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2.1 Introduction

With the emergence of information technology and its critical role in our daily
lives, the risk of cyber attacks is larger than ever before. Many security systems
or devices have critical assurance requirement. Their failure may endanger human
life and environment, cause serious damage to critical infrastructure, hinder personal
privacy, and undermine the viability of whole business sectors. Even the perception
that a system is more vulnerable than it really is (e.g., paying with a credit card
over the Internet) can significantly impede economic development. The defense
against intrusion and unauthorized use of resources with software has gained
significant attention in the past. Security technologies, including antivirus, firewall,
virtualization, cryptographic software, and security protocols, have been developed
to make systems more secure.

While the battle between software developers and hackers has raged since the
1980s, the underlying hardware was generally considered safe and secure. However,
in the last decade or so, the battlefield has expanded to hardware domain, since
emerging attacks on hardware are shown to be more effective and efficient than
traditional software attacks in some aspects. For example, while the cryptographic
algorithms have been improved and become extremely difficult (if not impossible) to
break mathematically, their implementations are often not. It has been demonstrated
that the security of cryptosystems, system on chips (SoCs), and microprocessor
circuits can be compromised using timing analysis attacks [1], power analysis
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attacks [2], exploitation of design-for-test (DFT) structures [3–5], and fault injection
attacks [6]. These attacks can effectively bypass the security mechanisms built
in the software level and put devices or systems at risk. These hardware based
attacks aim to exploit the vulnerabilities in the design which are introduced either
unintentionally or intentionally during the IC design flow.

Many security vulnerabilities in ICs can be unintentionally created by design
mistakes and designer’s lack of understanding of security problems. Further, today’s
CAD tools are not equipped with understanding security vulnerabilities in integrated
circuits. Therefore, a tool can introduce additional vulnerabilities in the circuit [7, 8].
These vulnerabilities can facilitate attacks such as fault injection or side-channel
based attacks. Also, these vulnerabilities can cause sensitive information to be
leaked through observable points which are accessible to an attacker or give
unauthorized access to an attacker to control or affect a secured system.

Vulnerabilities can also be intentionally introduced in ICs in the form of mali-
cious modifications, referred to as hardware Trojans [9]. Due to short time-to-market
constraints, design houses are increasing being dependent on third party to procure
IPs. Also, due to the ever increasing cost of manufacturing ICs, design houses
rely on untrusted foundry and assembly for fabricating, testing, and packaging ICs.
These untrusted third party IP owners or foundries can insert hardware Trojans to
create backdoors in the design through which sensitive information can be leaked
and other possible attacks (e.g., denial of service, reduction in reliability, etc.) can
be performed.

It is of paramount importance to identify security vulnerabilities during hardware
design and validation process, and address them as early as possible due to the
following reasons: (1) there is little or no flexibility in changing or updating post-
fabricated integrated circuits; (2) The cost of fixing a vulnerability found at later
stages during the design and fabrication processes is significantly higher following
the well-known rule-of-ten (the cost of detecting a faulty IC increases by an order
of magnitude as we advances through each stage of design flow). Moreover, if a
vulnerability is discovered after manufacturing while the IC is in-field, it may cost
a company millions of dollars in lost revenues and replacement costs.

Identifying security vulnerabilities requires extensive knowledge of hardware
security, which design engineers lack due to the high complexity and diversity
of hardware security issues. Hence, hardware security engineers are required to
analyze circuit implementations and specification, and identify potential vulnerabil-
ities. This requires engineers with significant knowledge of different vulnerabilities
stemming from diverse set of existing and emerging attacks. It is prohibitively
expensive for a design house to maintain a large team of security experts with high
expertise while the growing complexity of modern designs significantly increases
the difficulty of manual analysis of security vulnerabilities. Poor security check
could result in unresolved security vulnerabilities along with large design overhead,
development time, and silicon cost [10].

Such limitations suggest to automate the process of security vulnerability
analysis during design and validation phases. In this chapter, we present a frame-
work, called Design Security Rule Check (DSeRC) [11], to be integrated in the
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conventional design flow to analyze vulnerabilities of a design and assess its security
at various stages of design process, namely register transfer level (RTL), gate-level
netlist, design-for-test (DFT) insertion, physical design, etc. DSeRC framework
is intended to be used as security subject matter expert for design engineers.
To achieve this, one needs a comprehensive list of vulnerabilities for ICs. The
vulnerabilities are then tied with rules and metrics, so that each vulnerability can
be quantitatively measured. The DSeRC framework will allow the semiconductor
industry to systematically identify vulnerabilities and security issues before tape-
out in order to include proper countermeasures or refine the design to address them.

The rest of the chapter is organized as follows: In Sect. 2.2, we present what are
the security assets and attack models. Here, we also talk about who are potential
adversaries and how they can get unauthorized access to assets. In Sect. 2.3, we
present the proposed DSeRC framework, vulnerabilities, and the associated metrics
rules. We present in detail how the vulnerabilities are introduced at different stages
of design process. We also present a brief overview of the rules and metrics which
are required to quantitatively analyze vulnerabilities. In Sect. 2.4, we discuss the
required tasks for the development DSeRC framework. Finally, Sect. 2.5 concludes
the chapter.

2.2 Security Assets and Attack Models

To build a secure integrated circuit, a designer must decide what assets to protect,
and which of the possible attacks to investigate for. Further, IC designers must
also understand who the players (attackers and defenders) are in the IC design
supply chain and have the means for quickly evaluating the security vulnerabilities
and the quality of the countermeasures against a set of well-defined rules and
metrics. Three fundamental security factors (security assets, potential adversaries,
and potential attacks) are associated with security checks in integrated circuits,
which are discussed in the following.

2.2.1 Asset

As defined in [10], asset is a resource of value which is worth protecting with respect
to the adversary. An asset may be a tangible object, such as a signal in a circuit
design, or may be an intangible asset, such as controllability of a signal. Sample
assets that must be protected in an SoC are listed below [12]:

• On-device key: Secret key, e.g., private key of an encryption algorithm.
These assets are stored on chip in some form of non-volatile memory. If
these are breached, then the confidentiality requirement of the device will be
compromised.
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• Manufacture firmware: Low level program instructions, proprietary firmware.
These assets have intellectual property values to the original manufactures and
compromising these assets would allow an attacker to counterfeit the device.

• On-device protected data: Sensitive data such as user’s personal information
and meter reading. An attacker can invade someone’s privacy by stealing these
assets or can benefit himself/ herself by tampering with these assets (meter
reading).

• Device configuration: Configuration data determining which resources are
available to users. These assets determine which particular services or resources
are available to a particular user and an attacker may want to tamper with these
assets to gain illegal access to these resources.

• Entropy: Random numbers generated for cryptographic primitives, e.g., initial-
izing vector or cryptographic key generation. Successful attacks on these assets
would weaken cryptographic strength of a device.

The security assets are known to the hardware designers based on the target
specifications of a design. For example, a designer knows that the private encryption
key used by the crypto-module is an asset and also knows where the key is located
in the SoC. Different types of assets and their locations in an SoC are shown in
Fig. 2.1.

SoC Memory
(SRAM, Flash, ROM)

Assets:
On device key,
Manufacture 
firmware,
On-device
protected data

Processor
(Core, Cache)

TRNG Module
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Entropy

Crypto
Accelerator

Assets:
Key,
Digest,
HMAC

Peripheral

Assets:
Trusted Software,
Firmware

Assets:
Device configuration

Fig. 2.1 Assets in SoC. Source: Intel
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2.2.2 Potential Access to Assets

The aim of an attack is usually to obtain access to assets. There are three types of
attacks to gain access to assets depending on attackers’ abilities: remote attacks,
non-invasive physical attacks, and invasive physical attacks.

Remote Attacks In this case an attacker has no physical access to the device;
i.e., the attacker cannot touch the device. The attacker can still perform timing
[13] and electromagnetic [14] side-channel attacks to remotely extract private key
from devices such as smartcards. It has also been demonstrated that an attacker can
remotely access the JTAG port and compromise the secret key stored in smartcard
of a set-top box [15].

It is also possible to remotely access the scan structure of a chip. For example,
in automotive applications, the SoC controlling critical functions such as breaks,
power-train, air bags go into “test-mode” every time the car is turned off or on. This
key-off/on tests ensure that these critical systems are tested and working correctly
before every drive. However, modern cars can be remotely turned on or off, either by
trusted parties such as roadside assistance operators or by malicious parties as shown
in recent news. Remotely turning the car on or off, allows access to the SoC’s test
mode which can be used to obtain information from the on-chip memory or force
unwanted functions.

Remote attacks also include those that utilize the weakness of hardware, such as
buffer overflow, integer overflow, heap corruption, format string, and globbing [16].

Non-Invasive Physical Attacks Such attacks are usually of low-budget and do not
cause the destruction of the device under attack. Basic attacks consist of using the
primary inputs and outputs to take advantage of security weaknesses in the design
to obtain sensitive information. Additionally, more advanced attacks use JTAG
debug, boundary scan I/O, and DFT structures to monitor and/or control system
intermediate states, or snoop bus lines and system signals [4]. Other attacks consist
of injecting faults to cause an error during computation of cipher algorithms and
exploit the faulty results to extract the asset (e.g., private key).

Semi-Invasive Physical Attacks Semi-invasive attacks fall between non-invasive
and invasive physical attacks. These attacks present a greater threat because they
are more effective than non-invasive attacks but can be performed at a much lower
cost than an invasive physical attack. Semi-invasive physical attacks require partial
depackaging the chip to get access to its surface; but unlike invasive attacks, these
attacks do not require complete removal of the internal layers of the chip. Such
attacks include injecting faults to modify SRAM cells content or change the state
of a CMOS transistor and gain control of a chip’s operation or bypass its protection
mechanisms [17].

Invasive Physical Attacks These fall under the most sophisticated and expensive
attacks and require advanced technical skills and equipment. In these attacks,
chemical processes or precision equipment can be used to physically remove
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Fig. 2.2 Potential adversaries in different stages of SoC design process

micrometer thin layers of the device. Micro-probes can then be used to read values
on data buses or inject faults into internal nets in the device to activate specific parts
and extract information. Such attacks are usually invasive, require total access to the
device, and result in destruction of the device.

2.2.3 Potential Adversary for Intentional Attacks

It is important to understand the potential adversaries who would utilize the security
vulnerabilities to perform attacks. This may help designers in comprehending
adversaries’ capabilities and choosing right countermeasures depending on the
target adversary. Adversary might be an individual or a party who intend to
acquire, damage, or disrupt an asset for which he/she does not have permission
to access. Considering an integrated circuit design process and entities involved in
it, adversaries can be categorized into insiders and outsiders. Figure 2.2 shows the
potential adversaries in different stages of SoC design process.

Insiders The design and manufacturing of integrated circuits have become more
sophisticated and globally distributed with a higher possibility of being attacked by
insiders who understand details of the design. An insider could be a rogue employee
who work for design house, system integrator or could be a untrusted 3PIP, or a
foundry. An insider:

• Has direct access to the SoC design either as an RTL or gate-level netlist, or as a
GDSII layout file.

• Has high technical knowledge from the assumption that he/she is employed by a
company in the IC design and supply chain.

• Has the capability to make modifications to the design, e.g., inserting hardware
Trojans [9, 18]. These hardware Trojans can cause denial of service or create
backdoors in the design through which sensitive information can be leaked. Other
possible insider attacks are reduction in circuit reliability by manipulating circuit
parameters, asset leakage, etc.
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Outsiders This class of attackers are assumed to have access to end products in the
market (e.g., a packaged IC). Outsider attackers can be divided into three groups
based on their capabilities:

• Remote hacker: These attackers have no physical access to the device and must
employ remote attacks described in Sect. 2.2.2, although they may have physical
access to a similar device to develop their attack strategy. These attackers
generally rely on exploiting software/hardware vulnerabilities, user errors, and
design bugs to gain access to assets.

• End user: This group of attackers typically aim to gain free access to contents
and services. In this case, the curious end users may rely on techniques already
developed by professional attackers to carry their attack. For example, some
hobbyists may find a way to jailbreak iPhone or Xbox gaming consoles and
post the procedure on social media allowing end users with less expertise to
duplicate the process. Jailbreaking allows users to install jailbreak programs and
make Apple or Microsoft lose profits [19].

• Professional attacker: The most technically capable attackers are security
experts or state-sponsored attackers whose motives are driven by financial or
political reasons. These groups are capable of executing all types of attacks,
including the more expensive invasive attacks described in Sect. 2.2.2, which
requires removing the chip package and probing internal signals.

An Insider can more easily introduce or exploit the vulnerabilities in a design
compared to an outsider. The main challenge for an outsider to perform an attack is
that the internal functionality of the design is not known to the attacker. An outsider
can reverse engineer the functionality of a chip but this technique would require
extensive resource and time.

2.3 DSeRC: Design Security Rule Check

In order to identify and evaluate vulnerabilities associated with ICs, Design Security
Rule Check (DSeRC) framework is to be integrated into the conventional digital
IC design flow, as shown in Fig. 2.3. DSeRC framework will read the design
files, constraints, and user input data, and check for vulnerabilities at all levels of
abstraction (RTL, gate level, and physical layout level). Each of the vulnerabilities
is to be tied with a set of rules and metrics so that each design’s security can be
quantitatively measured. At RTL, the DSeRC framework will assess the security
of IPs which are either developed in-house or procured from third party (3P); and
will provide feedback to design engineers so that the identified security issues
can be addressed. After resolving the security vulnerabilities at RTL, the design
will be synthesized to gate level and design-for-test (DFT) and design-for-debug
(DFD) structures will be inserted. Then, DSeRC framework will analyze the gate-
level netlist for security vulnerabilities. The same process will continue for the
physical layout design as well. Through this process, the DSeRC framework will
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Fig. 2.3 DSeRC framework

allow the designers to identify and address security vulnerabilities at earliest design
steps. This will significantly improve the security of ICs as well as considerably
reduce the development time and cost by reducing the time-to-market constraint.
Also, the DSeRC framework will allow the designer to quantitatively compare
different implementation of same design and thereby allow the designer to optimize
performance without compromising security.

The DSeRC framework will need some input from the designer. For example,
the security assets need to be specified by hardware designers based on the target
specifications of a design. The security vulnerabilities and the corresponding metrics
and rules required for the development of the DSeRC framework are discussed in
the following subsections.
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Fig. 2.4 Unintentional vulnerabilities created by design mistakes. (a) top-level description of
PRESENT [20], (b) verilog implementation of PRESENT (http://opencores.org/)

2.3.1 Vulnerabilities

2.3.1.1 Sources of Vulnerabilities

Vulnerability in an IC means a weakness which allows an adversary to access the
assets by performing some form of attack. Sources of the vulnerabilities in ICs are
divided into following categories:

Vulnerabilities Due to Design Mistakes Traditionally the design objectives are
driven by cost, performance, and time-to-market constraints; while security is
generally neglected during the design phase. Additionally, security-aware design
practices do not yet exist. Thus, IPs developed by different designers and design
teams may present different set of vulnerabilities. We illustrate this further with a
case study below.

Figure 2.4a shows the top-level description of PRESENT encryption algo-
rithm [20]. A segment of its Verilog implementation is shown in Fig. 2.4b. We
can see that the key is directly being assigned to the register, defined as “kreg”
in the module. Although the encryption algorithm itself is secure, a vulnerability
is unintentionally created in its hardware implementation. When this design is
implemented, the “kreg” register will be included in the scan chain and an attacker
can gain access to key through scan chain based attack [4].

Also, different implementation style of a same algorithm can have different levels
of security. In a recent study [21], two AES SBox architectures, PPRM1 [22] and
Boyar-Peralta [23], have been analyzed to evaluate which design is more susceptible
to fault injection attack. The analysis showed that P-AES is more vulnerable to fault
injection attack than the B-AES architecture.

http://opencores.org/


26 A. Nahiyan et al.

Vulnerabilities Introduced by CAD Tools In the IC design process, CAD tools
are extensively used for synthesis, DFT insertion, automatic place and route, etc.
These tools are not equipped with understanding of the security vulnerabilities
in ICs and can therefore introduce additional vulnerabilities in the design. As an
example, synthesis tools can create new vulnerabilities in a design when the tool
synthesizes the design from RTL to gate level. In the RTL specification of a finite
state machine (FSM) there are don’t-care conditions where the next state or the
output of a transition is not specified. During the synthesis process, the synthesis
tool tries to optimize the design by introducing deterministic states and transitions
for the don’t-care conditions. The introduction of don’t-care states and transitions
by the CAD tool can create vulnerability in the circuit by allowing a protected state
to be illegally accessed through the don’t-care states and transitions [8].

We use the controller circuit of an AES encryption module (http://opencores.
org/) as another case study to demonstrate the vulnerability introduced by the CAD
tools. The state transition diagram of the FSM shown in Fig. 2.5b implements
the AES encryption algorithm on the data path shown in Fig. 2.5a. The FSM is
composed of 5 states and each of these states controls specific modules during the
ten rounds of AES encryption. After ten rounds, the “Final Round” state is reached
and the FSM generates the control signal finished D 1 which stores the result
of the “Add Key” module (i.e., the ciphertext) in the “Result Register.” For this
FSM, the “Final Round” is a protected state because if an attacker can gain access
to the “Final Round” without going through the “Do Round” state, then premature
results will be stored in “Result Register,” potentially leaking the secret key. Now,
during the synthesis process if a don’t-care state is introduced that has direct access
to a protected state, then it can create vulnerability in the FSM by allowing the
attacker to utilize this don’t-care state to access the protected state. Let us consider
that the “Don’t-Care_1” state shown in Fig. 2.5b is introduced by the synthesis tool
and this state has direct access to the protected state “Final Round.” Introduction of
“Don’t-Care_1” state represents a vulnerability introduced by the CAD tool because
this don’t-care state can facilitate fault and Trojan based attack. For example, an
attacker can inject a fault to go to state “Don’t Care_1” and access the protected
state “Final Round” from this state. The attacker can also utilize the “Don’t Care_1”
to implant a Trojan. The presence of this don’t-care state gives the attacker a unique
advantage because this state is not taken into consideration during validation and
testing; therefore it is easier for the Trojan to evade detection.

Additionally, during the synthesis process CAD tools flatten all the modules of
the design together and try to optimize the design for power, timing, and/or area. If a
secure module (e.g., encryption module) is present in an SoC, design flattening and
the multiple optimization processes can lead to merging trusted blocks with those
untrusted. These design steps, which the designer has little control of, can introduce
vulnerabilities and cause information leakage [24].

Vulnerabilities Introduced by DFT and DFD Structure High testability is
important for critical systems to ensure proper functionality and reliability through-
out their lifetime. Testability is a measure of controllability and observability of

http://opencores.org/
http://opencores.org/
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Stable signal, respectively; the red marked states and transitions represent the don’t-care states
and transitions introduced by the CAD tool

signals (i.e., nets) in a circuit. Controllability is defined as the difficulty of setting
a particular logic signal to “1” or “0” and observability is defined as the difficulty
of observing the state of a logic signal. To increase testability and debug, it is very
common to integrate design-for-test (DFT) and design-for-debug (DFD) structures
in a complex design. However, the increased controllability and observability added
by DFT and DFD structures can create numerous vulnerabilities by allowing
attackers to control or observe internal states of an IC [25].

In general, test and debug can be viewed as the opposite of security when it comes
to accessing circuit internals, as shown in Fig. 2.6. Unfortunately, the DFT and DFD
structures cannot be simply avoided in modern designs because of large amount
of unexpected defects and errors that occur during the fabrication. Additionally,
National Institute of Standards and Technology (NIST) requires that any design
used in critical applications needs to be properly testable, both in pre- and post-
manufacturing. Therefore, the DFT and DFD structures must be incorporated in
ICs, though these structures may create vulnerability. Thus, it is necessary for the
DSeRC framework to check whether any security vulnerability is introduced by the
DFT and DFD.
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2.3.1.2 Vulnerabilities at Different Abstraction Levels

For the development of DSeRC framework, each vulnerability needs to be assigned
to one or multiple proper abstraction levels where it can be identified efficiently.
Generally, an IC design flow will go through specification, RTL design, gate-
level design and consequently physical layout design. DSeRC framework aims at
identifying vulnerabilities as early as possible during the design flow because late
evaluation can lead to a long development cycle and high design cost. Also, vulnera-
bilities in one stage, if not addressed, may introduce additional vulnerabilities during
transitions from one level to the next. In this section, we categorize vulnerabilities
based on the abstraction levels (see Table 2.1).

Register Transfer Level (RTL) The design specification is first described in a
hardware description language (HDL) (e.g., verilog) to create the RTL abstraction
of the design. Several attacks performed at the RTL have been proposed in literature.
For example, Fern et al. [26] demonstrated that don’t-care assignments in RTL code
can be leveraged to implement hardware Trojans that leak assets. In this case, the
don’t-care assignments in RTL code is the source of vulnerability. Additionally, in
the RTL, hardware Trojans are most likely to be inserted at hard-to-control and hard-
to-observe parts of the code [27]. Identifying hard-to-control and hard-to-observe
parts of the code can help designers assess the susceptibility of the design to Trojan
insertion at the RTL.

In general, vulnerabilities identified at the RTL are comparatively easier to
address. However, some vulnerabilities, e.g., how susceptible the design is to fault
or side-channel attacks, are very challenging if not impossible to identify at this
level.
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Gate Level The RTL specification is synthesized into gate-level netlist using a
synthesis tools, e.g., design compiler. At gate level, a design usually is represented
with a flattened netlist hence, loses its abstraction; however, more accurate infor-
mation about the implementation in term of gates or transistors are available. At
gate level, hard-to-control and hard-to-observe nets can be used to design hard-to-
detect Hardware Trojans [28]. Also, transition from RTL to gate level can introduce
additional vulnerabilities by the CAD tools. Examples of vulnerabilities introduced
by the tools have been discussed in Sect. 2.3.1. These vulnerabilities need to be
analyzed at the gate level.

DFT and DFD structures are generally incorporated in the ICs at the gate
level. Therefore, the vulnerabilities introduced by the test and debug structure (see
Sect. 2.3.1) need to be analyzed at the gate level.

Layout Level Physical layout design is the last design stage before shipping the
chip to fabrication, so all the remaining vulnerabilities should be addressed in this
level. During layout design, the placement and routing phase gives information
about the spatial arrangements of the cells and metal connections in the circuit.
In the layout level, power consumption, electromagnetic emanations, and execution
time can be accurately modeled. Therefore, vulnerability analysis of side-channel
and fault-injection based attacks can be done very accurately at this level. Addition-
ally, some vulnerability analyses, e.g., vulnerability to probing attack [29] can only
be done at the layout level. However, any analysis done in this level is very time
consuming compared to RTL and gate level.

2.3.2 Metrics and Rules

The vulnerabilities that have been discussed so far are to be tied with metrics and
rules so that each design’s security can be quantitatively measured (see Table 2.1).
These rules and metrics of the DSeRC framework can be compared with the design
rule check (DRC). In DRC, semiconductor manufacturers convert manufacturing
specifications into a series of metrics that enable the designer to quantitatively
measure a mask’s manufacturability. For the DSeRC framework, each vulnerability
needs to be mathematically modeled and the corresponding rule and metric need to
be developed so that the vulnerability of a design can be quantitatively evaluated.
As for the rules, there can be two types of rules; one type is based on quantitative
metric and the other type is based on a binary classification (yes/no).

We present a brief description of some of the rules and metrics corresponding to
the vulnerabilities shown in Table 2.1.

Asset Leakage As discussed in Sect. 2.3.1.1, vulnerabilities associated asset leak-
age can be unintentionally created by design-for-test (DFT), design-for-debug
(DFD) structures, CAD tools, and/or by designer’s mistake. These vulnerabilities
cause violation of information security policies, i.e., confidentiality and integrity
policies. Therefore, the metric for identifying these vulnerabilities is confidentiality
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and integrity assessment. In [30], authors have presented a framework that validates
if confidentiality and integrity policies are being maintained in the SoC. This
framework is based on a novel concept of modeling an asset (e.g., a net carrying
a secret key) as a fault and leveraging the known test algorithms to detect that fault.
A successful detection of the fault indicates that there is flow of information from
the asset to an observable point. The rule for this vulnerability will be whether the
asset value can be propagated to any observable points. If the assessment result is
YES, then there exits vulnerability in the design and the design is not secure.

Vulnerable FSM The synthesis process of a finite state machine (FSM) can
introduce additional security risks in the implemented circuit by inserting additional
don’t-care states and transitions. An attacker can utilize these don’t-care states
and transitions to facilitate fault injection and Trojan attacks. In [8], authors
have presented two metrics, named vulnerability factor of fault injection (VFFI)
and vulnerability factor of Trojan insertion (VFTro) to quantitatively analyze how
susceptible an FSM is against fault injection and Trojan attacks, respectively. The
higher the values of these two metrics are, the more vulnerable the FSM is to fault
and Trojan attacks. For this vulnerability, the rule can be stated as follows; for an
FSM design to be secured against fault injection and Trojan insertion attack, the
values of VFFI and VFTro should be zero.

Micro-Probing Attack Micro-probing is one kind of physical attack that directly
probes the signal wires in order to extract sensitive information. This attack has
raised serious concerns for security critical applications. In [29], authors have
presented a layout-driven framework to quantitatively evaluate a post place-and-
route design in terms of exposed area of the security-critical nets which are
vulnerable to micro-probing attack. The larger the exposed area, the more vulnerable
the SoC is to probing attack. Therefore, the rule for micro-probing vulnerability
can be stated as follows, the exposed area to micro-probing should be lower than a
threshold value.

Susceptibility to Trojan Insertion In [27], authors have presented a metric named
“Statement Hardness” to evaluate the difficulty of executing a statement in the
RTL code. Areas in a circuit with large value of “Statement Hardness” are more
vulnerable to Trojan insertion. Therefore, the metric “Statement Hardness” gives
the quantitative measure of a design’s susceptibility to Trojan insertion. Next is
to define rule(s) to evaluate if the design is secure. For this vulnerability, the rule
can be stated as follows; for a design to be secured against Trojan insertion attack,
statement hardness of each statement in the design should be lower than SHthr. Here,
SHthr is a threshold value that needs to be derived from the area and performance
budget.

At gate level, a design is vulnerable to Trojan insertion which can be imple-
mented by adding and deleting gates. To hide the effect of inserted Trojan, an
adversary will target hard-to-detect areas of the gate-level netlist. Hard-to-detect
nets are defined as, nets which have low transition probability and are not testable
through well-known fault testing techniques (stuck-at, transition delay, path delay,
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and bridging faults) [28]. Inserting a Trojan in hard-to-detect areas would reduce
the probability to trigger the Trojan and thereby, reduce the probability of being
detected during verification and validation testing. In [32], authors have proposed
metrics to evaluate hard-to-detect areas in the gate-level netlist.

Fault and Side-Channel Attacks Authors in [21] have introduced Timing Vio-
lation Vulnerability Factor (TVVF) to evaluate the vulnerability of a hardware
structure to setup time violation attacks which are one subset of fault-injection
attacks. In [33], authors have proposed a framework named AMASIVE (Adapt-
able Modular Autonomous Side-Channel Vulnerability Evaluator) to automatically
identify side-channel vulnerabilities of a design. Also, a metric named side-channel
vulnerability factor (SVF) has been proposed to evaluate the ICs’ vulnerability to
power side-channel attacks [31].

Note that the development of the metrics is a challenging task because ideally
the metrics must be independent of attack model and application/functionality of
a design. For example, an attacker can apply voltage starving or clock glitching
based fault injection attacks to obtain the private key of AES or RSA encryption
modules. The metric for fault injection needs to provide a quantitative measure of
vulnerability for any design (AES or RSA) against any of these attacks (voltage
starving or clock glitching). One strategy would be to first identify the root
vulnerability that these attacks try to exploit. For this particular example, both
voltage starving and clock glitching try to exploit the setup time violation, a
common criteria for success of both attacks. Then the framework must evaluate
the difficulty of violating setup time for a given design to gain access to the target
security assets.

2.3.3 Workflow of DSeRC Framework

In this section we describe how the rules and metrics will be used to identify a
vulnerability under DSeRC framework. Table 2.1 shows the vulnerabilities and their
corresponding metrics and rules that our DSeRC framework covers. The example of
PRESENT encryption algorithm will be used to illustrate the workflow of DSeRC
framework. The designer will first give the RTL design files and the name of
the asset (i.e., “key”) as input to DSeRC framework. DSeRC framework will use
the information flow tracking to analyze if the “key” can be leaked through any
observation points (e.g., registers). As for this design the “key” can be observed
through “kreg” register. Therefore, the framework will give a preemptive warning
to the designer that if the register “kreg” is included in the DFT structure then,
the key can be leaked through scan chain. It will be up to the designer to apply
a countermeasure to address this vulnerability before moving to next level of
abstraction. One possible countermeasure would be is to exclude “kreg” from the
scan chain.
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After addressing this vulnerability, the design can be synthesized and DFT
inserted. The designer will then give the synthesized gate-level netlist to DSeRC
and the framework will use the confidentiality assessment [30] technique of DSeRC
framework to analyze if the “key” can be leaked through any observable point. If
the “key” cannot be leaked, then the DSeRC rule will be satisfied and the design
can be considered to be secured against asset leakage. On the other hand, if the
DSeRC framework identifies the “key” is being leaked to scan flip-flops (observable
points), then the framework will raise flag and point the scan flip-flops which carry
information about the key. The designer needs to address this vulnerability before
moving to physical layout. One possible approach would to apply secure scan
structure [34, 35] to counter the vulnerability introduced by the DFT structure.

Note that manually tracking the asset in an SOC to evaluate if it is being leaked
through an observable point would be an exhaustive if not impossible task for the
designer. On the other hand, DSeRC framework will be able to pinpoint the asset
leakage paths allowing the designers to concentrate their analysis effort on those
paths and make informed decision.

Some vulnerability can have the common factors, which provide an opportunity
to merge multiple vulnerability analyses. As shown in Table 2.1, both asset leakage
and fault injection need a metric to evaluate the observability of a net in the
circuit structure. Therefore, observability analysis can be executed once for both
vulnerability analyses.

While DSeRC may be a logical and necessary step in designing secure ICs,
it would not eliminate the need for security subject matter expert. The DSeRC
framework is intended to be an automated framework and therefore, may not
take the application and use cases of an IC into consideration. For example, the
Trojan observability metric will report the difficulty of observing each signal in the
design. For Trojan detection, a high observability metric is desired. However, for an
encryption module, a high observability metric for the private key will be a serious
threat. Therefore, it would be upto the designer to interpret the results generated by
the DSeRC framework.

2.4 Development of DSeRC Framework

2.4.1 Vulnerabilities, Metrics, and Rules

Vulnerability identification is crucial for the development of DSeRC framework. As
more attacks are developed, the vulnerabilities exploited by these new attacks need
to be identified. And as more vulnerabilities are discovered, their corresponding
metrics and rules need to be developed as well. Given the diversity and vastness
of security threats, it will take the combined effort of academic and industry
researchers to develop a comprehensive set of vulnerabilities and corresponding
rules and metrics for the DSeRC framework.
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2.4.2 Tool Development

The DSeRC framework is intended to be integrated with the traditional IC design
flow so that security evaluation can be made as an inherent part of the design
process. This requires the development of CAD tools which can automatically
evaluate the security of a design based on DSeRC rules and metrics. The tools’
evaluation times need to be scalable with the design size. Also, the tools should be
easy to use and the outputs generated by the tools need to be understandable by the
design engineer.

2.4.3 Development of Design Guidelines for Security

To avoid some common security problems in early design stages, good design
practices learned through experience can be used as guidelines. The design guideline
is able to guide design engineers what to do (Do-s) and not to do (Don’t-s) during the
initial design. Do-s and Don’t-s are very common in VLSI design and test domain,
in order to improve the design quality and testability of faults [36]. These Do-s
and Don’t-s, such as initializable flip-flops, no asynchronous logic feedback, and no
gating of clocks to scan flip-flops, are very straight-forward, but quite effective to
make a design testable and thus save time and cost in design cycles. This is also
applicable to hardware security. Taking the PRESENT in Fig. 2.4 as an example,
if “kreg” does not become part of scan chain, the key leakage problem can be
addressed at the design stage. However, to date, no comprehensive design guideline
has been developed for hardware security. This can be a research direction where
academia and industry can explore.

2.4.4 Development of Countermeasure Techniques

Knowledge of the vulnerabilities of a design is not sufficient to protect it. A series
of low-cost countermeasure techniques are also needed for each vulnerability. One
additional extension of the DSeRC framework will be to provide low-cost mitigation
techniques for each vulnerability. The suggested countermeasure techniques will be
a good hint to design engineers who lack of knowledge in hardware security. The
improvement in security after applying the countermeasures can be measured by
running the DSeRC check again.

As an example, in [8] authors have proposed a countermeasure to address the
vulnerabilities introduced in FSMs by the synthesis tool or design mistake. In their
proposed approach the state FFs are to be replaced by “Programmable State FFs.”
“Programmable State FFs” are defined as the state FFs which go to the Reset/Initial
state if the protected state is tried to be accessed by any other state apart from the
authorized states. The detailed architecture of the “Programmable State FFs” has
been discussed in [8].
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2.5 Conclusion

In this chapter, we have presented the basic concept of Design Security Rule
Check (DSeRC) to analyze vulnerabilities in a design and consequently assess its
security level at design stage. One of the main challenges for the development of
the DSeRC framework is associated with mathematically modeling vulnerabilities
for quantitative evaluation. This is because DSeRC framework needs to validate the
security of a design regardless of the application of the design or attack models.
Although DSeRC will not eliminate the need for security subject matter experts,
it will, however, expedite the security analysis of ICs and SoCs, and increase the
design engineer’s awareness to the security issues of their designs.
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