Trajectory Generation Using RNN
with Context Information for Mobile
Robots

You-Min Lee and Jong-Hwan Kim

Abstract Intelligent behaviors generally mean actions showing their objectives
and proper sequences. For robot, to complete a given task properly, an intelligent
computational model is necessary. Recurrent Neural Network (RNN) is one of the
plausible computational models because the RNN can learn from previous expe-
riences and memorize those experiences represented by inner state within the RNN.
There are other computational models like hidden Markov model (HMM) and
Support Vector Machine, but they are absent of continuity and inner state. In this
paper, we tested several intelligent capabilities of the RNN, especially for memo-
rization and generalization even under kidnapped situations, by simulating mobile
robot in the experiments.

1 Introduction

In the robotics and artificial intelligent society, how to implement powerful com-
putational model like human brain has been a big issue. The artificial neural net-
work (ANN) has been studied at least 50 years for the purpose of making intelligent
system comparable to brain [1-3]. Recently, among those ANNs related models,
deep learning has shown amazing performance in the visual and voice recognition
problems [4, 5]. Those recent successes of the ANN seem to give promising futures
for realization of a real intelligent system. For the behavioral level, however, a
conventional feed forward neural network (FFNN) model is not suitable for gen-
eration of intelligent actions because the FFNN has no context node memorizing
previous action sequences. The RNN is a neural network model with feedback
connections. Because of the feedback connections, the RNN can memorize actions

Y.-M. Lee (=) - J.-H. Kim

School of Electrical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu,
Daejeon 305-701, Republic of Korea

e-mail: ymlee@rit.kaist.ac.kr

J.-H. Kim
e-mail: johkim@rit.kaist.ac.kr

© Springer International Publishing Switzerland 2017 21
J.-H. Kim et al. (eds.), Robot Intelligence Technology and Applications 4,

Advances in Intelligent Systems and Computing 447,

DOI 10.1007/978-3-319-31293-4_2

22 Y.-M. Lee and J.-H. Kim

it experienced, which can lead to generation of intelligent actions. Moreover, the
RNN has its own advantageous in generalization capability compared to other
behavioral computational models.

In this paper, computational ability of the RNN is investigated. The purpose of
the task is to reach the several goal targets and way points with a proper sequence
and trajectory and the robot used in this paper is a differential wheeled mobile robot.
In the task, there are two goal targets, one is a red color point and the other is a
green color point. In the training phase, the mobile robot moves to the red point first
and after closer to the red point to some allowable error, turns and moves to the
green point. To succeed this task, context information should be memorized by the
RNN. The positions of robot starting and target points were generated randomly
from O to 1 on the normalized x-y plane. In the test phase, using obtained training
data, the relation between current goal positions and desired robot movement is
learned. All the process related to experiments is computer simulation programed
by the MATLAB. In the following sections, RNN simulation results and some
analysis are presented.

2 Artificial Neural Networks

2.1 The Recurrent Neural Network

The RNN is an artificial intelligence computational model. In contrast to the FFNN,
the RNN has feedback connections by which temporal memory can be stored. In the
robotics, this RNN model has been used for generating variety of robot trajectories
such as mobile robot and robot manipulators [6, 7] (Fig. 1).

In general, the RNN can be categorized into two models, one is a continuous
time RNN (CTRNN) and the other is a discrete time RNN (DTRNN). In this paper,
the DTRNN is used for our robot simulation experiments.

Fig. 1 Recurrent neural
network

Inputs Outputs

Trajectory Generation Using RNN with Context Information ... 23

Outputs (r=n)

Outputs (1)
T T Internal state (7+1)

Inputs
(t=n) P
Outputs (Fﬁ
Unfolding of time

ey~
Inputs

T T Internal state (7) (r=2)
Inputs (r)

Inputs
(r=1)

e : context nodes | : direction of back-propagation

Fig. 2 Cascaded recurrent neural network and back propagation through time

2.2 Training Algorithm

There are various algorithms for training the RNN such as BPTT (Back
Propagation-Through Time), EKF (Extended Kalman Filtering) algorithm and
optimization training [8, 9]. In contrast to the FFNN, its training algorithm in most
case is conventional BP (Back Propagation) algorithm; there is no clear winner in
training the RNN. In this paper, the BPTT algorithm is used for training the RNN.
The BP algorithm was invented for the purpose of training the conventional FFNN
and the learning rule behind the BP algorithm utilizes a gradient descent method.
The BP algorithm cannot be applied directly to the RNN because the RNN has
feedback loops. To apply the BP algorithm to the RNN, it is needed to cascade the
RNN through its training time. Figure 2 shows cascaded RNN architecture.

Since all connections inside the RNN is cascaded through time, there exist no
closing loops and the conventional BP algorithm can be applied.

2.3 Mobile Robot Kinematics

In this section, mobile robot kinematics for moving to a target point is described.
The mobile robot used in this paper is differential wheeled robot. For given velocity
v and angular velocity o, next position and heading angle of the mobile robot can
be calculated by equation below:

24 Y.-M. Lee and J.-H. Kim

<
I
z.
=
@
o

'] 1)

where, 0 is the heading angle value of the mobile robot with respect to the x axis.

2.4 Feed Forward Neural Network for Mobile Robot

Before conducting main experiments with multiple way points by RNN, the FFNN
is tested for a mobile robot to get to a single goal point. The neural network has two
input nodes and two output nodes. Two input nodes consist of the current angle
value between the robot and a goal and the distance value from the robot to a goal
position. Two output nodes consist of the velocity and angular velocity values for
the next movement. Also the network has two hidden layer each with 40 nodes. The
training data was collected through simulation in which the mobile robot reached
the goal position according to the following equation:

Vzkld a)=k29 (2)
a7 - - - - v - 038
asl 03 s Goal |
M_Gm‘“ﬂ 028
»
*e
"f
04 . 02
-
+
+
a3 + 018
*
- K
a2z L 01 *1-
* *
* *
arp @ * 008 N " -
Start), & &
a 5 T R S SR
01 02 03 o4 05 [T (5 08 S StEtsm e om 0w ot o o7 o on
07 088
I+
+ +
osst Start®e, o4 Gpal
* F
1] *, a8z 1
o4l "+ se
. 8 1
oszf *
* 0.58 i
aer . ' 4
e 0.58 4+ 4
0ss L +
054 *
L 3]
058 i
os4f 052 o J
.
oszf osp o 1
* *
0s * Goal @ 5 : i i i
01 015 02 025 03 035 04 045 05 045 06 S BIETT 53 o oi 04 o4 o

Fig. 3 Mobile robot trajectories when there is only one goal positions

Trajectory Generation Using RNN with Context Information ... 25

where constant k; were 0.05 and 0.2, respectively. Robot starting and goal positions
were generated randomly on the x-y plane from O to 1. The simulation results are
plotted in Fig. 3.

As shown in Fig. 3, the mobile robot could reach the goal position with proper
sequences. Definitely, however, this simple task does not require the robot to be
aware of the context information. The FFNN’s output values solely depend on the
current input values. Therefore, when there are more than two goals, the FFNN gets
confused whether or not it has already reached the goal with higher priority.

3 Implementation

3.1 Architecture

To have the mobile robot to reach several target positions in a proper sequence, the
RNN is required. In this paper, the RNN has four input nodes and two output nodes.
Four input nodes consist of the current heading angle values respectively between
the mobile robot and the goals 1 and 2 and the distance values respectively from the
mobile robot to the goals 1 and 2. Two output nodes consist of the velocity and
angular velocity values for the next movement. The network has one hidden layer
with 50 nodes. Also the network has 10 context node with feedback connections.
Activation function used in the network node is a sigmoid function by which only
one directional rotation is permitted to the mobile robot because the sigmoid
function can generate a positive value only. In the training phase, initially all weight
values exist of the RNN were set to random based on the Gaussian distribution.
And the learning rate for training the network was fixed to 0.1 during the entire
learning procedure (Figs. 4 and 5).

Fig. 4 Angle and distance
between the robot and goal
position

26 Y.-M. Lee and J.-H. Kim

Outputs (r+1) .
T T Internal state (#+1) ; ; Goal 1
v

o T Tdi Internal state (7)
Inputs (7)

- # of output nodes: 2

- # of input nodes: 4 (2 for each goal)
- # of context nodes: 10

- # of hidden nodes: 50

Goal 2

Fig. 5 The recurrent neural network architecture for the mobile robot

4 Experiments

After training the RNN, in the test phase, starting and target point positions were
generated with the same method used in collecting the training data. Total training
time was about 5 h by the MATLAB programming simulator. The test results are
plotted in Fig. 6.

03 L1
ozt v+ 055t
R te .t e,
ozf & v 05 «* .
s * +* ;
024t f » 045} “+ @ +
ozt F o 2sb & Start
+
+ +
L @ S,
o+
ossr T Start 03f
Gpal 1, g
., | Goal 2
0.14F
+" Goal 2 o2t)
0.z * +* + 1 +F
* + oas +
*h b gttt TP o
a1 " ; x i " "
1
on: W L %o 0.1 0.15 02 028 03 038 0.4
Goal 1
05 T T T T T T T T T (1]
e 08 * -
ot LN i W0 F o
* . + *
> + 07 g P 4
ot 1 & +
+* *
+ R LTI 1 Start 1
+ T *
g C 3
g 05 *, 4
Start | 5
*,
04f *, i
4 Hay,
*
o3} i
il 02} T b
s
o4 *
1] S % ey * 4
AL T T
e [LG0A2 “rtermmmen® < Goal 1
015 02 025 03 035 04 045 0.1 0.15 02 0.25 03 0.35 04 042

Fig. 6 Mobile robot trajectory when there are two goal targets

Trajectory Generation Using RNN with Context Information ... 27

o7 . - - . 05 R
‘H.,rmw*o4‘+ :‘ .
oef '}_ | o ;
Goal 1 > ¢
05 P Initial Initial " prhir,
038 - 4
3;“ Goal 2 ,t’ @ +
04 1 03l + Goal 2 o y Stark i
o + * +
03 _ ozsf et
0z
ozt R
o, -
oI« T Start ¢ 1 01 &
+ 4+ = ¥ oy
*
e e Goall ; i . i
uD 005 o1 0.15 02 02 03 038 04 045 0%2 03 04 05 oe 07 08 09
oTs T T T T T 07 -+
+*
+ +
oest Py :
+
o7 +Goal 1 4 : +¥ o * o
et ool % @ ot %
% \\‘ % Initial # Start
oest %, b assf + § *
+
Goal 2 %
% o5t
08 *
Fd -] est
+ P
L 4’@ *: 1 0.4 *,
* Start & Initial 025 E
|+ +*] [4F A b
05 v, i o . i
» 03
LR . }
0.4n 1 1 L i i i G’oalz’ Goal!
028 L L s s s L L L
0.05 6.1 018 0z 025 03 0.3 a4 03 04 045 05 055 08 085 07 075

Fig. 7 Mobile robot trajectory when external disturbance exist

In the experimental results, the mobile robot always moved to goal points with
proper sequences. In the figure, ‘Start’ is the starting position of the mobile robot
and ‘Goal 1’ and ‘Goal 2’ are positions of goals 1 and 2, respectively. In Fig. 6,
some trajectories showing strange morphology like circling and that is because in
this simulation, mobile robot was permitted to rotate only one direction. Since the
robot and goal positions are generated randomly in the training and test phases, we
can conclude that the RNN properly generates not only given training trajectories
but also unlearned trajectories, therefore guarantees generalization capability of the
RNN. To prove robustness of the RNN, in an additional experiment, external
disturbance was given to kidnap the robot to other places. After 20 steps moving
from the initial stating position, the mobile robot’s position was moved abruptly to
randomly selected position on the x-y plane. The results is plotted in Fig. 7.

In the figure, ‘Initial’ is the initial position of the mobile robot and ‘Start’ is the
starting position of the mobile robot after kidnapping. As shown in the figure, even
though the mobile robot was kidnapped, it could generate a proper trajectory.
Finally, the change of the context node activation value is plotted in Fig. 8
according to the mobile robot’s trajectory. We found that only one context node out
of 10 context nodes was changed through time.

In this figure, we can find some regularity. If the robot gets closer to the goal 1,
the context node value gets increased. And after turning to goal 2, the context node

28 Y.-M. Lee and J.-H. Kim

Magnitude of context node 3

x W

0.6 . o
* T -
* *
05 ot :,, +*
-
..@ (O 15
04 L -
+, Start &
". +*
: 4. Goal 2 1 K
*. + » +
*e,
e,
2 *’w‘*
o, 05 ‘
o1 #
+Cpoal 1 _ % Sequence
805 o1 a1 02 03 a3 03 04 D& o A0 20 %0 4 0 68 1 80
Magnitude of context node 3
e
14 25 T ™ ™ ™ ™ v° ™
e
12 N
2
s *

* Start F !
L *, 1 f
+1-
Q_' ;
*s r +
4 +4 Py
Thy J?
. 0s 4
i "'--.: / 4
- + Goal 1 * Sequence
- - - - L et i
01 02 03 04 35 G03k2 a7 08 0 10 20 30 40 20 @ 70 80 w0 0

Fig. 8 Change of context node 3

value gets decreased. The turning point is indicated on Fig. 8 using big circle
containing red point on the center of it. It is not enough to conclude from Fig. 8 that
the context layer has a memory in which a clear switching point exists. However, it
looks like that the mobile robot has strong tendency to reach the red point first.

5 Conclusion

In this paper, we tested various capability of the RNN through mobile robot sim-
ulation. From the fact that the mobile robot could generate proper sequences even
with the external disturbance, we confirmed that the RNN was robust and reliable
behavioral computational model. Such kind of characteristics of the RNN may be
extended to more complex task such as object manipulation by using humanoid
robot arms and walking pattern generator for humanoid robots.

Acknowledgment This work was supported by a grant from the National Research Foundation of
Korea (NRF) funded by the Korea government (MSIP) (No. NRF-2014R1A2A1A10051551).

Trajectory Generation Using RNN with Context Information ... 29
References

1. Hopfield, J.: Neural networks and physical systems with emergent collective computational
abilities. In: Proceedings of the National Academy of Sciences, vol. 79, USA (1982)

2. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9) (1990)

3. Rojas, R.: Unsupervised learning and clustering algorithms. In: Neural Networks. Springer,
Berlin, pp. 99-121 (1996)

4. Bengio, Y.: Learning deep architectures for Al. Found. Trends® Mach. Learn. 2(1) 1-127
(2009)

5. Hinton, G.E.: Deep belief networks. Scholarpedia 4(5) 5947 (2009)

6. Yokoya, R., et al.: Experience-based imitation using rnnpb. Adv. Robot. 21(12) 1351-1367
(2007)

7. Sugita, Y., Tani, J.: Learning semantic combinatoriality from the interaction between linguistic
and behavioral processes. Adapt. Behav. 13(1) 33-52 (2005)

8. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating
errors. Cogn. Model. (1988)

9. Hinton, G.: A practical guide to training restricted Boltzmann machines. Momentum 9(1) 926
(2010)

2 Springer
http://www.springer.com/978-3-319-31291-0

Robot Intelligence Technology and Applications 4
Results from the 4th International Conference on Robot
Intelligence Technology and Applications

Kim, J.-H.; Karray, F.; Jo, J.; Sinéak, P.; Myung, H. (Eds.)
2017, XV, 610 p. 382 illus., 303 illus. in color., Softcover
ISBN: 978-3-319-31291-0

	2 Trajectory Generation Using RNN with Context Information for Mobile Robots
	Abstract
	1 Introduction
	2 Artificial Neural Networks
	2.1 The Recurrent Neural Network
	2.2 Training Algorithm
	2.3 Mobile Robot Kinematics
	2.4 Feed Forward Neural Network for Mobile Robot

	3 Implementation
	3.1 Architecture

	4 Experiments
	5 Conclusion
	Acknowledgment
	References

