
Chapter 1
An Overview of Nanostructured Materials

Abstract In this chapter, an overview of the principles of materials science and
nanostructured materials is presented. The chapter begins with a general discussion
to explain the basic structures of materials from atoms, atomic binding, physics of
solid state materials or condensed matter physics, the band theory of solids and
crystallography. This is followed by a classification of materials at the nanometer
scale, where dimensionality and quantum size effect play important roles. The
electronic properties and applications of three types of nanostructures are explained
and compared.

1.1 Introduction to Materials Science

In principle, materials science is defined as the science of solid materials or con-
densed matter which describes the relationship between the structure, properties,
processing and performance of materials. An understanding of the relationship
creates novel science by nature of developing new materials for high-technology
applications and better way of life. From a structural point of view, all materials can
generally be divided into two classes: crystalline and non-crystalline. Materials are
traditionally classified as metals, semiconductors, ceramics and polymers.
However, considered as crystalline solids, the physics of materials may be well
described by solid state physics.

As a result of developments in this field, a new class of materials, known as
nanomaterials or nanostructured materials, has recently emerged. The development
of this new group of materials has been inspired by very rapidly evolving science
and technology at the nanometer scale. In general, a nanomaterial is defined by
its dimensions and size, where at least one dimension must be in the range of
0–100 nm. This critical size range is associated with many interesting phenomena
which in principle obey nanophysics. The physical behavior of materials at
nanoscale is explained by quantum mechanics as the center of the field of nano-
materials and nanotechnology. Thus, we start this book with an introduction to this
extremely fascinating field of science and technology.
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1.2 Physics of Solid State Materials

1.2.1 Atoms and the Periodic Table of Elements

The structure of atoms consists of a nucleus surrounded by electrons. For the
simplest atom, hydrogen, the electrical potential energy between the negative
charge of the electron moving in a circle with radius r around the nucleus and the
positive charge of the nucleus is defined as:

U ¼ � 1
4peo

� e
2

r
ð1:1Þ

where eo ¼ 8:854187817� 10�12 F/m is the permittivity of free space or of the
classical vacuum. This classical relation leads to the collapse of atoms, because the
potential energy existing between the nucleus and electrons becomes null at an
infinite distance. Thus, the movement of the classical electron becomes spiral
instead of circular towards the nucleus, releasing the excess energy in the form of
electromagnetic radiation. Therefore, no stable atom would exist under the laws of
classical physics.

The structure of atoms requires a quantum mechanical interpretation for its
description. Bohr [1] discovered that the structure of a hydrogen atom needed the
quantization of angular momentum and energy levels to become stable. Bohr’s
semi-classical model of the atom considers its planetary nature, with an electron
circling the nucleus, which was postulated with two conditions. The first involves
the quantization of the angular momentum of the electron of mass m circling the
nucleus in an orbit of radius r and speed v:

mvr ¼ n�h ¼ n
h
r

ð1:2Þ

Here, h is the Planck constant, �h is the angular Planck constant and n is the
arbitrary integer quantum number defined as n = 1, 2, 3, …

Second, electrons possess definite and distinct energy values. Total energy is the
sum of kinetic and potential energy:

E ¼ KþU ð1:3Þ

Considering (1.1)–(1.3), one obtains:

E ¼ � 1
8peo

� e
2

r
ð1:4Þ
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or

En ¼ � me4

8e2oh2
� 1
n2

ð1:5Þ

At the ground state, E0 ¼ �13:6 eV, and the subsequent energy levels would
attain a certain value depending on the quantum number n. Despite its success in
explaining the properties of hydrogenic electrons bound to donor impurity ions in
semiconductors, or in analyzing the optical spectra of semiconductors exposed to
radiation, the planetary nature of Bohr’s model was unable to precisely explain the
states of electrons and their location and dispersion in an atom.

Quantum mechanics proved the particle–wave nature of light and matter, giving
rise to an understanding of the behavior of atomic-scale particles by a wave
function, wðr;tÞ: Schrödinger [2] described the location of a particle having a wave
function, wðr;tÞ in a specific situation by postulating the particle–wave nature of a
traveling wave in one dimension with a length of L:

wðx;tÞ ¼ A:eikx�ixt ð1:6Þ

where k ¼ 2p
k is the wave number for wavelength k, and x is the angular frequency.

Schrödinger proposed a statement for the energy of the particle (1.3) by the
application of the correct particle–wave equation, and obtained a time-independent
equation in one direction, x:

�h2

2m

d2wðxÞ
dx2

þ E � Uð ÞwðxÞ ¼ 0 ð1:7Þ

The Schrödinger equation can be applied to derive the electronic quantum states
in hydrogen or any one electron atom having a Coulomb potential energy (1.1). It is
written in the case of spherical polar coordinates which are more suitable for
explaining the electron motions in an atom [3] as:
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ð1:8Þ

In the spherical symmetry of the atom, the solution is achieved by separating the
variables so that the wave function is represented by the product:

w ¼ R rð ÞP hð ÞFð/Þ ð1:9Þ

The separation leads to three equations for the three spatial variables, the
solution of which gives rise to three quantum numbers: R rð Þ for the principal
quantum number n, P hð Þ for the orbital quantum number l, and Fð/Þ for the
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magnetic quantum number ml. For each electron there is also a spin quantum
number with projection of ±1/2 as a result of relativistic corrections to the
Schrödinger equation. The quantum numbers associated with electron arrangements
and labels of atomic orbitals are shown in Fig. 1.1, and can be found in greater
detail with the shape and equation of wave functions in [3, 4].

Following these rules, it is predicted that the number of distinct quantum states
for a given n is 2n2. According to Pauli’s exclusion principle, only one electron is
allowed in each distinct quantum state. Thus 2n2 is the total number of electrons
which can be accommodated in the nth electron shell of an atom. Occupation rules
exist for quantum states with electrons, where filling of orbitals with electrons in
one-electron atoms takes place by dramatically increasing the quantum numbers.
For poly-electronic atoms, the interactions between them must be considered by
occupation rules such as Hund’s rules [4].

This is the basis for the chemical table of the elements, the so-called Mandeleyev
table (Fig. 1.1), where the wave function wn;l;ml;ms

provides quantum states, and
Pauli’s exclusion principle states that only one electron can be accommodated in

Fig. 1.1 Periodic table of elements illustrating the electronic structure and quantum numbers of
atoms
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each quantum state. There exists a specific location for each individual element
owing to its atomic structure. The table has rows and columns called periods and
groups, respectively, each of which has specific characteristics. All of the elements
located in a period have the same number of atomic orbitals. Each group consists of
elements with the same number of electrons in the outer orbital valence electrons.
There are exceptions to the order in the case of transition elements. Transition
elements add electrons to the penultimate orbital. The two rows separate from the
table are for lanthanides (or rare earth metals or inner transition elements) and
actinides, which are radioactive and are not often found in nature. The electronic
states and orbital arrangements of each atom are shown in Fig. 1.1.

1.2.2 Atomic Bonds and Condensed Matter

Condensed matter or solids are formed by the accumulation of atoms. The prop-
erties of bulk matter depend upon the electronic structure of the atom incorporated
into the matter. In the periodic table of elements, each individual atom in the period
is compared with its neighbor atoms having smaller or larger atomic numbers or
with other atoms in its group. But what forms a solid or condensed matter? In other
words, what is the main reason for the cohesion of the atoms to be condensed in
either liquid or solid form?

In principle, the attractive electrostatic energy between the electrons and protons
of atoms plays a vital role in their cohesion. However, other energy factors such as
magnetics, exchange interaction, van der Waals’ forces and covalent force impose
other effects. The formation of a solid by bonding of the atoms reduces the energy
level. Figure 1.2 depicts a generally adopted energy plot of possible interactions
occurring between two binding atoms. Total energy results from the sum of the
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Fig. 1.2 Variation in
interacting energies during
binding of atoms for all
classes of solid materials. a0 is
the lattice parameter and U0 is
the cohesive energy
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attractive energy and repulsive energy terms. The binding of atoms takes place at
the minimum energy at the point where cohesive energy and interatomic distance
are obtained. Despite the different mathematics and relationships for various classes
of solid materials, this plot is common to all types.

Generally, cohesive energy is an energy term used to describe the strength of a
given solid material. Provided that such energy is applied, the matter will be divided
into its components in their free electronic ground states. For instance, an ionic
solid is separated into the ions forming the ionic crystal. Figure 1.3 shows the
cohesive energy, melting point and elastic modulus for all possible solid crystals on
a periodic table of elements. Here, different materials can be seen to exhibit various
magnitudes of cohesive energies as well as other intrinsic physical properties which
substantially depend upon the bonding types of their atoms or components.

Here we aim to briefly explain general atomic bonds in solids and their prin-
ciples and diversity in materials science. There are generally four types of atomic

Fig. 1.3 Periodic table of elements for relevant crystals consisting of the cohesive energy, melting
point and Young’s elastic modulus. Plotted from data given in [5]. For research purposes refer to
the original references
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bonds in solid materials: van der Waals–London bond, covalent bond, ionic bond
and metallic bond. Each type of atomic binding creates a specific class of solids.

1.2.2.1 Inert Gas (van der Waals) Solids

Inert gas elements form the simplest type of solids. These solids are transparent and
electrically insulating, with a low melting point and weak atomic binding. A large
number of solids fall within this category, including inert gases, polymers and
organic molecules. The ionization energy of such solids is quite high [5]. The
electronic structure of free atoms taking part in this type of solid is spherically
symmetric due to the completely filled outermost electron shells. In solid form, the
electronic distribution around each atom does not change significantly from that of
the free atom, as the cohesive energy of these solids is approximately 1% of the
ionization energy of free atoms. This atomic binding is caused by the van der
Waals–London interaction, which occurs due to dipole–dipole charge interactions
between atoms. Each atom preserves dynamic oscillating charge dipoles as a
quantum effect, forming simple harmonic oscillators. This leads to the formation of
intact dipole–dipole interactions which cause atoms to be attracted to each other,
developing attractive energy. On the other hand, as atoms become closer, their
electron distribution overlaps. The Pauli exclusion principle asserts that
multiple-electron occupation of quantum states is not possible. Thus, the over-
lapped electrons must travel to higher energy levels. This forces atoms to separate,
generating repulsive energy. In short, the attractive van der Waals energy offsets the
repulsive energy where the atomic bond is formed. A general equation describing
the variation among energies in this form of atomic binding can be written as:

UðRÞ ¼ �
A
R6 þ

B
R12 ð1:10Þ

in which A, B are constants defined according to the atom electronic properties, R is
atom distance, and UðRÞ is the total energy.

1.2.2.2 Ionic Solids

Atoms next to the inert gases on the periodic table of elements are easily ionized by
accepting or releasing an electron to obtain completely filled outermost shells like
their inert neighbors. The ionic bonds are generally formed between alkaline metals
and halogens, where the electronegativity and electropositivity from each individual
element are combined to form the solids. For alkaline metals, the outermost shell
electron weakly connected to the nucleus is easily donated, and constitutes the
positive ionic element. Halogens located in the group after the inert gas elements
need only a single electron to completely fill the outermost shell, where they
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become the negative ionic element. Some examples of these solids are alkali halides
(sodium chloride, lithium fluoride, etc.), oxides and sulfides, as well as some
complex salts of inorganic chemistry. The binding of the metal and halogen atoms
happens by electron exchange between them, forming ionic elements as the main
constituents of the ionic solids. The ionic binding energy is called Madelung
energy, defined by summing the long-term electrostatic interactions between neg-

ative and positive ion charges in a solid material: ±q2

R .
In addition, there exists repulsive energy due to the Pauli exclusion quantum

effect in the form of:

k:exp �R
q

� �
;

where k and q are empirical parameters related to the amplitude and range of the
repulsive quantum interaction. The total lattice energy of an ionic solid comprising
2 N ions (or N molecules) at their equilibrium atomic distance (R0Þ is obtained:

Utotal ¼ �Naq2

R0
1� q

R0

� �
ð1:11Þ

a is called the Madelung constant and q is found to be about 0.1 R0 [5].

1.2.2.3 Covalent Solids

Ionic and van der Waals bonds cannot be the reason for the formation of substances
such as O2, N2, diamond and Si, or of III–V compounds such as GaAs. Another
type of atomic bond, called a covalent bond, is responsible for the formation of
these solids. Because covalent bonds are strong, solids are quite hard materials.
These solids are used in the development of semiconductor materials, which will be
introduced later.

To interpret covalent atomic binding, one simply needs to consider the molecular
hydrogen bond. The probability of electron sharing, called transition frequency,
increases markedly as the hydrogen free atoms come closer. For example, the
transition frequency of an electron of one hydrogen atom in another atom is 1012

per year when the atomic separation is 50 Å. If the hydrogen atoms come much
closer, with interatomic distance of 2 Å, the transition frequency increases con-
siderably, up to 1014 s−1. Under such circumstance, it is not clear which electron
belongs to which hydrogen atom, making the bi-atom system indiscrete; this is
called electron sharing. The shared electrons will change the electron probability
function w2

�� ��. The binding energy for covalent solids was first expressed by Heitler
and London [6] (Fig. 1.4).
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The total energy (U) of the hydrogen bi-atomic system can be written in two
different states:

(a) When the spins of the two electrons are in bonding or antiparallel states:

Uap ¼ 2E0þ K þA

1þ S2
ð1:12Þ

(b) When the spins of the two electrons are in anti-bonding or parallel states:

Up ¼ 2E0þ K � A

1� S2
ð1:13Þ

Here, E0 is the energy of a single free hydrogen atom, K is the electrostatic
coulomb interaction, A is the exchange coupling interaction and S is the electron
overlapping integral. Considering the values of these factors, the covalent bond
forms when an antiparallel states exist where Uap\2E0. Figure 1.3 shows the
variation in total energy as a function of interatomic distance for the two states
introduced above. The minimum energy is seen on the curves dedicated to the
antiparallel states.

1.2.2.4 Metallic Solids

Atoms of the top periods in the periodic table of elements are bonded together via
metallic bonds forming all metals and alloys. The valence electrons located in the

U

(a)

(b)

U0

0

a0

R

Fig. 1.4 Variation in total
energy for a antiparallel and
b parallel electron spin states
in a bi-atom hydrogen system
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outermost shell of the metal atoms are weakly bonded to the nucleus. When the
metallic bond occurs, the outer orbitals of the atoms are overlapped, as shown in
Fig. 1.5, and the valence electrons form an electron gas that permeates the entire
solid lattice. Thus a combination of negatively charged electron gas as delocalized
electrons and positively charged ions as localized electrons plus nuclei exists inside
the entire metals. The delocalized electrons which form the electron gas are called
conduction electrons. These electrons determine the characteristic properties of
metals such as high electrical and thermal conductivity and high optical reflectivity.

1.2.2.5 Crystalline and Amorphous Solids

An ideal crystal is constructed by the infinite repetition of identical structural units
in space. In the simplest crystals such as in nickel, cobalt iron, copper and the alkali
metals, the structural unit is a single atom. However, the smallest structural unit
may comprise many atoms or molecules.

The structure of all crystals can be described in terms of a lattice consisting of a
group of atoms attached to every lattice point.

The group of atoms is called the basis; when repeated in space it forms the
crystal structure. The crystalline materials are realized in one or more crystalline
forms known as Bravais lattices, as shown in Fig. 1.6.

A three-dimensional crystal can be defined by three translational vectors a, b and
c. The location of each point is given by arbitrary digit numbers of h, k, and l for x,
y, z axes:

r ¼ h � aþ k � bþ l � c ð1:14Þ

Every lattice developed by translating one of these vectors constitutes a Bravais
lattice. The smallest parallelepiped formed is called the unit cell. All unit cells in the
crystal have the same shape and volume.All vertices are similarly occupied by atoms of
one ormore elements constituting lattice sites. As shown in Fig. 1.6, each unit cell may
be defined by six factors, a, b, c, a angle between b and cð Þ; b ðangle between a and cÞ,
and c ðangle between a and bÞ. There are three Bravais cubic lattices: simple cubic
(sc), base-centered cubic (bcc) and face-centered cubic (fcc). In the sc lattice, the

3.8Å

3.7Å

e-e-
1s

2s,2p 3s

Fig. 1.5 Scheme of
electronic arrangement of a
sodium atom forming a
metallic bond
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atoms are located in the eight apices of the cubic unit cell. In the bcc lattice, in addition
to the eight atoms placed at the apices, there is one atom in the center of the unit cell.
An fcc lattice comprises eight atoms at the apices and eight atoms in the centers of the
faces, as indicated in Fig. 1.6.
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Fig. 1.6 The Bravais space lattices for all possible crystalline materials
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Close-packed lattices, an efficient packing of spherical atoms, can take place in
two or three dimensions. Figure 1.7 shows the possible close-packed lattices in
these dimensions. For two-dimensional packing systems, there are two primitive
cells with three and six vertices. For three-dimensional close-packed lattices, there
are spaces or sites between the atoms to be filled by atoms with different
arrangements. The three-dimensional close-packed arrangement can be obtained by
the placement of the atomic layers, namely A and B, in two ways, generating
hexagonal close-packed (hcp) and face-centered cube (fcc) structures. Hexagonal
close-packed structures are formed by the repetition of A and B atomic layers in the
form ABAB…, whereas fcc close-packed lattices are generated by the repetition of
ABCABC… atomic layers. The coordination number, or the number of nearest
atoms, for both hcp and fcc structures is 12.

In reality, crystals exist in different crystalline systems. Most metals are crys-
tallized in hcp, fcc and bcc lattice systems. Semiconductors form diamond struc-
tures with complex atomic arrangements. A space lattice of diamond is fcc with
tetragonal bonding associated with the face-centered atoms. Each atom has four
neighbor and 12 next-nearest neighbor atoms. The diamond structure may be
viewed as two fcc lattices displaced from each other by one quarter of the length of
the body diagonal. The structure of zinc sulfide results from the combination of two
fcc lattices, each of which has Zn and S atoms.
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Fig. 1.7 Atomic
arrangements in close-packed
lattices in a two-dimensional
(2D) and b three-dimensional
(3D) systems. In 3D systems,
ABAB… and ABCABC…
repetitions of atoms make
different close-packed lattices
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The crystal structures may be studied through the diffraction of photons, neu-
trons and electrons. The diffraction results from the superposition of the waves
scattered elastically by the individual atoms of a crystal.

W.L. Bragg described the principles of the diffraction of beams from a crystal.
The Bragg law can be explained simply: Suppose that the incident waves are
reflected from parallel planes of atoms in the crystal, with each plane reflecting only
a very small fraction of the radiation. The reflection occurs with the same incidence
and reflection angles from the atomic base plane. Provided that the reflections from
parallel planes of atoms interfere constructively, the diffracted beams are exploited.
The Bragg law is stated as:

2d � sinðhÞ ¼ nk ð1:15Þ

where d is the spacing between parallel atomic planes, h is the incident angle and k
is the beam wavelength. This is valid for k\ 2d:

A perfect crystal structure, repeating a particular geometric pattern of atoms
without interruption or error, is quite unusual in reality unless it is grown under
careful growth conditions—for example single crystal bulk materials grown by di-
rectional solidification. This means that crystals in reality certainly consist of struc-
tural defects. These structural defects are classified into three categories:
zero-dimensional defects, such as vacancies and interstitial and substitutional
impurity atoms; one-dimensional defects, such as dislocations; and two-dimensional
defects such as grain boundaries. The schematics of these defects are shown in
Fig. 1.8.

Grain boundaries are surface or area defects that constitute the interface between
two single-crystal grains of different crystallographic orientation. Atomic bonding
in particular grains terminates at the grain boundaries. Due to the higher number of
broken or dangling bonds of such atoms on grain boundaries, they are necessarily
more energetic than those within the grain interior. Thus the grain boundaries
become heterogeneous regions for atomic reactions and processes, and favor their
acceleration or decay as appropriate. For example, electronic transport in metals is
weakened due to increased scattering at grain boundaries, which also serve as
charge recombination centers in semiconductors [7].

Dislocations are one-dimensional or line defects that arise from a particular
crystallographic rearrangement in the lattice. The two basic types of dislocations are
the edge and the screw. The edge dislocation results from wedging in an extra row
of atoms; screw dislocations require cutting followed by shearing of the perfect
crystal lattice. The geometry of a crystal containing a dislocation is such that when a
simple closed traversal is attempted about the crystal axis in the surrounding lattice,
a closure failure occurs. The displacement from the starting position is obtained by
a lattice vector, the so-called Burgers vector. Dislocations are important because of
their role in mechanical properties such as plastic deformation and work hardening.

The last type of defect considered is the non-dimensional or zero-dimensional
defect. Vacancies or atomic impurities are considered zero-dimensional or point
defects. Vacancies are simply point defects that arise when lattice sites are
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unoccupied by atoms. They form because the energy required to remove atoms
from their sites and locate them on the surface is not remarkably high. This low
energy, coupled with the increase in the statistical entropy of mixing vacancies
among lattice sites, gives rise to a thermodynamic probability that an appreciable
number of vacancies will exist, at least at elevated temperature. Vacancies are
different from dislocations, which are not thermodynamic defects. Because dislo-
cation lines are oriented along specific crystallographic directions, their statistical
entropy is low. Coupled with high formation energy due to the many atoms
involved, thermodynamics would predict a dislocation content of less than one per

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 1.8 Schematic pictures of different categories of structural atomic defects in solids. Zero-
dimensional a vacancy, b interstitial atom, c small substitutional atom, d large substitutional atom.
One-dimensional e edge dislocation, f screw dislocation. Two-dimensional g grain boundary
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crystal. Thus, although it is possible to create a solid devoid of dislocations, it is
impossible to eliminate the vacancies.

The vacancies play an important role in all processes related to solid state
diffusion, including recrystallization, grain growth, sintering and phase transfor-
mations. In semiconductors, vacancies are electrically neutral as well as charged
and can be associated with dopant atoms. This leads to a variety of normal and
anomalous diffusional doping effects [7].

Other types of non-dimensional defects occur due to the addition of foreign
atoms into the lattice. Interstitial defects are produced when an atom is placed into
the crystal at a site that is normally not a lattice point. Substitutional imperfections
are produced when an atom is removed from a regular lattice point and replaced
with a different atom, usually of a different size, which expands or shrinks the lattice
around the imperfection.

In contrast to crystalline solids with long-range order, there is another group of
condensed matter, amorphous solids, in which the predictable long-range atomic
order breaks down—for example glass, inorganic oxides and polymers. The atoms
of these materials follow their random positions after solidification from the melt,
even at low rates. A few metals exhibit this property, including certain alloys
composed of transition metal (iron, nickel) and metalloid (phosphors, boron)
combinations through extremely rapid quenching of melts (e.g. 106 C/s) [7].
Figure 1.9 compares the atomic arrangement of a typical crystal and amorphous
solid.

1.2.3 The Band Theory of Solids

Before we proceed to an introduction of nanostructures, it is necessary to under-
stand the classification of materials from a solid state physics point of view. So far

Substrate

(a) (b)

Fig. 1.9 Schematic representation of a crystalline long-range order and b amorphous short-range
order in a three-component ABO3 perovskite (A = La, Pr, Nd (orange color), B = Al, Ga (blue
color), O = oxygen (white color)). This picture shows the interface of a polar perovskite oxide on
an oxide substrate. Adapted from [8] with the permission of Nature Publishing
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we have explained the atomic arrangement of bonding types of solid materials.
Thus, it is well understood that there is a periodic order in the arrangement of
atoms. In addition, a crystal solid is composed of the sum of electrons and ions
interacting with each other for all types of crystals over the entire structure. For
metals, the entire crystal consists of an electron gas which permeates alongside the
atomic sites or ions. This figure is the starting point for understanding the physical
interpretation of the electronic properties of materials. This can be further used to
answer the principle questions regarding the differences between the physical
properties of various materials such as electrical conductivity and thermal
coefficients.

1.2.3.1 Free Electron Gas Model

In this model, the conduction electrons are freely distributed in a metal or a
semiconductor, and the surface of the solid is the only confining effect against the
movement of electrons. All possible interactions between the participating particles
in the electron gas/ion system are neglected here. We regard this system as a
three-dimensional box containing the delocalized free conduction electrons. For
metals, the energy barrier holding the electrons is called the work function, which is
on the order of only a few electron volts. Considering the wave–matter charac-
teristics, one can apply the Schrödinger equation to estimate the wave function
(wðrorx;y;zÞ ¼ expðik � r) of electrons trapped in a three-dimensional bulk with size
length L. The states of the three-dimensional (3D) trap are:

wðx;y;zÞ ¼
2
L

� �3=2

sin
nxpx
L

� �
sin

nypy
L

� �
sin

nzpz
L

� �
ð1:16Þ

With the kinetic energy for free electrons:

Ek ¼ �h2

2m
� k2x � k2y � k2z
� �

ð1:17Þ

For multi-electron systems with a large number of electrons, the quantum
number will become very large, and the energy of the successively filled states will
also be large. The energy is given by:

En ¼ h2

8mL2 � n2x � n2y � n2z
� �

ð1:18Þ

This equation resembles a sphere on a space lattice of wavenumber k, with
quantum integers nx; ny, and nz on the three axes where the outer surface is defined
as the Fermi sphere on kF ¼ nFp

L � nF is the quantum number of the highest energy
level filled. The number NðEÞ of states out to kF can be obtained:
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NðEÞ ¼ 2 �
4p
3 k

3
F

ð2p=LÞ3 ¼
L3

3p2
k3F ð1:19Þ

(The factor of 2 comes from the fact that N electrons of spin quantum number
ms ¼ �1=2 and N electrons of spin quantum number ms ¼ �1=2 are allowed for Ni
sites, the so-called degeneracy factor). Thus:

EF ¼ �h2

2m
� 3p2N

L3

� �
ð1:20Þ

The distribution of energy levels can be readily defined by differential dNðEÞ=dE
defined as the density of electron states per unit volume at energy E; qðEÞ:

NðEÞ ¼
L3

3p2
� 2mE

�h2

� �3=2

ð1:21Þ

Thus:

qðEÞ ¼
NðEÞ
E
¼ L3

3p2
:

2m

�h2

� �3=2

�E1=2 ð1:22Þ

Figure 1.10 illustrates the density of electron states for bulk three-dimensional
materials. The Fermi–Dirac distribution (fF�DðEÞÞ function explains the occupation
rules for fermions (i.e. electrons) as expressed by:

fF�DðEÞ ¼ 1þ exp
E � l
KBT

� �� ��1
ð1:23Þ

in which l is the chemical potential of metal, which is identical to the Fermi energy
level. This function is sketched in Fig. 1.10 for zero and non-zero temperatures, and
the occupied energy levels are shown for different temperatures [5].

1.2.3.2 Nearly Free Electron Gas Model and Period Structures

The free electron gas model is unable to describe the differences in electronic
behaviors between materials—for example, the difference between metal and
semiconducting materials or the origin of the band gap. In order to understand these
featured differences, we must consider the motion of electrons in solids influenced
by the crystal potential or energy. This will change the distribution of these elec-
trons, thus introducing the band theory of solids.

The free electron model defines the energy values allowed to distribute essen-
tially continuously from zero to infinity. In contrast, with the nearly free electron
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model, the electron bands are defined such that the free electron gas is perturbed
only weakly by the periodic potential of the ion cores. This concept is schematically
explained for sodium atoms in ground free states and in binding in a typical sodium
metal crystal shown in Fig. 1.11. The separation of Na atoms is large enough that
each Na atom exhibits the electron arrangement of a single free atom, consisting of
1s2; 2s2; 2p2 � 3s1. If the energy barrier between the two neighbor atoms is infinite,
then no electron can transfer from one atom to another. When the atoms attract each
other, the electron distribution changes so that a metal bond forms between them.
This is associated with the formation of conduction electrons (e.g. 3s1 for Na),
so-called electron gas, because the energy of these electrons is higher than the
energy barrier formed between the ions. Furthermore, the energy barriers between
the two atoms produce a periodic energy potential, as indicated in Fig. 1.12 [6].

This schematically explains the concept of the periodic energy potential in a
crystal lattice. As is evident, the infinite energy barriers in the single atoms are
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Fig. 1.11 The variation in electron distribution probability for sodium free atoms with infinite
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changed to periodic finite energy barrier whose height is shorter that the energy
level of the conduction electrons, i.e. 3s orbitals in Na atom crystal.

The wave function of the nearly free electrons under the effect of the periodic
potential energy may be described by the Bloch theorem as:

wk rð Þ ¼ uk rð Þ � exp ik � rð Þ ð1:24Þ

where uk rð Þ is the period of the crystal lattice with uk rð Þ ¼ uk rþ Tð Þ: Here, T is a
translation vector of the lattice. The solution to the Schrödinger equation on the
wave function (1.24) is that the free electron behavior is still valid for certain energy
ranges, namely the allowed band, while in other ranges of energy, namely for-
bidden energy bands or so-called energy gaps, no electron states are allowed. These
allowed and forbidden bands will appear on the occupied electron density of states.
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1.2.3.3 Electron Bands and Gaps: The Origin of Band Gap in Solids

The formation of energy bands may be well understood by assuming the energy
levels of atoms before and after binding. In each isolated atom, the electron energy
levels are discrete, as shown on the right-hand side of Fig. 1.13. As the atoms
approach one another, the individual energy levels split as a consequence of Pauli’s
exclusion principle as shown on the left-hand side of Fig. 1.13. Level splitting and
broadening occur first for the valence or outer electrons, since their electron clouds
are the first to overlap. During bonding of atoms, electrons populate these lower
energy levels, reducing the overall energy of the solid. Upon further dimensional
shrinkage, the magnitude of the overlap rises, causing a strong repulsive force
between atoms. At the equilibrium, where the solid has actually formed, some of
the levels have broadened into bands of energy levels. The bands span different
ranges of energy, depending on the atoms and specific electron levels involved.
Sometimes, as in metals, bands of high energy overlap. Insulators and semicon-
ductors have energy gaps of varying widths between bands in which the electron
states are not allowed [6, 7].

Here we explain the reasons for the energy level splitting, band structure evo-
lution and implications with regard to properties as the most fundamental and
difficult questions in solid state physics. We briefly return to the subject of periodic
potential energy and Bloch function in solids.

In a crystal with a periodic arrangement of atoms, Bragg scattering of electron
waves take place. The periodic potential energy for N atoms with interatomic
separation a is determined by the modulation of an energy barrier with definite
height located in the middle of an atomic separation, a. When a traveling wave,
exp ik � rð Þ, is scattered by the atoms, a coherent reflected wave exp �ik � rð Þ may be
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Fig. 1.13 Schematic picture
of the formation of band
structure from discrete atomic
level in a given crystal after
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generated, leading to a standing wave. The condition of the Bragg law, the coherent
scattering, is very clear (the path difference between a wave back-scattered at x = 0
and one back-scattered at x = a must be an integer number of electron wave-
lengths). Thus, one can write: k ¼ np

a . Therefore, any linear combination between
incident and reflected waves present at integer n of p

a on the wavenumber, k, space
lattice would be an answer to the equation.

The Kronig–Penney model [9] describes the formation of energy bands in solids.
The solution to the Schrödinger equation for this wave function under the periodic
potential is illustrated in Fig. 1.14. The coherent scattering wave function of
electrons generates the bands restricted in k to values less than p=a. Energy gaps
happening at k ¼ np=a are the result of Bragg scattering at k ¼ �np=a [5].

For N sites, the theory predicts 2 N delocalized electron states based on the
degeneracy factor of 2 for electrons. The Pauli exclusion principle works here for
filling of the bands. For example, the hydrogen atom states can have only one
electron. The electrons, of course, occupy from the lowest energy states preferen-
tially until all the electrons are accommodated in the quantum states.
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Fig. 1.14 Schematic
representation of electron
bands and gaps for the first
three energy bands according
to the Kronig-Penny model
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1.2.3.4 Metals, Semiconductors and Insulators

Based on the occupation of energy bands by electrons, we can categorize solids into
two major groups. The first group consists of solids that exhibit a band structure
consisting of a semi-filled band located on top of a completely filled band. Alkaline
and rare earth metals are among such materials where substantially incomplete
bands or hybridized semi-filled bands exist. The second group comprises solids
characterized by an empty band located on top of a fully filled band. Diamond,
germanium and silicon are simple examples of this group. The highest energy band
is called the conduction band, and the fully filled bottom one is called the valence
band. The energy gap between these bands is called the band gap, Eg. Figure 1.15
compares the band structure of these two groups schematically.

The former resembles the band structure of conducting materials, namely metals.
In metals, the motion of electrons is freely taking place regardless of their depen-
dence on the crystal lattice, as there are empty energy levels in the semi-filled band
to move from one to another under external electrical fields. This develops high
conductivity magnitudes for metals. This is not the case for the second group of
solids, semiconductors and insulators. At absolute zero temperature and ground
state (without any external physical or chemical stimulation), the band structure of
these solids suggests that no electron mobility can take place due to the lack of any
empty states. However, the stimulated electron conductivity is developed under
certain conditions, which categorize this group of solids into two sub-groups,
namely semiconductors and insulators. In general, solids having a band gap
exceeding 3 eV, such as diamond, are called insulators, whereas those with a band
gap of 1–3 eV, such as Si, Ge, and GaAs, are called semiconductors [6].

In semiconducting materials, an external energy such as thermal or optical
energy must be exerted to push electrons from filled to empty levels. The ways in
which semiconducting materials are created are shown in Fig. 1.16. The ordinary
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Fig. 1.15 Schematic picture of band structure of all solids classified into two groups: a semi-filled
top band above a completely filled band, b empty top band on fully filled bottom band
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semiconductor materials, namely intrinsic semiconductors, are realized by applying
any external physical energy such as irradiation of photons or heating. This gen-
erates electron–hole pairs, where electrons jump over the band gap and transfer to
the conduction band, and empty states—so-called holes—remain in the valence
band. This will cause electrical conductivity for intrinsic semiconductors like Si and
GaAs. This process is schematically shown in Fig. 1.16a, in which thermal energy
is the stimulating force to increase the electron energy. However, the doping of
impurities such as boron or phosphorous into group V elements is another method
of producing impurity semiconductors.

1.3 Thermodynamics of Materials

Thermodynamics is able to predict the feasibility of chemical reactions or phase
transformations in materials, such as the oxidation of a metal exposed to weather or
the transport of atoms in a typical phase transformation as in the formation of
eutectoid phase. However, all of the events need to be understood by kinetics as
well, because some processes may not occur at all even though they are thermo-
dynamically favored. The basics of thermodynamic feasibility of a phenomenon are
defined by the free energy Gibbs function G expressed by:

G ¼ H � TS ð1:25Þ
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where H is the enthalpy, S the entropy, and T the absolute temperature. A change in
the Gibbs free energy occurring during a process is given by:

DG ¼ DH � TDS ð1:26Þ

where DH and DS are the corresponding enthalpy and entropy changes. One
important result of the second law of thermodynamics is that spontaneous reactions
are predicted to occur only when DG\ 0; T andP ¼ constant. This means that the
energy of the system becomes a more negative value G. Provided that DG ¼ 0 there
is no driving force for any change, implying that the equilibrium state persists. In
contrast, if DG[ 0, no reaction takes place. This is an important criterion by which
scientists may determine or analyze many problems in materials science-related
phenomena such as phase transformation and phase diagrams, nucleation and
growth of crystals [7].

1.3.1 Nucleation and Growth of Solids

The formation of solids can take place by nucleation under favorable thermody-
namic conditions. Two types of nucleation are feasible: homogenous and hetero-
geneous (or non-homogeneous). For the homogenous nucleation of materials, a
supersaturation of growth species is necessary. The reduction in temperature of an
equilibrium mixture such as a saturated solution of mineral salts, the formation of
metal quantum dots in glass matrix by annealing at moderate temperatures, and the
solidification of metal dendrites from melt are good examples. For heterogeneous
nucleation, a surface serves as a substrate on which solid materials start to nucleate
and grow. Fabrication of thin films and coatings are the most common examples of
this mechanism.

On the mathematical interpretation of thermodynamic expressions, there is a vast
amount of literature, which can be found in [10–14]. Here, we concentrate on the
simplest nucleation system. We consider the case of thermodynamic nucleation of a
spherical solid phase under homogenous nucleation conditions and a semi-spherical
solid phase under heterogeneous nucleation conditions, as shown in Fig. 1.17a, b.
In such a process, the transformation from the source phase (i.e. gas, solution or
solid) to the result phase, i.e. solid condensate, must be associated with a reduction
in the chemical free energy by volume contraction DGv which is expressed by:

DGv ¼ �KBT
x

ln
C0

C

� �
ð1:27Þ

where C is the concentration of growth species in supersaturation, and C0 is the
concentration of growth species at equilibrium (namely the solubility), KB is the
Boltzmann constant, T is temperature, and x is the atomic volume. The formation
of a solid surface, on the other hand, is associated with an increase in the free
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energy defined by the surface energy density c: In the presence of the substrate, the
surface energy of each incorporating interface will be applied to the surface energy
term.

For homogenous nucleation, the change in total Gibbs free energy is written as:

DG ¼ 4
3
pr3DGvþ 4pr2c ð1:28Þ

At the critical point, one writes: dDGr ¼ 0. Thus, the critical radius r� and the
critical Gibbs energy so-called energy barrier DG� can be obtained:

r� ¼ 2pc
DGv

;DG� ¼ 16pc3

3 � ðDGvÞ2
ð1:29Þ

For heterogeneous nucleation, we find:

DG ¼ a3r
3DGvþ a1r

2cvf þ a2r
2cfs � a2r

2csv ð1:30Þ

cvf ; cfs and csv are the surface or interface energy of the vapor–nucleus (f), nucleus–
substrate and substrate–vapor, as indicated in Fig. 1.17b. The geometric constants
are calculated as:

a1 ¼ 2p 1� cos hð Þ
a2 ¼ p sin2 h

a3 ¼ 3p 2� 3 cos hþ cos2 h
	 


Fig. 1.17 Schematic picture of a nucleus formed under a homogenous nucleation of a spherical
solid nucleus (black) in a supersaturated vapor, solution or solid media (gray), b heterogeneous
nucleation in the case of semi-sphere on a substrate, and c variation in Gibbs free energy during
nucleation
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in which h is called the wetting or contact angle and is defined by Young’s
equation:

csv ¼ cfsþ cvf cos h ð1:31Þ

At the critical point, the nucleus size and the barrier energy are:

r� ¼ �2 a1cvf þ a2cfs � a2csv
	 


2a3DGv

DG� ¼ 4 a1cvf þ a2cfs � a2csv
	 
3

27a23DGv

ð1:32Þ

After substitution of the geometric constant, these will be written as a function of
the contact angle:

r� ¼ 2pcvf
DGv

sin2 h cos hþ 2 cos h� 2
2� 3 cos hþ cos3 h

� �

DG� ¼ 16pcvf
3DG2

v

2� 3 cos hþ cos3 h
4

� � ð1:33Þ

If we consider (1.29) and (1.33), we can rewrite them as:

r�Het: ¼ r�Hom:f ðhÞ
DG�Het: ¼ DG�Hom: f

0
ðhÞ

ð1:34Þ

f
0
hð Þ is called the wetting factor. Depending on the contact angle, the mechanism of

nucleation varies. If 0\ h\ 180�, Young’s equation predicts the formation of the
nucleus on the surface, and the nucleation mechanism obeys the heterogeneous
equations showing that the energy barrier is smaller than that of the homogenous
nucleation. When h ¼ 180�, the nucleus does not wet the substrate at all, the
wetting factor equals 1, and the critical energy barrier becomes the same as that of
homogeneous nucleation. When = 0� the wetting factor becomes equal to zero, and
there is no energy barrier for the formation of new phase. One example of such a
case is when the deposited material is the same as that of the so-called epitaxial
growth on the substrate [13, 14].

Thermodynamic interpretation of nucleation must be accomplished by intro-
ducing the kinetic information, namely the rate of nucleation, which is defined as
the number of stable nuclei per unit volume in unit time. The rate of nucleation
varies as a function of three major factors: (i) the thermodynamic fluctuation
parameter of Gibbs energy PDG� , (ii) the concentration of growth species C0, and
(iii) the successful jump frequency of growth species f as expressed by:
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NucleationRate / PDG�C0 � f ð1:35Þ

The growth of nuclei takes place in a multi-step process. The major steps in the
growth of nuclei can be divided into two controlling phenomena: (a) the growth
species are supplied under a particular driving force such as diffusion (for electri-
cally charged particles like ions, other forces exist such as migration of ions under
an external electric field), and (b) accommodation of adatoms on the growth sites on
the surface of the solid, which may lead to crystallization of the solid (e.g. in
electrodeposition this is called electrocrystallization). The former, namely the
diffusion-controlled step, may involve several stages, including the preparation of
growth species from precursors in bulk medium, transport from the precursor bulk
medium to the growing surface of the solid, and adsorption and surface diffusion of
atoms or other particles such as adions in electrochemistry. The latter, namely the
surface-limited step, consists of irreversible incorporation of atoms into a solid
atomic network, desorption of adatoms and side reactions leading to the generation
of by-products.

Crystallization of solids is an interesting and easy-to-understand phenomena.
This section answers many questions about substantially why a crystal forms, or
why it exhibits a particular crystal habit, and so on. There is a vast and
long-standing body of literature on this topic (e.g. see [13–15]). Kossel et al. (KSV)
[17] proposed a classic step-wise growth model, which determines a growth
mechanism based on the surface defects on different crystal planes. For instance, on
a flat surface as shown in Fig. 1.18a, there exist many surface defects or steps,
which in turn act as growth sites. The number and types of the defect growth sites
differ for different facets of a given crystal. Here it is schematically shown for a
simple cube crystal at the (100), (110) and (111) crystalline planes (see Fig. 1.18a).
The simplest crystalline plane for a simple cube is (100), making it an ideal example
for explaining crystal growth. Even for such a simple crystalline plane or facet,
however, there exist many growth sites, as shown in Fig. 1.18b, including terrace,

(100) (110)

(111)

321

terrace

step

terrace vacancy

terrace

terrace site

step site

step vacancy

(a) (b)

Fig. 1.18 a Growth sites on different facets of a simple cube crystal. Replotted from [15] with the
permission of Springer. b Categories and names of growth atomic sites on (100) surface of a cube.
Replotted from [16] with the permission of RSC Publishing
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vacancy, ledge, ledge-kink, kink, ledge, step-kink and step-ledge. Each site has an
energy defined by the number of broken atomic bonds. These growth sites will
accept adatoms traveling on the surface when the growth proceeds to the second
major step (step b explained above). Adatoms with appropriate energy will incor-
porate into the appropriate growth sites: the higher the number of appropriate
growth sites, the higher the growth rate. Due to the limits of the KSV model, i.e. the
regeneration of growth sites, Burton, Cabrera and Frank (BCF) [18] proposed a
model in which the screw dislocations on the growing solid surface are responsible
for the continuous generation of growth sites. A picture of screw dislocation was
shown in Fig. 1.7, which demonstrates the types of defects on a surface.

The reason for differences in growth rates of a given crystal on different crys-
talline planes is the differences in accommodation capacity of different facets. The
periodic bond chain (PBC) theory developed by Hartman and Perdok [19] explains
how different facets of a given crystal have different surface energies. This was
explained by the difference in the number of unsatisfied or broken bonds on dif-
ferent atoms. This model categorizes all crystal habits into three different groups of
facets based on their broken bonds. As the number of broken bonds increases, the
growth rate on such facets increases [13–19].

1.4 Kinetics of Materials

Thermodynamics may describe states of matter only in equilibrium. Understanding
a system, even if only a rough estimation, is not possible without knowledge of the
kinetics involved. Thermodynamics provides no information about the mechanism
required to maintain equilibrium. Kinetics, on the other hand, can be used to
describe the intricate balance quantitatively. Kinetic theory contemplates a system
at a microscopic level for non-equilibrium states, in contrast with statistical ther-
modynamics for equilibrium states. In materials science, therefore, thermodynamics
predicts the feasibility of chemical reactions or phase transformations, but is unable
to answer uncertainties about their rate of progress and mechanisms. Kinetic theory
is thus able to provide an analytic view regarding the sequence of all the processes
and evolutions in a step-by-step manner. For kinetics studies, two types of motions
are considered. The first concerns the conduction of the chemical reactions which
lead to changes in the properties of materials. The second type is related to the
movement or transport of particles or matter.

Kinetics for chemical reactions determines a constant concentration ratio at
equilibrium, just as thermodynamics does. Such agreement is required of any
kinetic theory. In the limit of equilibrium, the kinetic equations must collapse to
relations of the thermodynamic form; otherwise, the kinetic picture cannot be
accurate. Let us consider a reaction under the dynamic equilibrium between two
substances A and B which are linked by simple unimolecular elementary reaction:
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A!
Kf

 
Kr

B ð1:36Þ

Both elementary reactions are active at all times, and the rate of reaction is:

vi ¼ kj � Ci ð1:37Þ

where i is indicative of substances A and B, and kj is the rate constant for each
reaction direction; j denotes the forward (f ) and reverse reaction (r) directions. The
rate of the forward process is vf , whereas the rate of the reverse reaction is vr in
molarity per second (mol s�1Þ.The rate constant kj has dimensions of s�1. The net
rate of the process of conversion of A to B is:

vnet ¼ kr � CB � kf � CA ð1:38Þ

At equilibrium one finds: vnet ¼ 0. The rate constant is therefore defined as:

K ¼ kf
kr
¼ CB

CA
ð1:39Þ

For the kinetics of chemical processes, we understand the effect of temperature
on the rate constant of reactions. The Arrhenius equation applies:

k ¼ A � e�Ea
RT ð1:40Þ

Here, Ea is called activation energy, which is the barrier energy present between
the initial and final states for an individual reaction, as shown in Fig. 1.19. It can be
the change in the Gibbs free energy or enthalpy associated with an evolution or
transformation. A is the amplitude of the fluctuations of particles, generally known as
the frequency factor, and R is the universal gas constant (8.3144598 J mol−1 K−1).
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Fig. 1.19 The barrier energy
or activation energy for a
given chemical reaction
converting a substance from
initial state to final state
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Kinetics is also capable of describing the evolution of mass flow throughout the
system, including both the approach to equilibrium and the dynamic condition.
Whenever a material system is not in thermodynamic equilibrium, driving forces
naturally arise to push it towards equilibrium. Such a situation can occur, for
example, when the free energy of a microscopic system varies from point to point
because of compositional inhomogeneity. The resulting atomic concentration gra-
dients generate time-dependent mass transport effects that reduce free energy
variations in the system. Examples of such processes include ion transport in
electrolytes under migration and diffusion mechanisms, and phase transformations.
One example of kinetics control on processes in solids is mass transport by dif-
fusion, which may be defined as the transport of an atomic or molecular species
within a given matrix under the influence of a concentration gradient. Fick estab-
lished the phenomenological connection between concentration gradient and the
resulting diffusional transport through the equation:

J ¼ �D @C
@x

ð1:41Þ

where J is the flux, and D in cm2/s is the diffusion coefficient under the defined
concentration gradient. D is dependent on temperature, according to the Maxwell–
Boltzmann relation:

D ¼ Do � e�
ED
RT ð1:42Þ

ED is the activation energy for diffusion.
For time-dependent diffusion processes, Fick’s second law gives the diffusion

equation as:

@C
@t
¼ D

@2C
@x2

ð1:43Þ

The diffusion equation is a second-order differential equation with respect to
space and a first-order differential equation with respect to time [7, 20, 21].

1.5 Nanostructures and Bulk Nanostructured Materials

From here, we will focus on a new class of materials, namely nanostructures. In
general, a nanostructure is a material with at least one dimension in the nano size
regime. The definition of nano size regime is controversial, as dimensions typically
range from sub-nanometer to several hundreds of nanometers.A continuous transition
of the properties and physics of materials takes place when moving from macro to
nano size. Bulk materials at the macro size level obey the classical mechanics of
physics or related physical phenomena such as electromagnetism or electrostatics.
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Even micron-sized materials behave largely similarly to bulk materials. However,
there is an intermediate group of materials, mesostructures, in which groups of hun-
dreds of atoms exhibit the same properties as those observed in their bulk materials.
Further miniaturization of materials has led to the emergence of a new generation of
materials, called nanomaterials or nanostructured materials, which exhibit physical
properties distinctly different from those of other groups. Several remarkable specific
properties have been exploited through the realization of nanomaterials.

1.5.1 Dimensionality in Nanomaterials

In order to simplify the classification of nanomaterials, we will divide them into
major groups where at least one dimension of nanomaterial lies in the nanometer
range. We start with a three-dimensional (3D) bulk solid constructed on three
dimensions x, y and z at macroscale. Size confinement is an essential part of our
definition of nanostructures (i.e. generally accepted as 1–100 nm for nanoscale size
regime, depending upon the physical characteristics in question). Some examples of
the critical size lengths of different phenomena are indicated in Fig. 1.19. The
length scales introduced for a particular physical concept vary independently
according to their specific phenomena. Several physical properties and applications
with their critical length at nanoscale are illustrated.

For electron transport in particular, which will later be utilized to determine the
electron density of states in nanostructures, the quantum mechanical length scale
applies. In general quantum or wave mechanics, a wavelength is ascribed to a
particle with kinetic energy E. This is called the de Broglie wavelength (kde�BorglieÞ:

kde�Borglie ¼ h

ð2mEÞ12
ð1:44Þ

Let us return to the rules of electron occupation of bands. At the Fermi level, the
quantum mechanical wave function of an electron with energy Ef has a wavelength
kf . The electrons at the Fermi level have the highest energy and can gain small
amounts of energy in an accelerating electric field or other wave-scattering process
to transfer to any empty state at higher orbitals. As such, the electrons at the Fermi
level play an essential role in transport properties. Thus, kmfp is defined as the
length scale at which a diffracting obstacle will reveal the wave-like quantum
mechanical nature of the particle; therefore, the mean free path would be the critical
scattering length for electrons, which varies under different conditions. The scat-
tering length scale depends upon temperature, electron density, impurity concen-
tration, kinetic energy and external forces such as magnetic fields. Let us define the
most common critical length for electron transport to solve the Schrödinger equa-
tion in order to find the wave functions of electrons confined in the nanostructures.
We define the electron mean free path as the average distance covered by electrons
between two scattering events.
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We now explain dimensionality effects, or size confinement, for nanostructures.
Downscaling of materials can be conducted on the three dimensions one by one.
Three groups, including two-dimensional (2D) achieved by confinement along the
z-axis, one-dimensional (1D) by confinement along both the y and z axes, and
zero-dimensional (0D) by confinement along all three x, y and z axes, will result.
The direct consequence of size confinement for materials is the generation of
“nanostructures”. However, there is another group designated as nanomaterials, that
of bulk nanostructured materials. This fourth group, namely three-dimensional (3D)
or bulk nanostructured materials, has exterior dimensions in macro size, but its
interior constituents comprise nanostructures of the first, second and third groups.
Figure 1.20 shows the schematic definition of dimensionality of nanostructures
starting from bulk 3D solids and leading to 0D, 1D and 2D nanostructures.
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Fig. 1.20 Diagram representing the critical length scales of different physical properties and
applications of materials. Replotted from [22] with the permission of Elsevier
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We now proceed to the physical properties of nanostructures and compare them
with regard to electron distribution and the density of states for 0D, 1D and 2D
nanostructures. The size confinement of materials at nanoscale can be understood
by the principle quantum mechanical aspects of confined electrons discussed earlier
in this book, using the picture of a particle in a box. This simplified model of
elementary quantum mechanics can predict the density of electron states in
nanostructures having precise dimensions in the quantum nanoscale size regime.
Figure 1.21 shows schematics of nanostructures and the effect of dimensionality on
the electron density of states.

1.5.2 Two-Dimensional (2D) Nanostructures

Two-dimensional nanostructures are a major component of coatings and thin films
where nano size confinement is conducted. Coatings and thin films have been an
important field of science and research for years, and developments in the depo-
sition of thin films have met with considerable success. Film growth methods can
generally be divided into two groups: vapor phase deposition and liquid-based
growth. The former includes, for example, evaporation, molecular beam epitaxy
(MBE), sputtering, chemical vapor deposition (CVD) and atomic layer deposition

3D bulk
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well
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Lx

2D nanostructure

Ly
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0D nanostructure
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z-axis confinement

y-axis confinement

x-axis confinement

z-axis confinement z-axis confinement

y-axis confinement

Fig. 1.21 Schematics of dimensionality in nanomaterials. Size confinement in each dimension
promotes the dimensionality effect in the formation of three types of nanostructures (2D, 1D and
0D)
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(ALD). Examples of the latter are electrochemical deposition or electrodeposition,
chemical solution deposition (CSD), Langmuir–Blodgett films and self-assembled
monolayers (SAMs).

In all deposition processes, the formation of thin films involves heterogeneous
nucleation and growth associated with a wide variety of processes, including
heterogeneous chemical reactions, evaporation, and adsorption and desorption on
growth surfaces. The early stages of deposition are accompanied by distribution of
small but highly mobile atomic clusters or islands that form on the substrate surface.
The change in the volume of Gibbs free energy defines the initial size of the nuclei.
However, consequent growth determines whether the solid forms a crystalline
lattice, and how shape and morphology change from one system to another. In the
first stage, the effect of interface energies introduced by Young’s (1.31) determines
the morphology and structure of films grown by deposition. The next stage occurs
when the growth continues until the nuclei start to coalesce, forming a continuous
film on the substrate surface. This process is typically able to produce films from a
few hundred angstroms up to microns in thickness.

Figure 1.22 illustrates the three principle modes of nucleation that occur during
film growth, which obey the following basic mechanisms:

(1) Island or Volmer–Weber growth,
(2) Layer or Frank–van der Merwe growth, and
(3) Island-layer or Stranski–Krastanov growth.

Island or Volmer-Weber growth

Layer or Frank-van der Merwe growth

Island-Layer or Stranski-Krastonov growth 

Fig. 1.22 Schematic representation of three principle nucleation modes for thin film growth
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According to Young’s equation, the mechanism of nucleation may be deter-
mined. When the growth species are likely to bond to each other instead of to the
surface atoms, island growth takes place. For island growth, the wetting angle must
be larger than zero, and therefore we write: csv\cfsþ cvf . If the deposit does not
wet the substrate at all or the wetting angle equals 180o, the nucleation mechanism
will become independent of the surface, and homogeneous nucleation will occur. In
contrast, a layer growth mode is feasible where the deposit wets the substrate
completely and the contact angle equals zero; thus Young’s equation becomes:
csv ¼ cfsþ cvf . The layer growth mode becomes very important in the deposition of
single-crystal films through either homoepitaxy or heteroepitaxy. Epitaxy refers to
extended single-crystal film formation on top of a crystalline substrate. Two types
of epitaxy can be distinguished, and each has important scientific and technological
implications. Homoepitaxy refers to cases in which the film and substrate are the
same material. Heteroepitaxy refers to films and substrates composed of different
materials, and it is of course the more common phenomenon.

The third mode of nucleation is the layer-plus-island or Stranski–Krastanov
(SK) growth mechanism, which is a consequence of an intermediate combination of
the aforementioned modes. In this case, after one or more monolayers have been
formed, subsequent layer growth becomes unfavorable, and islands form. The
transition from two- to three-dimensional growth is not completely understood, but
any factor that disturbs the monotonic reduction in binding energy characteristics of
layer growth may be the cause. For example, film–substrate lattice mismatch causes
strain energy to accumulate in the growing film. When released, the high energy at
the deposit–intermediate layer interface may trigger island formation. This growth
mode is fairly common and has been observed in metal–metal and metal–semi-
conductor systems. It is particularly important for the electrodeposition of films,
which will be addressed in later chapters [7, 13, 14].

1.5.2.1 Quantum Wells or Nanofilms: Dimensionality Effect

Figure 1.23 compares the electron density of states for 3D bulk, 2D, 1D and 0D
nanostructures. Starting from the density of electronic states for a bulk material
defined by the (1.15)–(1.17), we now address the effect of size confinement in 2D
nanostructures, so-called quantum wells or nanofilms. It must be stressed here that
the 2D nanostructures fabricated by epitaxial growth can be considered in this
calculation model. We start with (1.22) for the density of electron states for 3D bulk
materials. For a quantum well of width lz confined in z direction, the Schrödinger
equation can be solved, and the answer which must be considered is:

wn x; y; zð Þ ¼ 2
lz

� �1
2

sin
nzpz
lz

� �
� e ikx:xð Þ � eðiky:yÞ ð1:45Þ
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Fig. 1.23 Diagrams of the
electron density of states for
bulk solids and 2D, 1D and
0D nanostructures. From [23]
with the permission of
Springer

1.5 Nanostructures and Bulk Nanostructured Materials 37



The kinetic energy of electrons is written as:

Em kð Þ ¼ emþ �h2k2

2m
; k2 ¼ k2x þ k2y ð1:46Þ

With discrete energies, em is written due to size confinement in the z direction as

em ¼ �h2

2m
mp
lz

� �2

; m ¼ 1; 2; 3; . . . ð1:47Þ

This quantum size effect works only if the electron mean free path is larger than
the film thickness lz: Otherwise, the quantum states will be broadened. em is defined
as the bottom of a 2D subband with respect to dispersion in kx and ky directions.
According to the 2D quantum confinement applied here, we need to consider the
total surface area of a 2D k2 circle to obtain the number of quantum states which
can be further filled with electrons. By adding the spin degeneracy and dividing by
lxly, we reach the number of quantum states in an individual 2D subband:

n2D Eð Þ ¼ 2 � lxly
4p2

pk2
	 
 ¼ k2ðEÞ

2p
¼ m

p�h2
� E ð1:48Þ

Thus the density of electron states in 2D subbands is written as:

q2D Eð Þ ¼ m

p�h2
�
X

m
HðE � EmÞ ð1:49Þ

H xð Þ is a heavy side step function which determines several steps starting from
each em: Each time the energy reaches a new subband, the density of states jumps by
m
p�h2

. The density of states for 2D subbands is shown in Fig. 1.23b [23].

1.5.3 One-Dimensional Nanostructures (Quantum Wires
or Tubes)

One-dimensional nanostructures are categorized by a wide variety of names:
whiskers, fibers or fibrils, nanowires and nanorods, nanotubes and nanocables.
Among these, nanowires or quantum wires are frequently used, because size con-
finement exists in two dimensions, as shown in Fig. 1.23c. Nanowires are syn-
thesized or fabricated via many techniques based on chemical or physical routes,
depending on the nature of the materials and their application. Major routes include
vapor–solid and vapor–liquid–solid (VLS), mechanical recrystallization, and
template-based synthesis using electrodeposition and electrophoretic deposition,
colloidal dispersion, melt or solution filling, conversion by chemical reaction,
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electrospinning and lithography. The application of electrodeposition in the fabri-
cation of nanowires will be discussed in later chapters.

Spontaneous growth, template-based synthesis and electrospinning are consid-
ered bottom-up approaches, whereas lithography is a top-down technique.
Spontaneous growth commonly results in the formation of single-crystal nanowires
or nanorods along a preferential crystal growth direction, depending on the crystal
structure and surface properties of the nanowire materials. Template-based syn-
thesis produces mostly polycrystalline or even amorphous products [13, 14].

1.5.3.1 Quantum Wires: Dimensionality Effect

Here we need to apply the size confinement in two directions, y and z. This leads to
the generation of a wave spectrum with two quantum numbers, each of which is
specified for each confined direction. The Schrödinger equation gives this wave
function for an electron wave confined in two directions y and z:

wn x; y; zð Þ ¼ 2
lz

� �
sin

nzpz
lz

� �
� sin nypy

ly

� �
� e ikx:xð Þ ð1:50Þ

and the kinetic energy of electrons is written as:

Em;l kð Þ ¼ em;lþ �h2k2

2m
; k2 ¼ k2x ð1:51Þ

With discrete energies, em is written due to size confinement in the z-direction as:

em;l ¼ �h2

2m
mp
lz

� �2

þ lp
ly

� �2

; m; l ¼ 1; 2; 3; . . . ð1:52Þ

This energy disperses in only one direction, x, whereas it is confined in other
directions. Therefore, subbands with dispersion energy in one direction are defined,
and the number of quantum states for quantum wires is written as:

n1D Eð Þ ¼ 2
p
� KðEð Þ ¼ 2

p
� 2mE

�h2

� �1
2

ð1:53Þ

Thus the density of electron states in 1D subbands is written:

q1D Eð Þ ¼ 1
p

2m

�h2

� �1
2

�
X

l;m
E � El;m
	 
 �HðE � El;mÞ ð1:54Þ

The subbands of the electron states will follow the plot shown in Fig. 1.23c, and
em;l is the quantum step for each subband [23].
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1.5.4 Zero-Dimensional Nanostructures

Categorized into nanoparticles and quantum dots, 0D nanostructures are one of the
main groups of nanomaterials. Several techniques, including both top-down and
bottom-up approaches, have been developed and applied for the synthesis of
nanoparticles. Milling or attrition, repeated quenching and lithography are
top-down approaches. Bottom-up approaches are the most popular methods for the
synthesis of nanoparticles, and many techniques have been developed. These are
basically divided into two major groups: thermodynamics-based and kinetics-based
methods. The former includes the synthesis of nanoparticles via homogeneous and
heterogeneous nucleation from liquid or vapor. The latter is based on the con-
finement of chemical reactions, nucleation and growth processes in a small space.
Aerosol, micelle and other template-based methods are the most famous techniques.

The most important properties that nanoparticles must possess include small size
in the range of nanometers, identical particle size (or monosized particles), narrow
size distribution, identical shape or morphology, identical chemical composition
and crystal structure, and individually dispersed or monodispersed particles
[13, 14].

1.5.4.1 Quantum Dots or Nanoparticles: Dimensionality

Lastly, size confinement or dimensionality can be performed for 0D nanostructures,
referred to here as quantum dots. In this circumstance, confinement exists in all
three dimensions, and we have quantum dots with a completely discrete spectrum:

em;l;k ¼ �h2

2m
kp
lx

� �2

þ lp
ly

� �2

þ mp
lz

� �2
" #

; m; l; k ¼ 1; 2; 3; . . . ð1:55Þ

The density of electron states in 0D subbands is written as:

q0D Eð Þ ¼ 2 �
X

m;l;k
dðE � El;mÞ ð1:56Þ

dðxÞ is zero for x 6¼ 0 and is infinity for x ¼ 0: The diagram for the density of
electron states is shown in Fig. 1.23d. The distribution of electrons is completely
discrete, recalling the electron arrangement in a single atom [23].

1.5.5 Bulk Nanostructured Materials

Bulk nanostructured materials are defined as bulk solids constructed with nanoscale
or partially nano-scale building blocks. Let us first illustrate schematically in
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Fig. 1.24 a number of major microstructures of bulk nanostructured materials. The
left panel shows a composite material consisting of a metal or non-metal matrix
filled with nanostructures. The nanostructures used as filling constituents can be any
of the types introduced in the above sections. The panel in the middle of Fig. 1.24
shows a bulk nanostructured material with a superlattice microstructure consisting
of repetitive nanolayers of different materials. The right panel shows nanocrys-
talline bulk materials. Other types of bulk nanostructured materials may exist that
are not included in this figure.

Nanocomposite materials have become a major component of nanomaterials,
where a matrix filled with a large variety of systems—including one-dimensional,
two-dimensional, three-dimensional and amorphous nanostructures—is used to
improve a particular property of the material. The matrix can be metal or non-metal,
such as organic or ceramic materials. The properties of nanocomposites depend not
only on the properties of their individual parents, but also on their morphology and
interfacial characteristics.

Another type of bulk nanostructured material is nanocomposites exhibiting a
superlattice—sometimes called multilayer or lamellar structures. In metal or oxide
form, the superlattice forms by the repetition of the two metal or ceramic con-
stituents. For non-metals like organic materials, lamellar composite intercalated and
exfoliated structures can be obtained. If the polymer chains alternate with the
inorganic layers in a fixed compositional ratio with a well-defined number of layers,
an intercalated composite forms. However, if the number of polymer chains
between the layers is almost continuously variable and the layers stand >100 Å
apart, the structure is called an exfoliated composite.

Nanocrystalline materials constitute a major group of bulk nanostructured
materials. The unique properties of nanocrystalline materials are derived from their
large number of grain boundaries compared to their coarse-grained polycrystalline
counterparts. In nanocrystalline solids, a large fraction of atoms (up to 49%) are
boundary atoms. Thus the interface structure plays an important role in determining
the physical and mechanical properties of nanocrystalline materials. The field of
nanocrystalline (or nanostructured or nanophase) materials is a major area of

(a) (b) (c)

Fig. 1.24 Examples of bulk nanostructured materials: a nanocomposite, b superlattice,
c nanocrystalline materials
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activity in modern materials science. Some featured examples are enhanced
mechanical properties of nanostructured materials for a variety of potential struc-
tural applications, and ferromagnetic materials with nanoscale microstructures for
potential application as soft magnetic and permanent magnet materials [24, 25].
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