoid M form a boolean algebra [10,
Theorem 3], which is effective when M is finitely generated (as emphasized
in [21]). As a consequence, Δ

ϕ∼A
D is a ‖-rational set of SP �+(A)/∼A for all D.

As SP �+(A)−L = ∪ D∈P(Q2×P+(Q))
D∩I×F ×P+(Q)=∅

Δid
D, it suffices to show that ϕ−1

∼A(Δ
ϕ∼A
D )

is a rational set of SP �+(A) for all D. We translate the problem into a ‖-
-
semigroup N

k∗ with more properties than SP �+(A)/∼A. Very informally speak-
ing, denote by G = {g1, . . . , gk} the finite generator of (SP �+(A)/∼A, ‖). We
may suppose that A is sequentially separated. Thus that the elements of G are
indecomposable with respect to the parallel product, that is to say, each gi ∈ G
can not be written gi = s ‖ s′ with s, s′ ∈ SP �+(A)/∼A. We are going to define
a morphism μ : SP �+(A) → N

k∗ that enables, for every P ∈ SP �+(A) whose
maximal parallel factorization is P = P1 ‖ · · · ‖ Pn, the count of all i, i ∈ [n],
such that ϕ∼A(Pi) = gj , for every j ∈ [k]. Also, every language recognized by
SP �+(A)/∼A is recognized by N

k∗.
Denote by (Nk∗,+) the commutative semigroup whose elements are k-tuples

of non-negative integers, without (0, . . . , 0). It is generated by the k-tuples with
all components set to 0, except one which is set to 1. For short we denote by 1i the
element of the generator of Nk∗ with the ith component set to 1. The (parallel)
product + of (Nk∗,+) is the sum componentwise. Define a surjective morphism
of commutative semigroups ψ : (Nk∗,+) → (SP �+(A)/∼A, ‖) by ψ(1i) = gi

for all i ∈ [k]. As ψ−1(gi) = {1i} for all i ∈ [k], ψ−1(ss′) is a singleton for all
s, s′ ∈ SP �+(A)/∼A. Now we equip (Nk∗,+) with a structure of ‖-
-semigroup
by setting, for all n, n1, n2 ∈ N

k∗, n1n2 = ψ−1(ψ(n1)ψ(n2)), nω = ψ−1((ψ(n))ω)
and n−ω = ψ−1((ψ(n))−ω). This sequential product is a finite projection. We
define a surjective morphism of ‖-
-semigroups μ : SP �+(A) → N

k∗ by μ(a) =
ψ−1ϕ∼A(a) for all a ∈ A. The diagram of Fig. 2 sums up the situation. For all
s ∈ SP �+(A)/∼A, ϕ−1

∼A(s) = μ−1ψ−1(s). We also have ψ−1(Δ
ϕ∼A
D ) = Δμ

D and
μ−1(Δμ

D) = Δid
D for all D ∈ P(Q2 × P+(Q)). According to [10, Corollary III.2]

Δμ
D is a ‖-rational set of N

k∗, and thus semi-linear: it has the form Δμ
D =
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Fig. 2. The morphisms between the ‖-�-semigroups. Full arrows represent morphisms
of ‖-�-semigroups, and dashed arrows morphisms of commutative semigroups

∪i∈ID
(aD,i + B�

D,i) for some finite set ID, aD,i ∈ N
k∗, BD,i some finite part of

N
k∗. For all i ∈ ID set Δμ

D,i = aD,i + B�
D,i. We may assume that all the Δμ

D,i

are pairwise disjoint [10, Theorem IV]. Setting BD,i = {bD,i,1, . . . , bD,i,lD,i
} it

holds μ−1(Δμ
D,i) = μ−1(aD,i) ‖ {μ−1(bD,i,1) ∪ · · · ∪ μ−1(bD,i,lD,i

)}�, so it just
remain to show that

Lemma 9. For all n ∈ N
k∗, μ−1(n) is a rational set of SP �+(A).

Proof. (Sketch of) Let ϕ : SP �+(A) → S be a morphism of ‖-
-semigroups.
For each j,M non-negative integers, x ∈ S, and ι, ι′ ∈ {[, ]}, define Sιι′

j,M (x) (or
Sιι′

j (x) for short) as the posets P of ϕ−1(x) such that P̂ ιι′
admits a Ramseyan

split s, for ϕP , of height M ; and s is also a Ramseyan split of {(A,B) ∈ P̂ ιι′
:

A ∪ B = P}, for ϕP , of height j.
Considering linear orderings only, Colcombet [9] expressed Sιι′

j+1(x) with an
equality that depends only of the Sι′′ι′′′

j (s), s ∈ S, ι′′, ι′′′ ∈ {[, ]} and that uses
only the rational operators for linear orderings:

S
ιι′
j+1(x) = S

ιι′
j (x) +

∑

yz=x

S
ι[
j (y)S

]ι′
j (z) +

∑

yez=x

e2=e

S
ι[
j (y)Ce,j+1S

]ι′
j (z)

+
∑

yeωz=x

e2=e

S
ι[
j (y)C

ω
e,j+1S

[ι′
j (z) +

∑

ye−ωz=x

e2=e

S
ι]
j (y)C

−ω
e,j+1S

]ι′
j (z) +

∑

yeζz=x

e2=e

S
ι]
j (y)C

ζ
e,j+1S

[ι′
j (z)

with ϕ−1(x) = S
[]
2|S|(x), S

][
0 (x) = ϕ−1(x) ∩ A, S

[[
0 (x) = S

]]
0 (x) = ϕ−1(x) ∩ {ε},

S
[]
0 (x) = ∅, and Ce,j+1, Cω

e,j+1, C−ω
e,j+1, Cζ

e,j+1 rational sets that depend only of
the languages of the form Sι′′ι′′′

j (s), s ∈ S, ι′′, ι′′′ ∈ {[, ]}.
We adapt this to the case where P ∈ SP �+(A), replacing ϕ by μ :

SP �+(A) → N
k∗. There are several points to consider. First, technically the

empty poset is not taken into consideration in the framework of posets. Sec-
ond, P̂ ιι′

admits a Ramseyan split for ϕP and of height j if and only if
C = {(A,B) ∈ P̂ ιι′

: (A,B) = P} admits a Ramseyan split for ϕP and of
height j, and, for each Pi between two consecutive elements of C with |Pi| > 1

(thus Pi =‖j∈Ji
Pj for some |Ji| > 1 and nonempty Pj), each P̂j

[]
admits itself

a Ramseyan split for ϕP and of height |2k + 1|. And third, as Nk∗ is infinite but
partitioned into finitely many Δμ

D,i in which all elements are equivalent regarding
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to the sequential product, we need to replace any occurrence of some x involved
in a sequential product in the right member of the equality above by some Δμ

D,i.
The set Sιι′

j+1(Δ
μ
D,i) is composed of all the sequential posets of Sιι′

j+1(g) for all
g ∈ G ∩ Δμ

D,i, and, if ιι′ =][, all the parallel posets and letters of μ−1(Δμ
D,i). For

simplicity we write Δμ
D,ix = y (resp. xΔμ

D,i = y) when zx = y (resp. xz = y)
for all z ∈ Δμ

D,i. With the help of Theorem7, the equalities of Colcombet above
can be rewritten in N

k∗ as

Sιι′
j+1(x) = Sιι′

j (x) +
∑

Δμ
D,iΔ

μ

D′,i′=x

S
ι[
j (Δμ

D,i)S
]ι′

j (Δμ
D′,i′)

+
∑

Δμ
D,i

eΔμ
D′,i′=x

e2=e

S
ι[
j (Δμ

D,i)Ce,j+1S
]ι′

j (Δμ
D′,i′) +

∑

Δμ
D,i

eωΔμ
D′,i′=x

e2=e

S
ι[
j (Δμ

D,i)C
ω
e,j+1S

[ι′

j (Δμ
D′,i′)

+
∑

Δμ
D,i

e−ωΔμ
D′,i′=x

e2=e

S
ι]
j (Δμ

D,i)C
−ω
e,j+1S

]ι′

j (Δμ
D′,i′) +

∑

Δμ
D,i

eζΔμ
D′,i′=x

e2=e

S
ι]
j (Δμ

D,i)C
ζ
e,j+1S

[ι′

j (Δμ
D′,i′)

where Ce,j+1, Cω
e,j+1, C−ω

e,j+1, Cζ
e,j+1 are rational sets that depend only of the

languages of the form Sι′′ι′′′
j (Δμ

D,i) and can be obtained precisely as in the case of
linear orderings (see [9, Proof of Theorem 6]), D ∈ P+(Q), i ∈ ID, ι′′, ι′′′ ∈ {[, ]},
and with

Sιι′
j+1(Δ

μ
D,i) =

⎧
⎨

⎩

Sιι′
j+1(aD,i) + Sιι′

j (Δμ
D,i) if Δμ

D,i = aD,i + B�
D,i

(
∑

b∈BD,i

Sιι′
j+1(b)) + Sιι′

j (Δμ
D,i) if Δμ

D,i = B�
D,i

(1)

S
][
0 (Δμ

D,i) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S
][
0 (aD,i) + S

[]
2k+1(aD,i) ‖ (

∑

b∈BD,i

S
[]
2k+1(b))

⊕

if Δμ
D,i = aD,i + B�

D,i,

(
∑

b∈BD,i

S
][
0 (b)) + (

∑

b∈BD,i

S
[]
2k+1(b)) ‖ (

∑

b∈BD,i

S
[]
2k+1(b))

⊕

if Δμ
D,i = B�

D,i

(2)

S
][
0 (x) = (μ−1(x) ∩ A)

∑

y+z=x

S
[]
2k+1(y) ‖ S

[]
2k+1(z) (3)

S
[[
0 (x) = S

]]
0 (x) = S

[]
0 (x) = S

[[
0 (Δμ

D,i) = S
]]
0 (Δμ

D,i) = S
[]
0 (Δμ

D,i) = ∅ (4)

Note that the choices for y, z in (3) are finite since we are in N
k∗. This gives

a finite system of equations, where recursion occurs only in parallel parts, and
whose solution is rational with the help of Lemma 2. As μ−1(n) = S

[]
2k+1(n) then

μ−1(n) is rational for all n ∈ N
k∗.
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Immediately, μ−1(Δμ
D) and ϕ−1

∼A(ΔSP �+(A)/∼A
D ) are rational sets of SP �+(A)

for all D ∈ P(Q2 × P+(Q)). Note that all the constructions are effective.
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