Chapter 2
Type-1 Fuzzy Sets and Fuzzy Logic

2.1 Cirisp Sets

Recall that a ser A in a universe of discourse X (which provides the set of allowable
values for a variable) can be defined by listing all of its members or by identifying
the elements x C A. One way to do the latter is to specify a condition or conditions
for which x C A; thus, A can be defined as A = {x|x meets some condition(s)}.
Alternatively, one can introduce a zero-one membership function (MF) (also called
a characteristic function, discrimination function, or indicator function) for A,
denoted 4 (x), such that

1 ifxeA
AZ}/‘A(X):{O ifxgA (2.1)

Set A (which can also be treated as a subset of X) is mathematically equivalent to
its MF 4 (x) in the sense that knowing p,(x) is the same as knowing A itself. In
order to distinguish between a set and a fuzzy set, the former will be referred to as a
“crisp set.”

Example 2.1 (Mendel 1995a) Consider the set of all automobiles in New York
City; this is X. The elements of X are individual cars; but, there are many different
types of subsets that can be established for X, including the three that are depicted in
Fig. 2.1. Either a car has or does not have six cylinders. This is a very crisp
requirement. Hence, if your car has four cylinders, its MF value (i.e., membership
grade) for the subset of four cylinder cars is unity, whereas its membership grades
for the subsets of six cylinder or eight cylinder cars are zero.

Example 2.2 (Mendel 2015) Suppose that the domain of x is partitioned into five
regions, and one knows exactly where the dividing line is between each region,
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(a) (b) (c)
X X X
Domestic 4 Cylinders
6 Cylinders
8 Cylinders

Fig. 2.1 Partitioning of the set of all automobiles in New York City into subsets by a color,
b domestic or foreign, and ¢ number of cylinders (Mendel 1995a © 1995, IEEE)

Fig. 2.2 Interpreting crisp 1y (x)
sets as crisp partitions '
(Mendel 2015 © Springer 1 E E; Es £, Es
2015)
a b ¢ d e f i

so one is in the situation that is depicted in Fig. 2.2, where no uncertainty exists
about x = b, c,d, e. Each of the intervals [a, D], (b, ], (c,d], (d, €], (e,f] is a crisp
partition (Definition 1.1), i.e. x is either in it (with membership value of 1) or not in
it (with membership value of 0), and x cannot simultaneously be in more than one
of these intervals. Each interval is associated with a crisp set that is described by a
linguistic term, Ey,or E;,or ...,or Es, such as a level of temperature or pressure,
and there is always a sharp jump from one set to another at x = b,c,d,e. As
mentioned in connection with Fig. 1.1a, this crisp model serves us well in many
situations, but it does not allow any uncertainty about x = b, ¢, d, e. A fuzzy set will
allow for this, as shall be seen.

2.2 Type-1 Fuzzy Sets and Associated Concepts

This section provides the background that is needed to read Chaps. 3 and 4. To
begin, a short section about the father of fuzzy sets and logic, Professor Lotfi A.
Zadeh, is provided.
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2.2.1 Lotfi A. Zadeh

Fuzzy sets' were invented around 1965 by Prof. Lotfi A. Zadeh, but why? In Zadeh
(1973), he states:

Essentially our contention is that the conventional quantitative techniques of system
analysis are intrinsically unsuited for dealing with humanistic systems or, for that matter,
any system whose complexity is comparable to that of humanistic systems. The basis for
this contention rests on what might be called the principle of incompatibility. Stated
informally, the essence of this principle is that as the complexity of a system increases, our
ability to make precise and yet significant statements about its behavior diminishes until a
threshold is reached beyond which precision and significance (or relevance) become almost
mutually exclusive characteristics (a corollary to this principle may be stated succinctly as,
“The closer one looks at a real-world problem, the fuzzier becomes its solution.”). It is in
this sense that precise quantitative analyses of the behavior of humanistic systems are not
likely to have much relevance to the real world societal, political, economic, and other types
of problems which involve humans either as individuals or in groups.

Prof. Zadeh? (Fig. 2.3), born in Baku, Azerbaijan on February 4, 1921, and
educated at Alborz College in Tehran, the University of Tehran, M.LT. and
Columbia University, spent most of his career at the University of California at
Berkeley, after ten years at Columbia University. He was already a famous system
theorist when in 1965 he published what has now become the seminal paper on
fuzzy sets (Zadeh 1965). This paper, which, as of February 2017, has been cited in
Google Scholar more than 69,500 times, and is the most highly cited paper in all of
computer science, marked the beginning of a new direction; by introducing the
concept of a fuzzy set, that is a class with un-sharp boundaries, he provided a basis
for a qualitative approach to the analysis of complex systems in which linguistic
rather than numerical variables are employed to describe system behavior and
performance. In this way, a much better understanding of how to deal with
uncertainty may be achieved, and better models of human reasoning may be con-
structed. Although his unorthodox ideas were initially met with some skepticism,
they have gained wide acceptance in recent years and have found application in just
about every field imaginable. He is now acknowledged to be the “Father of Fuzzy
Sets and Fuzzy Logic.”

"The English word “fuzzy” has a negative connotation when it used in a technical context. It may
be okay to describe a soft teddy bear, a cuddly pet, or a peach but for it to be used for mathematics
and its applications is a red flag. Prof. Zadeh was well aware of this but felt that in 1965 “fuzzy”
was the best word for him to use for this kind of a set. I propose that, after more than 50 years,
these sets be called Zadehian sets. I am not going to use my proposed replacement in this book,
because, although I would like to do it, if I did almost no one would know what I was talking
about.

This short biographical sketch was taken mostly from Mendel (2007).
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Fig. 2.3 Professsor Lotfi A.
Zadeh, the Father of Fuzzy
Sets and Fuzzy Logic. Photo
taken at Mendel Symposium,
at University of Southern
California, May 2009

2.2.2 Type-1 Fuzzy Set Defined

Definition 2.1 A rype-1 fuzzy set’ A is (Aisbett et al. 2010) a set function on
universe X (sometimes denoted D,) into [0, 1], possibly constrained to belong to a
family such as continuous functions, i.e. pys:X — [0, 1]. The MF of A is denoted
ta(x) and is called a rype-1 MF, i.e.

A = {(x, pa(x))|x € X} (2.2)

in which 0 < y4(x) < 1. A can also be expressed in fuzzy set notation® for con-
tinuous universes X, as

3In order to distinguish among different fuzzy set models, what were originally called fuzzy sets are
in this book called type-1 fuzzy sets. Beginning with Chap. 6, type-2 fuzzy sets are studied.

*Fuzzy set notation was introduced in Zadeh (1965) and has remained popular for more than
50 years, although many people find it somewhat strange and object to its use of symbols such as
the integral and summation. Aisbett et al. (2010) distinguish between “fuzzy set notation” and
“standard mathematical notation.” In Definition 2.1, u4:X — [0, 1] is the description of a type-1
fuzzy set in standard mathematical notation. My own preference is to use each notation where it
is useful.
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A= [ wox 2:3)

xeX

where f denotes union over all x € X, or for discrete universes X, as

A= ual)/x (2.4)

xeXy

where > denotes union over all x € X,;. The slash in (2.3) and (2.4) associates the
elements in X with their membership grades, where pi4(x) > 0. The value of pi4(x)
is called the degree of membership, or membership grade, of x in A. If s (x) = 1 or
ta(x) = 0 for all x € X, then the fuzzy set A reduces to a crisp set.

A (x) is also said to provide a measure of the degree of similarity of an element
in X to the fuzzy set. Note that A can also be treated as a subset of X. Unlike a crisp
set, that can be described in different ways (as is explained in Sect. 2.1), a fuzzy set
can only be described by its MF.

Example 2.1 (Continued) (Mendel 1995a) Referring to the middle of Fig. 2.1,
observe that cars can also be partitioned into the two subsets, domestic and foreign.
But, a car can be viewed as “domestic” or “foreign” from different perspectives. One
perspective is that a car is domestic if it carries the name of a U.S. auto manufacturer;
otherwise it is foreign. There is nothing fuzzy about this perspective. Many people
today, however, feel that the distinction between a domestic and foreign automobile
is not as crisp as it once was, because many of the components for what one
considers to be domestic cars (e.g., Fords, GMs, and Chryslers) are produced outside
of the United States. Additionally, some “foreign” cars are manufactured in the
United States. Consequently, one could think of the MFs for domestic and foreign
cars looking like yp(x) and pr(x) depicted in Fig. 2.4. Observe that a specific car
(located along the horizontal axis by determining the percentage of its parts made in
the United States) exists in both subsets simultaneously—domestic cars and foreign
cars—but to different degrees of membership. For example, if a car has 75% of its
parts made in the United States, then’ 1p(75%) = 0.90 and pur(75%) = 0.25.
Ultimately, one would describe such a car as domestic. In fact, when one does this,
the subset is decided upon by choosing it to be associated with the maximum of
wp(75%) = 0.90 and pr(75%) = 0.25.

The main point of this example is to demonstrate that in a fuzzy set an element
can reside in more than one set to different degrees of similarity. This cannot occur
in a crisp set.

SFor fuzzy sets, there is absolutely no requirement that jup(x) 4 7 (x) = 1, even though some
authors impose this (e.g., Ruspini 1969; Bezdek 1981). When the constraint that the sum of the
fuzzy set memberships must add to 1 for x € X is imposed, the result is called a fuzzy partition.
Fuzzy partitions are not used in this book because, in the opinion of this author, they impose
unnecessary constraints on fuzzy set MFs, especially when MF parameters are optimized, as is
commonly done in rule-based fuzzy systems.
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Fig. 2.4 MFs for domestic A u(x)
and foreign cars, based on the
percentage of parts in the car 1
made in the United States

(Mendel 1995a © 1995, (%) Hp(x)
IEEE)
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Note that describing a car by its color is also not a crisp description, because
each color has different shades associated with it.

Definition 2.2 The support of a type-1 fuzzy set A is the crisp set of all points
x € X such that ps(x) > 0. A type-1 fuzzy set whose support is a single point in
X with pa(x) = 1 is called a (type-1) fuzzy singleton.

Definition 2.3 The height of a type-1 fuzzy set is the maximum MF value. A normal
type-1 fuzzy set is one for which sup,y pa(x) = 1, that is, its height equals 1.

Example 2.2 (Continued) (Mendel 2015) Referring to Fig. 2.2, suppose one now
wants a model that allows for uncertainty about x = b, ¢, d, e, so that one is in the
situation of Fig. 2.5, where in [a, b;] x resides only in E}, whereas in (b;, b,] x resides
simultaneously in E; and E,, but to different degrees, pug, (x) and pg, (x), respectively;
in (b,, ¢] x resides only in E,, whereas in (¢, ¢,] x resides simultaneously in E, and
Es, but to different degrees, 11z, (x) and g, (x), respectively; etc. The MF pg, (x) for E;
is no longer only O or 1, and MFs can overlap. So, a type-1 fuzzy set allows x to be
partitioned using overlapping partitions, where one is absolutely certain about where
the overlap begins and ends, i.e. as first-order uncertainty partitions (Definition 1.2),
something that cannot be done by a crisp set. Overlapping partitions lead to smooth
transitions from one set to another, which is very different from the sharp jumps that
occur when crisp sets are used. As mentioned in connection with Fig. 1.1b, this fuzzy
set model serves us well in many situations, but it does not allow for any uncertainty
about the overlap. A type-2 fuzzy set will allow for this.

Fig. 2.5 Interpreting type-1 g (%)
fuzzy sets as overlapping '
partitions (Mendel 2015 © - £, Es B, 5

Springer 2015)
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Each of the five fuzzy sets in Fig. 2.5 is a normal type-1 fuzzy and the support of
E, is [a, b,), the support of E; is (b, ¢;), ..., and the support of Es is (e, f].

Example 2.3 (Zimmerman 1991) Let F = integers close to 10; then, one choice for
wr(x) is:

pp(x) = 0.1/740.5/8+0.8/9+1/10+0.8/11+0.5/12+0.1/13  (2.5)

Three points to note from this MF are:

1. The integers for x not explicitly shown all have MFs equal to zero—by con-
vention, such elements are not listed.

2. The values for the MFs were chosen by a specific individual; except for the
unity membership value when x = 10, they can be modified based on one’s own
personal interpretation of the word “close,” i.e. words mean different things to
different people.

3. The MF is symmetric about x = 10, because there is no reason to believe that
integers to the left of 10 are close to 10 in a different way than are integers to the
right of 10; but again, other interpretations are possible.

4. Fis a normal type-1 fuzzy set.

5. The fuzzy set F is an example of a type-1 fuzzy number, which will be defined
formally in Sect. 2.2.3 (Definition 2.5).

Definition 2.4 A type-1 fuzzy set A is convex (Klir and Yuan 1995) if and only if

pia(Zx1 + (1 = 2)x2) = min{pa (x1), pa(x2)] (2.6)

This can be interpreted as (Lin and Lee 1996): Take any two elements x; and x;
in fuzzy set A; then the membership grade of all points between x; and x, must be
greater than or equal to the minimum of p4(x;) and 4 (x,). This will always occur
when the MF of A is first monotonically non-decreasing and then monotonically
non-increasing.® The five MFs in Fig. 2.5 are convex, whereas the two MFs in
Fig. 2.4 are not.

Example 2.4 The MF of a convex type-1 fuzzy set A often satisfies the following

structure:

g(x)|g(a):0,g(h):l7 X € [aib]
NA(X) =<1, PSS [b,C] (27)

SIn mathematics a real-value function f(x) defined on an interval is called convex if the line
segment between any two points on the graph of the function lies above or on the graph (e.g., a
parabola). Why the fuzzy set A that satisfies (2.6) is called “convex” rather than “concave” is a
bit mysterious. Maybe it is due to a concave function also being known in mathematics as a
convex upwards, convex cap, or upper convex function.
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where g(x) € [0, 1] is monotonically non-decreasing and h(x) € [0,1] is mono-
tonically non-increasing.

In rule-based applications of fuzzy logic, the MFs p4(x) are associated with
linguistic terms that appear in the antecedents or consequents of rules, or in phrases
(e.g., foreign cars).

Example 2.5 Some examples of rules and associated MFs (shown in brackets) are:
(1) IF one is tracking a large target at one instant of time, THEN the target will not
be too far away at the next instant of time [pyarce (), proo-Far-away (X)]; (2) IF the
horizontal position is medium positive and the angular position is small negative,
THEN the control angle is large positive [MMEDIUM—POSITIVE ()C), MSMALL—NEGATIVE(Q);
trarce-posimive(@)] and, (3) IF y(¢) is close to 0.5, THEN fy) is close to zero

[,UJCLOSE-TO-().5 (y) y CLOSE-TO-ZERO (f(y) )] .

The most commonly used shapes for MFs are triangular, trapezoidal, piecewise
linear, Gaussian, and bell-shaped. MFs can either be chosen by the user arbitrarily,
based on the user’s experience (hence, the MFs for two users could be quite
different depending upon their experiences, perspectives, cultures, etc.), or, they can
be designed using optimization procedures, e.g., Horikawa et al. (1992), Jang
(1992), Wang and Mendel (1992a, b).

The number of MFs is free to be chosen. Greater resolution is achieved by using
more MFs at the price of greater computational complexity. MFs don’t have to
overlap; but one of the great strengths of fuzzy logic is that MFs can be made to
overlap. This expresses the fact that “the glass can be partially full and partially
empty at the same time.” In this way (as will become clear in later chapters, e.g.,
Chap. 3) one is able to distribute decisions over more than one input class, which
helps to make fuzzy logic systems robust.

The MF of a type-1 fuzzy set is specified exactly, which seems counter-intuitive
for something that is supposed to be “fuzzy.” This was one of the very early
criticisms of a fuzzy set and is something that shall be returned to in Chap. 6 when
type-2 fuzzy sets are studied.

2.2.3 Type-1 Fuzzy Numbers

When there is some uncertainty about a number (due, e.g., to measurement errors or
linguistic uncertainty about it) it can be modeled as a fuzzy set, in which case it is
called a fuzzy number. When the uncertainty is modeled using a type-1 fuzzy set it is
called a type-1 fuzzy number. These numbers can be defined in different ways (e.g.,
Dubois and Prade 1980; Jang and Ralescu 2001; Klir and Yuan 1995; Wang 1997).

Definition 2.5 Let A be a fuzzy set in R. A is called a type-1 fuzzy number if: (i) A is
normal, (ii) A is convex, and (iii) A has a bounded support.

It is tempting to do away with the requirement that A has a bounded support, but
to do so makes no physical sense, since uncertainty about a real number should be
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finite. Regardless, it is not uncommon for an uncertain number to be modeled as a
Gaussian type-1 fuzzy set that is centered about that number, and for this to be
referred to as a “Gaussian fuzzy number.” Strictly speaking, this designation is
incorrect because the support for such a fuzzy set is unbounded. Occasionally,
however, this designation is used even in this book, out of convenience, and
because the author feels that its use will not confuse the reader.

Example 2.6 Formulas for triangle and trapezoidal type-1 fuzzy numbers are given

in (2.8) and (2.9), respectively (see, also Table 2.3, in which alternate symbols are
used for the parameters that define these fuzzy numbers):

(x—a)

)

—a)/(b—a) ifa<x<b
pa(x) = pa(x;a,b,¢) =< (e —x

/
/(c—D) ifb<x<c (2.8)
0 if x>corx<a

(x—a)/(b—a) ifa<r<b

1 if b<x<c
/LA(X):/_LA(X,a,b,C7d): (d_x)/(d_c) 1fC<XSd
0 ifx>dorx<a

(2.9)

Note, also, that when b = ¢ in (2.7), the resulting fuzzy set is often called an LR
fuzzy number (Dubois and Prade 1980).

Type-1 fuzzy numbers are sometimes used in a type-1 rule-based fuzzy system
during the front-end fuzzification process. More will be said about this in
Sect. 2.2.3 (Definition 3.5). The extension of a type-1 fuzzy number to an interval
type-2 fuzzy number is described in Sect. 6.5.

Definition 2.6 A type-1 interval fuzzy number A is a type-1 fuzzy number for
which pa(x) =1, x € [, r].

These kinds of type-1 fuzzy numbers play an important role in interval type-2
fuzzy sets and systems.

2.2.4 Linguistic Variables

Zadeh (1975, p. 201) states:

In retreating from precision in the face of overpowering complexity, it is natural to explore
the use of what might be called linguistic variables, that is, variables whose values are not
numbers but words or sentences in a natural or artificial language. The motivation for the
use of words or sentences rather than numbers is that linguistic characterizations are, in
general, less specific than numerical ones.

Definition 2.7 If a variable can take words in natural languages as its values, it is
called a linguistic variable, where the words are characterized by fuzzy sets defined
in the universe of discourse in which the variable is defined (Wang 1997). Each
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Fig. 2.6 MFs for T 4 Degree of membership
(pressure) = {weak, low,
okay, strong, high}. The weak low okay strong high

shapes of the MFs as well as
their degree of overlap are
quite arbitrary [©1992 IEEE.
This figure has been taken
from Cox (1992)]

» Pressure (psi)

100 300 1200 2300

linguistic variable (Klir and Yuan 1995; Zadeh 1973, 1975) is fully characterized
by a quintuple (v,T,X, g, m) in which v is the name of the variable, T is the set of
linguistic terms’ of v that refer to a base variable whose values range over the
universal set X, g is a syntactic rule for generating linguistic terms, and m is a
semantic rule that assigns each linguistic term ¢ € T its meaning, m(t), which is a
fuzzy set on X, that is, m:T — F(X), where F(X) denotes the set of fuzzy sets of X,
one fuzzy set for each # € T. It is common to refer to v as the linguistic variable.

Example 2.7 Some examples of linguistic variables, v, are: Pressure, Horsepower,
Acceleration, Production Rate, Developed Country, Industrial Country, Profitable
Company, Institutional Veto Points, All-day School Systems, etc. Some examples
of the set of linguistic terms, 7, for these linguistic variables are®:

1. For Pressure, T = {weak, low, okay, strong, high}

2. For Horsepower, Acceleration and Production Rate, T 2 {very low, low, mod-
erate, high, very high}

3. For Developed or Industrial (Country) and Profitable (Company), T £ {barely,
hardly, somewhat, moderately, fully, extremely}

4. For Institutional Veto Points and All-day School Systems, T = {none to very
few, some, a moderate amount of, many, a large number of, a very large number

of}.

Observe that linguistic terms should make linguistic sense for its linguistic
variable, which is where g in Definition 2.7 comes into play; so, for example,
somewhat acceleration makes no linguistic sense nor does very high all-day school
systems. Note, also, that it is the elements of T that are treated as fuzzy sets, and, of
course, each of these fuzzy sets is described by a MF.

Figure 2.6 depicts the MFs for Pressure (Cox 1992) when its universe of dis-
course is X = [100 psi, 2300 psi]. One might interpret weak as a pressure below

7Although “term” means one or more words, it is quite common in the fuzzy set literature to see
“word” used instead of “term,” even when a term includes more than one word. In this book,
“term” and “word” are also used interchangeably.

8Because some of the linguistic terms may be so similar to each other, it may not be necessary to
use all of them. One usually chooses the linguistic terms so that their MFs overlap and cover X.
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200 psi, low as a pressure close to 700 psi, okay as a pressure close to 1050 psi,
strong as a pressure close to 1500 psi, and high as a pressure above 2200 psi.
Measured values of pressure (x) lie along the pressure axis, and a vertical line from
any value of pressure intersects, at most, two MFs. So, for example, x = 300 psi
resides in the fuzzy sets weak pressure and low pressure, but to different degrees of
similarity.

Zadeh (1999, p. 107) has used the word perception to describe the terms
associated with linguistic variables. For example, he states:

A fundamental difference between measurements and perceptions is that, in general,
measurements are crisp numbers whereas perceptions are fuzzy numbers or, more gener-
ally, fuzzy granules, that is, clumps of objects in which the transition from membership to
non-membership is gradual rather than abrupt.

Indeed, in Example 2.7, the terms weak, low, okay, strong, and high are perceptions
about the level of pressure.

Example 2.8 Let X be the set of all men. The term “height” can mean different things
to different people. Figure 2.7 depicts two sets of MFs for the set of terms {short men,
medium men, tall men}. Clearly, the terms short men, medium men, and tall men will
have a very different meaning to a professional basketball player than they will to
most other people. This illustrates the fact that MFs can be quite context dependent.

The number of linguistic terms in 7 for a linguistic variable v will affect the
calibration of the fuzzy sets, (i.e., the specification of its MFs). If, for example, only
three linguistic terms are used to describe Height, namely {short, medium, tall},
then their fuzzy sets will look very different from their fuzzy sets when the fol-
lowing seven terms are used: {very short, moderately short, short, medium, mod-
erately tall, tall, very tall}. This is because the terms very short and moderately
short now appear before short, and tall is sandwiched between moderately tall and
very tall. In many applications of rule-based fuzzy systems, the names that are
given to the fuzzy sets are unimportant because interpretability of the rules is
unimportant; however, there are other applications where interpretability of rules is
very important. More is said about this in Sects. 3.9.5 and 9.13.6.

() (b)
A 11,,(h) : most people Au,, (h):professional basketball player
short  medium tall short medium  tall
4 height (f) height (ft)
4 5 6 7 8 4 5 6 7 8

Fig. 2.7 MFs for T(height) = {short men, medium men, tall men}. a Most people’s MFs, and
b professional basketball player’s MFs (Mendel 1995a © 1995, IEEE)
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2.2.5 Returning to Linguistic Labels from Numerical Values
of MF's

Sometimes it is necessary to go from MF numerical values for a variable to a
linguistic description of that variable. This section examines how to do this for
type-1 fuzzy sets.

Consider, for example, the linguistic variable temperature that has been
decomposed into five terms {very negative, medium negative, near zero, medium
positive, very positive}, and the situation depicted in Fig. 2.8 at x = x. This value
of x only generates a non-zero membership value in the fuzzy set Fy = medium
positive; hence, x = x' can be described linguistically, without any ambiguity, as
“medium positive.”

The situation at x = x” is different, because this value of x generates a non-zero
membership value in two fuzzy sets F, = medium positive and F5 = very positive.
It would be very awkward to speak of x” as “being medium positive to degree
wr, (x") and very positive to degree pip,(x").” People just don’t communicate this
way. Instead, pp, (x") and pp, (x") are compared to see which is larger, and then x”
is assigned to the set associated with the larger value; hence, in this example, x”
would be described as being “medium positive.”

What has just been explained can be descried formally as follows. Given P fuzzy
sets F; with MFs pr.(x) (i =1,...,p). When x =X/, evaluate all p MFs at this
point, and then compute max|[ur, (X'), ur, (¥'), ..., pr, (X)] = pr, (X). Let L(x')
denote the linguistic label associated with x’. Then, L(x') = F,,, i.e.,

L(x/) = arg maxvg, [MFl (xl)a HF, ()C/), cey :U'F,, ()C/)] (210)

H5,(x)

K E E F, E

very negative medium negative near|zero  medium positive ~ very positive

»
L

x x Temperature, x

Fig. 2.8 Returning to a linguistic label for type-1 fuzzy sets
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2.3 Set Theoretic Operations for Crisp Sets

Now that fuzzy sets have been defined, what can one do with them? The same
question could be asked about crisp sets, and one knows that there are lots of things
that can be done with them; hence, it is expected that analogous things can be done
with fuzzy sets. To begin, the elementary crisp-set operations of union, intersection,
and complement are briefly reviewed.

Let A and B be two subsets of X. The union of A and B, denoted A U B, contains
all of the elements in either A or B, i.e.,

1 ifxeAorxeB

HauB(x) = {0 ifxZA and x ¢ B (2.11)

The intersection of A and B, denoted A N B, contains all of the elements that are
simultaneously in A and B, i.e.,

1 ifx€eA and x€ B

MAOB(X):{O if xéAorx¢B (2.12)

Let A denote the complement of A; it contains all the elements that are notin 4, i.e.,
N1 ifxgA
”A(x){o if x€A (2.13)

From these facts, it is easy to show that:

AUB = paup(x) = max|pa (x), s (x)] (2.14)
ANB = panp(x) = minfpa(x), pp(x)] (2.15)
pa(x) =1 — pa(x) (2.16)

Consider p4pg(x) for example. In this case, x € A or x € B means:

(1a(x) =1, up(x) = 1) or (pa(x) = 1, up(x) = 0) or (ua(x) = 0, pup(x) = 1),

and, for each of these situations, max[u,(x), ug(x)] = 1. Additionally, x ¢ A and
x¢€B means (ua(x) =0,up(x) =0) for which max[us(x), us(x)] =0.
Consequently, max|ua(x), up(x)] for Vx does provide the correct MF, given in
(2.11), for union.

The formulas in (2.14)—(2.16), for sy p(x), pang(x), and pz(x), are very useful
for proving other theoretical properties about crisp sets. Note, also, that the max-
imum and minimum are not the only ways to describe p4yp(x) and panp(x). While
these formulas are not usually part of conventional set theory, they are essential to
fuzzy set theory; however, as has just been demonstrated, they really do occur in
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conventional set theory. See, e.g., Klir and Folger (1988) and Yager and Filev
(1994) for other ways to characterize these operations.

The crisp union and intersection operations satisfy many properties (see
Table 2.8 in Appendix 1 to this chapter for an extensive list of these properties),
including:

1. Commutative
AUB=BUA
2. Associative
AUBUC = (AUB)UC=AU(BUC)
3. Distributive

AN(BUC) = (ANB)U(ANC) and AU(BNC) = (AUB)N(AUC).

These properties can be proved either by Venn diagrams or by means of the MF
definition given in (2.1).

De Morgan’s laws for crisp sets are:

s AUB

eANB

Il
N
o]

o]

N
U

Il
b N

These laws, which are also very useful in proving things about more complicated
operations on sets, can also be proved either by Venn diagrams or by means of the
MF definition given in (2.1).

The two fundamental (Aristotelian) laws of crisp set theory are:

1. Law of Excluded Middle: AUA =X (ie., a set and its complement must
comprise the universe of discourse).

2. Law of Contradiction ANA = () (i.e., an element can either be in its set or its
complement; it cannot simultaneously be in both).

Fuzzy sets usually break these Aristotelian laws.

2.4 Set Theoretic Operations for Type-1 Fuzzy Sets

For fuzzy sets, union, intersection, and complement are defined in terms of their
MFs. Let fuzzy sets A and B be described by their MFs p4(x) and pp(x). One
definition of fuzzy union leads to the MF
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prau g (x) = max|pa (x), pup(x)] (2.17)
and one definition of fuzzy intersection leads to the MF
iara(x) = min[pia (x), ()] (2.18)
Additionally, the MF for fuzzy complement is
pa(x) =1 = pa(x) (2.19)

Obviously, these three definitions were motivated by their crisp counterparts in
(2.14)—(2.16).

Example 2.9 (Mendel 1995a) In engineering the damping ratio is a dimensionless
measure describing how oscillations in a system decay after a disturbance. Consider
the fuzzy sets A = damping ratio x considerably larger than 0.5, and B = damping
ratio x approximately 0.707. Note that damping ratio is a positive real number, i.e.,
its universe of discourse, X, is the positive real numbers 0 <x < 1. Consequently,
A={(x,pa(x))|x € X} and B = {(x, up(x))|x € X}, where, for example, p(x)
and pp(x) are specified (by this author), as:

0 ) if 0<x<0.5
pal) = § SCZ0S) s vay (2:20)
1+ (x—0.5)
and
1
ug(x) = 0<x<l1 (2.21)

[1+ (x —0.707)"]
Figure 2.9 depicts pa(x), pp(x), paup(x), panp(x) and pz(x). Observe, from
Fig. 2.9a that 4 (0.707) 4+ p(0.707) > 1 and from Fig. 2.9d, that the point x =

0.5 exists in both B and B simultaneously, but to different degrees, because 15(0.5) /
=0 and uz(0.5) # 0.

This example demonstrates that for fuzzy sets the classical Laws of Excluded
Middle and Contradiction are broken, i.e., for fuzzy sets: AUA # X and ANA # 0.
This has also been observed in Fig. 2.4 for the automobile Example 2.1 (contin-
ued). In fact, one of the ways to describe the difference between crisp set theory and
fuzzy set theory is to explain that these two laws do not hold in fuzzy set theory.’

The maximum and minimum operators are not the only ones that could have
been chosen to model fuzzy union and fuzzy intersection. Zadeh, in his pioneering
first paper (Zadeh 1965), defined two operators each for fuzzy union and fuzzy
intersection, namely:

“There is a small subset of type-1 fuzzy set theory that requires both of these laws to be satisfied.
This work has had no impact on rule-based fuzzy systems and so it is not discussed in this book.
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Fig. 2.9 MFs associated with A = damping ratio x considerably larger than 0.5, and
B = damping ratio x approximately 0.707. a pa(x) and pp(x), b paup(x), € panp(x), and d pz(x)

1. Fuzzy union: maximum and algebraic sum, where for the latter

pauB(x) = pa(x) + pp(x) — pa(x)pp(x) (2.22)

2. Fuzzy intersection: minimum and algebraic product, where for the latter
HanB() = () pa(x) (2.23)

Later, other operators that have an axiomatic basis (e.g., Klir and Yuan 1995)
were introduced (in all cases, x,y € [0, 1]):

1. t-conorm operators'® for fuzzy union (also known as s-norm and denoted ).
The maximum and algebraic sums are t-conorms; some other examples of
t-conorms are:

e Bounded sum: x ®y = min(1,x+y)

19The axiomatic basis for a t-conorm is, for a, b, d € [0,1]: (1) boundary condition, s(a,0) = a;
(2) monotonicity, b <d = s(a,b) < s(a,d); (3) commutativity, s(a,b) = s(b,a); and, (4) asso-
ciativity, s(a, s(b,d)) = s(s(a,b),d). Table 3.3 in Klir and Yuan (1995) lists 11 t-conorms.
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x ify=0
e Drastic sum: x®y=¢y ifx=0
1 otherwise

2. t-norm operators'' for fuzzy intersection (denoted ). The minimum and
algebraic product are t-norms; some other examples of t-norms are:

e Bounded product: xky = max(0,x+y — 1)
x ify=1

e Drastic product: xky =¢y ifx=1
0 otherwise

There is even an axiomatic basis for the complement (denoted c) of a fuzzy set.'”
In engineering applications, most people use the fuzzy complement whose MF is
given in (2.19).

As pointed out in Zimmerman (1991), dual pairs'® of t-norms and t-conorms
with respect to the fuzzy complement in (2.19) satisfy the following generalization
of DeMorgan’s laws (Bonissone and Decker 1986):

Slua(x), pp(x)] = e{tle(pa(x)), c(pp ()]} (2.24)
tp1a (%), ()] = e{sle(pa(x)), e(up(x))]} (2.25)
where x € X. For example,
max (x), f5(x)] = 1 — min[l — o4 (x), 1 — pp(x)] (2.26)
and
min(jaa (x), f(x)] = 1 — max[1 - o (x), 1 — pp(x)] (2.27)

Note, also, that there are other ways of combining fuzzy sets, e.g., the fuzzy and,
fuzzy or, compensatory and, and compensatory or; e.g., see Zimmerman (1991) and
Yager and Filev (1994).

If at this point you are puzzled by all of the possible choices, a discussion about
this is provided in Sect. 2.18.

""The axiomatic basis for a t-norm is, for a, b, d € [0,1]: (1) boundary condition, #(a, 1) = a;
(2) monotonicity, b <d = t(a,b) <t(a,d); (3) commutativity, #(a,b) = t(b,a); and, (4) asso-
ciativity, #(a,#(b,d)) = t(t(a,b),d). Table 3.2 in Klir and Yuan (1995) lists 11 t-norms.

'>The axiomatic basis for a fuzzy complement is: (1) boundary conditions, ¢(0) = 1 and ¢(1) = 0,
and (2) monotonicity, for all a,b € [0, 1], if a <b then c(a) > c(b). There are also many fuzzy
complements that additionally satisfy the involutive condition ¢(c(a)) = a.

13Some examples of dual pairs with respect to the fuzzy complement (2.19) are: min and max, and
product and algebraic sum. See Klir and Yuan (1995, pp. 83-88) for discussions about and
properties of dual pairs. Some of their Chap. 3 end-notes provide interesting historical remarks
about the origins of t-norms and t-conorms.
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Not only are the union, intersection, and complement performed with type-1
fuzzy sets, but sometimes other important set-theoretic operations are performed on
them using well-known laws; e.g., commutative, associative, distributive, and De
Morgan’s laws (see Table 2.8 for a list of all the laws). For this book, an important
question that needs to be answered is:

e s it permissible to use a particular law for type-1 fuzzy sets under maximum
t-conorm and either minimum or product t-norms?

Our focus is just on the maximum t-conorm and the minimum or product
t-norms, because these are the most widely used ones in the fuzzy system’s liter-
ature. The question must, of course, be re-examined if one uses other t-conorms and
t-norms. Because the studies into the answers to this question, although important,
are very technical, their details are presented in Appendix 1. Here, just the results
are stated and some conclusions about them are drawn.

The aforementioned question has been very well studied for type-1 fuzzy sets
(see Table 2.8) For maximum t-conorm and minimum t-norm all laws are satisfied,
however, for maximum t-conorm and product t-norm certain laws are not satisfied.
This means, therefore, that one must be careful when using maximum t-conorm and
product t-norm. If, for example, the design of a maximum t-conorm and product
t-norm type-1 fuzzy system involves the use of any of the violated laws it will be in
error. Fortunately, one usually does not have to use any of the violated laws in the
creation and design of a type-1 fuzzy system. The same cannot be said, in general,
for other applications of type-1 fuzzy sets.

2.5 Crisp Relations and Compositions on the Same
Product Space

According to Klir and Folger (1988, p. 65): A crisp relation represents the presence
or absence of association, interaction, or interconnectedness between the elements
of two or more sets. Here our attention is limited to relations between two sets
U and V, i.e., to binary relations denoted R(U, V). U x V denotes the Cartesian
product of the two crisp sets U and V, i.e.,

UxV={(uv)lucU and ve V} (2.28)

R(U,V) is a subset of U x V.
Crisp relation R(U, V) can be defined by the following MF:

ur(u,v) = (2.29)

1 if and only if (u,v) € R(U,V)
0 otherwise

For binary relations defined over a Cartesian product whose elements come from
a discrete universe of discourse, it is convenient to collect the MFs into a relational
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matrix whose elements are either zero or unity. An equivalent representation for a
binary relation is a sagittal diagram, in which the sets U and V are each represented
by a set of nodes in the diagram that are clearly distinguished from one another.
Elements of U x V with non-zero membership grade in R(U, V) are represented in
the diagram by lines connecting the respective nodes. Although not explicitly
shown, the lines have membership values equal to unity.

Example 2.10 (Mendel 1995a) Let R represent the relation of stability between the
set of all linear, second-order continuous-time systems and the set of the poles of
such systems. Of all the possible pairings of linear second-order continuous-time
systems and poles, only those pairs whose members are time-invariant with poles
lying either in the left-half of the complex s-plane or on the imaginary axis of that
plane are known to be stable.

Let U = {u,up} = {linear second-order time-varying continuous-time system,
linear second-order time-invariant continuous-time system}, and V = {y;,y2,y3} =
{poles lie in the left-half s-plane, poles lie on the jo axis, poles lie in the right-half
s-plane}. The Cartesian product U x V can be visualized as a 2 x 3 array of
ordered pairs, e.g., the (1, 2) element is (linear second-order time-varying
continuous-time system, poles lie on the jo axis). The stability relation R(U, V) is
the following subset of U x V:

R(U, V) = {(linear second-order time-invariant continuous-time system, poles lie in the left-half s-plane),

(linear second-order time-invariant continuous-time system, poles lie on the jo axis

The relational matrix for this stability relation is:
Vi V2 V3
up (0 0 O
U 1 1 0
The sagittal diagram for this stability relation is depicted in Fig. 2.10.

Let R(u,v) and S(u,v)—R and S for short—be two crisp relations in the same
Cartesian product space U x V. The intersection and union of R and S, which are
compositions of the two relations, are computed using (2.17) and (2.18), because a
relation is a set.

Fig. 2.10 Sagittal diagram U %4
for relation of stability

between the set of all linear, v,
second-order continuous-time u @ /)
systems and the set of poles of

such systems (Mendel 1995a _o v,

© 1995, IEEE)
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2.6 Fuzzy Relations and Compositions on the Same
Product Space

A fuzzy relation represents a degree of presence or absence of association, inter-
action, or interconnectedness between the elements of two or more fuzzy sets. Some
examples of binary fuzzy relations are:

x is much larger than y

y is very close to x

z is much greener than y

system 1 is less damped than system 2

bandwidth of system A is larger than that of system B
tone C is of higher local signal-to-noise ratio than tone D
a is more profitable than b.

A binary type-1 fuzzy relation F(A;, Az) is (Lin and Lee 1996) a type-1 fuzzy set
that is defined on the Cartesian product space of crisp sets A; and A, where tuples
(a1,a2) may have varying degrees of membership ur(aj,ay) within the relation.
More specifically,

F(AhAz) = / pF(al,az)/(al,az) ap GA] and ar €A2 (230)

A XAy

where up(ar,az) € [0, 1]. It is important to note that the elements of F(A;,A;) are
numbers and not fuzzy sets. When they are type-1 fuzzy sets, the fuzzy relation
becomes a type-2 fuzzy relation (Sect. 7.6).

Example 2.11 (Mendel 1995a) Let U and V be the real numbers, and consider the

fuzzy relation “target x is close to target y.” Here is one MF for this relation:

pre(|x = y[) = max{(5 — |x — y|)/5,0} (2.31)

This relational MF is depicted in Fig. 2.11. Note that the distance between the two
targets |x — y| is treated as the independent variable.

Fig. 2.11 Relational MF Au(lx=yl
1te(Jx — y|) (Mendel 1995a ©
1995, IEEE) 14

T =|x_y|
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Because fuzzy relations are fuzzy sets in a Cartesian product space, set theoretic
and algebraic operations can be defined for them using the earlier operators for
fuzzy union, intersection and complement. Let R(U, V) and S(U, V) (shortened in
the sequel to R and S) be two fuzzy relations in the same Cartesian product space
U x V. The intersection and union of R and S, which are compositions of the two
relations, are then defined as:

Lras(x,y) = pr(x,y)kps(x, y) (2.32)
prus(X,Y) = pr(x,y) @ ps(x,y) (2.33)

where % is any t-norm, and @ is any t-conorm.

Example 2.12 Consider the two somewhat contradictory fuzzy relations “u is close
to v’ and “u is smaller than v,” and also the less-contradictory relations “u is close
to v’ or “u is smaller than v.” All relations are on the same Cartesian product space
U x V. For simplicity, it is assumed here that U = {u;,up} = {2,12} and
V ={vi,v2,v3} = {1,7,13}. Let the MFs for close and smaller be denoted as
pe(u,v) and pg(u, v), respectively, where the numbers in p.(u, v) and p,(u, v) have
been chosen to agree with a comparison of the numbers in U and V.

V1 V2 V3

w (09 04 0.1 (2.34)
te(u,v) =
u, \0.1 04 09
and
V1 V2 V3
= 0 06 1 (2.35)
AU = \o o0 03

The membership grades for the union and intersection of these relations,
assuming minimum t-norm (A) and maximum t-conorm (V), can be found as (i = 1,
2andj=1,2,3)

/’(‘cUs(uian) = ML’(uivvj) \//,LS(M,',V]‘) (236)
and

s (Ui, Vj) = pie(ui, Vj) A pus(ui, Vj) (2.37)
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Using (2.36) and (2.37), it is easy to show that

Vi » V3

oy (0.9 06 1 ) (2.38)
cus\U; V) =
few 1 \01 04 09
and
Vi V2 %]
( )ul(O 04 0.1) (2.39)
etV = \o 0 03

From (2.38) and (2.39), “u is close to v’ or “u is smaller than v” is seen to be
much more sensible than “u is close to v’ and “u is smaller than v,” because
membership values in g s(#,v) are fairly large, whereas those in p.ns(u,v) are
mostly small.

2.7 Crisp Relations and Compositions on Different
Product Spaces

Consider'* two different product spaces, U x V and V x W, that share a common
set and let R(U,V) and S(V,W) be two crisp relations on these spaces. The
composition of these relations is defined (Klir and Folger 1988, p. 75) as: a subset
T(U,W) of U x W such that (u,w) € T if and only if (u,v) € R and (v,w) € S.
This can be expressed as a max—min composition, max—product composition or, in
general, as the following sup-star composition for crisp relations:

Hros(u, w) = sup[ug(u,v)kus(v,w)ju e U,w e W (2.40)

veV

where * indicates any suitable t-norm operation. The validity of the sup-star
composition for crisp set is shown in Wang (1997, p. 54). If R and § are two crisp
relations on U x W and V x W, respectively, then the membership for any pair
(u,w),u € Uand w € W, is 1 if and only if there exists at least one v € V such that
ugr(u,v) =1 and pg(v,w) = 1. In Zadeh (1973) it is shown that this condition is
equivalent to having the sup-star composition equal to 1. Because this is a special
case of the sup-star composition for fuzzy sets (a crisp set is a special case of a
fuzzy set), whose proof is given in Sect. 2.8, the proof of (2.40) for crisp sets is not
included here.

“Most of this paragraph is taken from Karnik and Mendel (2001, p. 337).



2.7 Crisp Relations and Compositions on Different Product Spaces 47
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Fig. 2.12 Saggital diagram for Example 2.13. a Original diagram for relations R;(U,V) and
R,(V,W) and b compositional diagram for R;(U, W) (Mendel 1995a © 1995, IEEE)

Example 2.13 Given the saggital diagrams depicted in Fig. 2.12a, b, one concludes
that the relational matrices Ry (U, V), R2(V, W), and R3(U, W) are:

Vi Vo V3 V4
u10101

(2.41)
Rl(U, V) = Uy 1 0 0 O
uz \0O 0 1 1
w1 Wy W3 W4
vi/1 0 0 0

w0 0 0 1 242

Ry (2.42)
vs|1l 1 0 O
v4\O O 1 O
W1 Wy W3 Wy

R;(UW)=u |1 0 0 0 '

w; \1 1 1 0

Because it is not efficient to keep describing compositions in terms of sagittal
diagrams, a formula is needed that conveys the same information.

Definition 2.8 The max-min composition of relations R(U,V) and S(V,W) is
defined by the MF pgos(u, w), where

Pros (U, W) = {(u, w), mvax[min(uR(u, v), us(v,w))] } (2.44)
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The max-product composition of relations R(U,V) and S(V, W) is defined by
the MF pgy«s(u,w), where

prs ) = { (), max oo, v)ps (v, )] (2.45)

Clearly, the max—min or max—product compositions lead to the correct relational
matrix R(U, W), because they are special cases of the sup-star composition in
(2.40).

Example 2.14 Here (2.44) and (2.45) are verified for the (1, 2) element of R3(U, W)
in (2.43). For this element, (2.44) becomes

p a1, w2) = { (0, w2), max(min (g, (11, v), g, (v 02)] |

= {(u1, w2), max[min(pg, (ur,v1), g, (v, w2)),
min (g, (1, v2), fig, (v2, w2)), min(pg, (w1, v3), iz (va; w2)), - (2.46)
min(pig, (u1,v4), pig, (v, w2))]}
={(uy,w2), max[min(0,0), min(1,0), min(0, 1), min(1, 0)]}
={(uy,wz), max[0,0,0,0]} = {(u;,w,),0}

which agrees with (2.43). Similarly, (2.45) becomes

HRs (uh WZ) = {(ul ) W2)7 mVaX[MR] (uh V)MRz (v, WZ)]}

= {(ur, w2), max[pg, (1, v1) g, (Vi, w2), r, (1, v2) pir, (v2, w2),
pr, (1, V3) iR, (V3 W2), fir, (U1, va) pi, (va, wa)] }
={(u1,wz), max[(0 x 0), (1 x 0), (0 x 1), (1 x 0)]}
={(u1,w7), max[0,0,0,0]} = {(u;,w,),0}
(2.47)

which also agrees with (2.43).

The following shortcuts can be used to evaluate the max-min or max-product
compositions that involve relational matrices.

e Max-min composition: (1) Write out each element in the matrix product
O(U,V)P(V,W); but, (2) treat each multiplication as a minimum operation;
and, then, (3) treat each addition as a maximum operation.

e Max-product composition: (1) Write out each element in the matrix product
Q(U,V)P(V,W); but, (2) treat each multiplication as an algebraic multiplication
operation; and, then, (3) treat each addition as a maximum operation.

Example 2.14 (Continued) Here these two shortcuts are used to again verify (2.44)
and (2.45), but this time for the (1, 3) element of R;(U, W) in (2.43). Now applying
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the shortcut for the max-min composition to the (1, 3) element of R; (#,v) X Ra(v, w),
one finds

R3y(u;,w3) =0x0+1x0+0x0+1x1
= min(0, 0) + min(1, 0) + min(0, 0) + min(1, 1) (2.48)
=max(0,0,0,1) =1

Similarly, applying the shortcut for the max-product composition to the (1, 3)
element of R (u,v) x Ry(v,w), one finds

R3(u1,w3) =0x0+1x0+0x0+1x1

2.49
= max(0,0,0,1) =1 ( )

Both of these results agree with the (1, 3) element of R3(U, W) in (2.43).

The max—min and max—product compositions are not the only ones that correctly
represent R(U, W); however, they seem to be the most widely used ones.

2.8 Fuzzy Relations and Compositions on Different
Product Spaces

Next, consider the composition of fuzzy relations from different Cartesian product
spaces that share a common set, namely R(U, V) and S(V, W), e.g., uis smaller than v,
and vis close to w. The composition of fuzzy relations from different Cartesian product
spaces that share acommon set is defined analogously to the crisp composition, except
that in the fuzzy case the sets are fuzzy sets. Associated with fuzzy relation R is its MF
ur(u,v), where ug(u,v) € [0, 1]; and, associated with fuzzy relation S is its MF
ps(v, w), where ugs(v, w) € [0, 1]. In this respect, the condition on the composition of
crisp relations, that is given below (2.40), can be rephrased as follows:

Theorem 2.1 If'> R and S are two type-1 fuzzy relations on U x V and V x W,
respectively, then the membership for any pair (u,w), u € U and w € W, is
non-zero if and only if there exists at least one v € V such that pg(u,v) # 0 and

us(vow) # 0, ie.:

pros(u, w) = suplug(u, v)kus(v,w)jue U,y eV (2.50)

veV

(2.50) is called the sup-star composition for fuzzy relations.

Proof This proof uses the following method: Let A be the statement
“Lros(u,w) # 0,” and B be the statement “there exists at least one v € V such that

5This theorem and its proof are taken from Karnik and Mendel, (1998, pp. 61-62).
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pr(u,v) #0 and ps(v,w) # 0.7 “A if and only if B” is proved by first proving
that'® B = A (equivalent to proving that A = B, i.e., necessity of B) and then
proving that A = B (equivalent to proving that B = A, i.e., sufficiency of B).

Necessity—If there exists no v € V such that pg(u,v) # 0 and ps(v,w) # 0,
then this means that for every v € V, either ug(u,v) or us(v, w) is equal to zero (or
both are zero), which in turn implies that pg(u, v)* us(v,w) = 0 for every v € V;
hence, the supremum'” of ziz (1, v) % pus(v, w) over v € V is also zero, and therefore
piros(u, w) = 0, which is A.

Sufficiency—If the sup-star composition is zero then it must be true that
pr(u, v) Kk pus(v,w) = 0 for every v € V, which means that for every v € V, either
pr(u,v) or us(v,w) (or both) is zero. This means that there is no v € V such that
pr(u,v) # 0 and ps(v,w) # 0, which is B.

When R and S are from discrete universes of discourse, then Ro S can be
described either by a sagittal diagram, in which each branch is labeled by its MF
value, or a fuzzy relational matrix, in which each element is a positive real number
between and including zero and unity. When U, V, and W are discrete universes of
discourse, then the supremum operation in (2.50) is the maximum. Although it is
permissible to use other t-norms, the most commonly used sup-star compositions
are the sup-min and sup-product. The shortcuts for computing the sup-min and
sup-product, given in Sect. 2.7, apply also to fuzzy compositions over discrete
universes of discourse.

3

Example 2.15 Consider the type-1 relation “u is close to v’ on U x V, where
U= {uj,uy} and V = {vy,v,,v3} are given in Example 2.12 as U = {2, 12} and
V=1{1,7, 13}, and p.(u,v) is given by (2.34). Now consider another type-1 fuzzy
relation “v is much bigger than w” on V x W, where W = {w,w,} = {4, 8}, with
the following MF, g, (v, w), for much bigger, where the numbers in g, (v, w)
have been chosen to agree with a comparison of the numbers in V and W:

wp wp
0O o
n (2.51)
mp(v,W) = wva | 0.6 0
V3 1 0.7

The statement “u is close to v and v is much bigger than w” indicates the
composition of these two type-1 relations. This composition can be found by using
(2.50) and, e.g., the minimum t-norm, as follows (i = 1,2 and j = 1,2,3):

16Recall that at least (-) = no (-).

'7Let S be a set of real numbers. An upper bound for S is a number b such that x < b for all x € S.
The supremum of S, if it exists, is the smallest upper bound for S. An upper bound that actually
belongs to the set is called a maximum.
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trcomp (ttiy wi) = [pae (i, i) A i (V1 W)V [pte (i, v2) A o (v2, w3)]

v [/’LC(Mia V3) A o (V3, Wj)} (2.52)

where A denotes minimum, and V denotes maximum. For example,

feomb (U1, W) = (e (1, V1) A ponp (Vi W]V [pte (U1, v2) A s (v2, w1 )]
V (e (1, v3) A i (v, w1 )]
— [0.9A0] V0.4 A0.6]V[0.1 A1]
=0v04v0.1=04

(2.53)

Doing all the calculations in a similar manner, one finds (Exercise 2.17):

wyp w2

uy (0.4 0.1 > (2.54)

Heamn W) =\ 09 07

2%)

Unlike the case of crisp compositions, for which exactly the same results are
obtained using either the max-min or max-product compositions, the same results
are not obtained in the case of fuzzy compositions. This is a major difference
between fuzzy and crisp compositions.

Suppose fuzzy relation R is just a fuzzy set, in which case V = U, so that
g (1, v) just becomes pg(u) [or pg(v)], e.g., “v is medium large and v is smaller
than w.” What happens to the sup-star composition in this case? Because V = U,

suplyeg (u, v) e pus (v, w)] = sup|peg (1) ke pus (e, w))] (2.55)

veV uclU

which is only a function of output variable w; hence, the notation fg.s(u, w) can be
simplified to pgos(w), so that when R is just a fuzzy set,

[iros (W) = igg[uk(u)*us(u,W)] weW (2.56)

Eq. (2.56), which is also known as Zadeh’s compositional rule of inference (Zadeh
1973), is used a lot in Chap. 3 as the type-1 inference mechanism for a rule.

Example 2.16 Consider again the Example 2.12 relation “u is close to v’ on U x V,
where U = {2, 12} and V = {1, 7, 13}. The MF for p.(u,v) is given in (2.34). Let
the fuzzy set “small” on U be defined as

ui us
ps(u) = (0.9 0.1)

The composition of the two statements “u is small and u is close to v’ can be
obtained by using (2.56) as follows (j = 1,2,3):

(2.57)
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fsoe (i) = [pasun) A e, vi) |V (5 (u2) A prc (2, 7)) (2.58)
Using (2.57), it is straightforward to show that

Vi V2 V3
(2.59)
Usoe(v) = (0.9 0.4 0.1)

For discrete universes of discourse, the max—min or max-product compositions

in (2.56) can be evaluated using the shortcuts described earlier; however, first a row
matrix for pg(u) must be created ie., if wu€U={u,u,...,u,} and

R(U) = (pr(wr), pr(u2), - -, g (un)), then:

e Max-min composition: (1) Write out each element in the matrix product
R(U)S(U,W), but (2) treat each multiplication as a minimum operation, and
then (3) treat each addition as a maximum operation.

e Max-product composition: (1) Write out each element in the matrix product
R(U)S(U, W), but (2) treat each multiplication as an algebraic multiplication
operation, and then (3) treat each addition as a maximum operation.

2.9 Hedges

A linguistic hedge or modifier,'® introduced first in Zadeh (1972), is an operation

that modifies the meaning of a term, or more generally, of a fuzzy set. For example,

if weak pressure is a fuzzy set, then very weak pressure, more-or-less weak

pressure, extremely weak pressure, and not-so weak pressure are examples of

hedges that are applied to this fuzzy set. There are a multitude of hedges, many

additional examples of which can be found in Schmucker (1984), Cox (1994).
There are two ways to handle a hedge:

1. They can be viewed as operators that act on a fuzzy set’s MF to modify it.
2. They can be treated as new linguistic terms.

By the first approach, one establishes a set of primary terms and their MFs. The
hedge operators then operate on some'” or all of the primary terms, leading to a larger
set of terms and their MFs. Three hedge operators introduced in Zadeh (1972) are:

1. Concentration: pi.nr)(x) = (e (X)), If, e.g., weak pressure has MF juyp(p),
then very weak pressure is a fuzzy set with MF [pyp(p)], and very very weak
pressure is a fuzzy set with MF [uyp(p)]*. Because MFs have been assumed to

8Some of the material in this section is taken from Mendel and Wu (2010, Sect. 3.6) and Mendel
(1995a, p. 356).

19Hedges should only operate on primary terms for which the hedged term makes linguistic sense,
e.g. the hedge much makes no linguistic sense when it is applied to the primary term low pressure.



2.9 Hedges 53

be normalized, it is clear that the operation of concentration leads to a MF that
lies within the MF of the original fuzzy set (thus, the term concentration); both
have the same support, and the same membership values where the value of the
original MF equals unity or zero.

2. Dilation: pgyry(x) = [up(x)]l/
more or less weak pressure is a fuzzy set with MF [uwp(p)] 1/2_ The operation of
dilation leads to a MF that lies outside of the MF of the original fuzzy set (thus,
the term dilation); both have the same support, and the same membership values
where the value of the original MF equals unity or zero.

3. Artificial Hedges: Two hedges that are quite useful are the plus and minus
hedges, whose MFs are fi,,,(r)(x) = [,up()c)]l'25 and. Linus(r)(X) = [up(x)]0‘75.
These artificial hedges provide milder degrees of concentration and dilation than
those associated with the concentration and dilation hedges.

2 I, e.g., weak pressure has MF puyp(p), then

The = sign has been used in these hedge MF formulas to convey the fact that
their exponents are quite arbitrary; they can be changed depending upon one’s
interpretation of the hedges,? as already noticed in Zadeh (1972), who stated:

It should be emphasized, however, that these representations are intended mainly to
illustrate the approach rather than to provide accurate definitions of the hedges in question.
Furthermore it must be understood that our analysis and its conclusions are tentative in
nature and may require modification in later work.

The following example illustrates the use of hedge operators.

Example 2.17 (Adapted from Zadeh 1973, p. 35) In conversations, one frequently
uses the phrase highly unlikely. Here it is shown how to obtain a MF for it. Let X denote
auniverse of discourse associated with an appropriate quantity related to the notion of
likely. X is clarified below. Let pixpry (x) be the MF for the term likely. Then,

MHIGHLY—UNLIKELY(X) = [1 - MLIKELY(X)]“XO]S (2-60)

To obtain (2.60), the hedge highly has been interpreted as minus very very (which,
of course, is subjective) and the fact that unlikely is the complement of likely has
also been used.

From estimation theory (e.g., Edwards (1972); Mendel (1995b)), it is known that
likelihood is proportional to probability. This fact helps us to establish the universe
of discourse, X, as values of probability (the constant of proportionality between
probability and likelihood is irrelevant), i.e., x € X = [0, 1]. As a concrete example,
assume the following discrete universe of discourse: X = {0,0.1,0.2,0.3,---,
0.9,1}. To evaluate (2.60), uzxery(x) needs to be specified. Based on my per-
ception of the fuzzy set likely, the following ad hoc choice is made for iz xery (x)
(your choice may be different):

2OBecause of the uncertainty about the numerical values of the exponents, hedges might be more
appropriately modeled within the framework of type-2 fuzzy sets. This is examined in Sect. 7.10.
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piuikeLy (X) = 1/141/0.941/0.8 +0.8/0.7 +0.6/0.6+0.5/0.5 +0.3/0.4 +0.2/0.3
(2.61)

Recall that the terms not shown have zero MF values. Evaluating (2.60), one
finds that

NHIGHLY—UNLIKELY(X) ~ 1/0 + 1/01 + 1/02 + 05/03 + 03/04 (262)

Observe, from (2.61) and (2.62), that the MF umiGuLy—unvikeLy (x) seems to
make sense, i.e., it agrees with the notion that something highly unlikely has a very
very small chance (i.e., probability) of occurring. Consequently, large values for
pricHLY —UNLIkELY (x) should and indeed do occur for small values of probability, x.

In Schmucker (1984) one finds the following:

Representing hedges as operators acting upon the representation of the primary terms has
both positive and negative implications. On the positive side, it seems very natural and also
allows for an easy implementation of the connection of several hedges.... The negative side
of representing hedges as operators is that some hedges don’t seem to be easily modeled by
such an approach. By this we mean that the way people normally use these hedges entails
an implementation considerably different and more complex than that of an operator that
acts uniformly upon the fuzzy restrictions that represent the various primary terms.

Finally, in Macvicar-Whelen (1978) there are experimental results that indicate
the hedge very causes a shift in the MF rather than a steepening of the MF as is
obtained by the concentration operator; hence, their paper calls into question the use
of operators to model hedges.

In the rest of this book, unless otherwise indicated, hedges are treated as new
linguistic terms.

2.10 Extension Principle

The Extension Principle was introduced in?' Zadeh (1975) and is an important tool
in fuzzy set theory.”” Heavy use is made of it in later chapters of this book. It
extends mathematical relationships between non-fuzzy variables to fuzzy variables.
Suppose, for example, that the MF for the fuzzy set small is given and the MF for

the fuzzy set (small)2 is desired. The Extension Principle determines the MF for

21According to Klir and Yuan (1995), the Extension Principle was introduced in Zadeh (1975);
however, Zadeh (1975, p. 236, footnote 18) states that the Extension Principle is implicit in a result
given in Zadeh (1965).

22Actually, there are other Extension Principles (e.g., He, et al. 2000; Arabi, et al. 2001), but the
one that is described in this section is the most widely used and is the one used in the rest of this
book.
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(small)* by making use of the non-fuzzy mathematical relationship y = x2, in
which the fuzzy set small plays the role of x, and also the MF for small.

Suppose one is given a function of a single variable x, y = f(x), where x €
U and y € V. For illustrative purposes, U is assumed to be a discrete universe of
discourse, Uy, and

A= jalx)/x (2.63)

xeUy

The Extension Principle states that (Jang et al. 1997) the image of the fuzzy set
A under the mapping f(-) can be expressed as a fuzzy set B, i.e.,

B =f(A) =f<z uA(X)/X> (2.64)

xeUy

= pa(x1)/y1 + pa(x2) /y2 + -+ palen) /yv = ps(y)

where (i =1,...,N) y; = f(x;). Since x = f~!(y), where f~!(y) is the inverse of
fGee., fIf~1(y)] = y), another way to express B is by up(y) = ualf ' ()], y € V.

Example 2.18 As a concrete illustration of (2.64), suppose that U; = {1, 2, 3, 4, 5,

6,7,8,9,10}, and A = small = 1/14+0.8/2+0.6/3 4+ 0.3/4; then, B = (small)2
= 1/1+0.8/4+0.6/9+0.3/16.

The version of the Extension Principle given in (2.64) is valid only if the
mapping between y and f(x) is one-to-one. It is quite possible that the same value of
y can be obtained for different values of x—a many-to-one mapping—in which case
(2.64) needs to be modified, e.g., f(x1)=f(x) =y, but x; #x, and
pa(x1) # pa(xz). To resolve this ambiguity, the larger one of the two membership
values is assigned to pp(y). The general modification to (2.64) is Wang (1997):

ps(y) = max fi(x)y €V (2.65)
xef~1(y)

where f~!(y) denotes the set of all points x € U such that f(x) = y.

Example 2.19 As an illustration of (2.65), suppose that U; = {—3,-2,—1,0, 1,2}
and fuzzy set A is characterized by the MF values listed in the second column of
Table 2.1. Then pp(y), for y = f(x) = x*, is given in the last column of that table.

Table 2.1 Numerical results

x fa () y=rfx) = ()
for Example 2.19 3 05 sl max{05} = 05
-2 0.6 16 max{0.6,0.1} = 0.6
-1 1.0 1 max{1,0.4} =1
0 0.9 0 max{0.9} = 0.9
1 0.4 1 max{1,0.4} =1

2 0.1 16 max{0.6,0.1} = 0.6
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Observe that there are two pairs of elements of U that map into the same value of
y: —2 and 2 map into 16, and —1 and 1 map into 1. In both cases the membership
value of y is obtained by taking the maximum of the membership grades of the
respective two elements. From the last two columns of Table 2.1, observe that
B=09/0+1/1+0.6/16+0.5/81.

So far the Extension Principle has been stated just for a mapping of a single
variable. Things get a bit more complicated for a function of more than one vari-
able. Suppose, for example, one has a function of two variables x; and xy, i.e.,
vy =f(x1,x), where x| € X41, x2 € Xp2, y €V, X4 and X, are assumed to be
discrete universes of discourse, and:

Av= Y () /x (2.66)

x1€Xa1

and

A= () /x (2.67)

EXn

Now it is possible for y = f(x;,x;) to be many-to-one, just as it was in the
single-variable case; so, the Extension Principle for the two-variable case needs to
look something like (2.65). The difference between the two- and one-variable cases
is that in the latter there is only one MF that can be evaluated for each value of x,
whereas in the former there are two MFs that can be evaluated, namely p4, (x;) and
ta, (x2). In this case, the Extension Principle becomes:

sup min{/‘l’Al (xl)v Ha, (XZ)}
Hf(a.a0) (V) = pp(y) = § )/ 10) (2.68)
0 if f1(y) =0

where f~!(y) now denotes the set of all points x; € X;; and x, € Xz, such that
f(x1,x2) = y. The condition in (2.68) that ug(y) = 0 if f~!(y) = () means that if
there are no values of x; and x, for which a specific value of y can be reached, then
the MF value for that specific value of y is set equal to zero. Only those values of
y that satisfy y = f(x1,x,) can be reached. Note that (Yager 1986) provides a
justification of (2.68) based on the sup-star composition.>

Example 2.20 [Adapted from Lin and Lee (1996, p. 30)] As an illustration of
(2.68), suppose that X;; = {—1,0, 1} and Xz, = {—2,2}, and fuzzy sets A; and A,

BA plausibility argument for the Extension Principle is: (1) y = f(x1,x2) can be interpreted
literally, as: When x; = x| and x, = x, then y = f(x|,x}), where the and in this statement is
modeled as a conjunction, which explains the use of the minimum in (2.68); and, (2) when
y = f(x1,x2) is many-to-one, then this can be interpreted as: For (x;,x) = (x},x}) or (:2,:3) or
... or (x]',x}), the same value is obtained for y = f(x;,x,), where the or’s in this statement are
modeled as disjunctions, which explains the use of the maximum (sup) in (2.68).
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Table 2.2 Numerical results for Example 2.20

x| B, (x1) X P, (%2) y=f(x,x) Braran) ()
= X% +x2 = ug(y)
-1 0.5 -2 0.4 -1 max{0.4,0.4} =04
-1 0.5 2 1.0 3 max{0.5,0.9} = 0.9
0 0.1 - 0.4 -2 max{0.1} = 0.1
0 0.1 2 1.0 2 max{0.1} = 0.1
1 0.9 -2 0.4 -1 max{0.4,0.4} =04
1 0.9 2 1.0 3 max{0.5,0.9} = 0.9

are characterized by the MFs listed in the second and fourth columns of Table 2.2.
Then the MF for the fuzzy set B that is associated with ji(4, 4,)(y), Where y =
f(x1,x2) = %3 +x2, is given in the last column of that table. The construction of this
table first required determining all x; and x, pairs for which y is defined. These
values constitute the Cartesian product of X, and Xz, X4 X Xzp. By evaluating
y =f(x1,%) = x] +x; at all these values, it is established that V = {-2, —1,2,3}.

There are two ordered pairs (—1, —2) and (1, —2) that map into the same value of
y, namely —1, and, there are also two ordered pairs (—1, 2) and (1, 2) that map into
the same value of y = 3. It is for these two sets of ordered pairs that the respective
maximum membership grades must be taken in (2.68).

The calculations of pg(y) are illustrated next for y = —1:

/’LB(_I) = max[min{:uAl (_1)1 qu(_z)}7 min{MAl <l)a HA, (_2)} (2 69)

= max[min(0.5,0.4), min(0.9,0.4)] = 0.4 '
From the last two columns of Table 2.2, one concludes that

B=0.1/-24+04/—-1+40.1/24+0.9/3.

Finally, the generalization of the Extension Principle in (2.68) from 2 to r vari-
ables is considered. The Cartesian product of r arbitrary non-fuzzy sets
X1,X5,...,X,, denoted by X; X X, X --- X X, is the non-fuzzy set of all ordered r-
tuples (x1,xa,...,x,) such that x; € X; for i € {1,2,...,r}; i.e., Rudin (1966)

Xy X oo x X, ={(x1, .. x) |0 € X1, €X,}

Let f be a mapping from X; x.--x X, to a universe Y such that
y=f(x1,...,x) €Y, and A,A;,...,A, be type-1 fuzzy sets in X;,Xp,...,X,,
respectively. Then, Zadeh’s Extension Principle allows one to induce from the
r type-1 fuzzy sets A;,A;,...,A, a type-1 fuzzy set B on Y, through f, i.e.,
B =f(A,A,,...,A,), such that (see 2.68)%*

24Equation (2.70) assumes that x1, . . ., X, are non-interactive (e.g., if x; = a and x, = a2, then x;
and x, are interactive) or that there is no joint constraint on xi, .. ., x,. For a detailed discussion
about this, see Zadeh (1975), Appendix B in Karnik and Mendel (1998) and Rajati and Mendel
(2013).
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sup min{MA] (xl)a - HA, (xl‘)}
ps(y) = Grex)ef () (2.70)
0 if f'(y) =0
where f~!(y) denotes the set of all points x; € Xj,...,x, € X, such that
y :f(xl7' . ';xr)~
To implement (2.70), first the values of xj,...,x, must be found for which
y=f(x1,...,x,), after which pa, (x1),..., ta,(x,) and min{gua, (x1), ..., pa, (x)}
are computed at those values. If more than one set of xj,...,x, satisfy

y =f(x1,...,x), then this procedure is repeated for all of them and the largest of
the minima is chosen as the choice for pg(y).

Zadeh defined the Extension Principle using minimum t-norm and maximum
t-conorm (for the supremum operation). Other t-norms and t-conorms can be used,
as described, e.g., in Dubois and Prade (1980). In this book, only the maximum
t-conorm and either the minimum or product t-norms are used. Note that when the
minimum in (2.70) is replaced by another t-norm, the sup-min composition is
replaced by the sup-star composition.

When one needs to extend an operation of the form f(xi, .. .,x,) to an operation
f(Ay, .. A) (eg., Ay + --- +A,) where A; are type-1 fuzzy sets, the individual
operations like multiplication, addition, etc., involved in f, are not extended.
Instead, the following definition is used, which derives directly from (2.70) when
the maximum operation is used for the union and a general t-norm (%) is used
instead of the minimum operation:

f(A17"'7Ar) = /‘LAl(xl)*"’*.uA,‘(xr)/f(xla"'?xr) (271)
xle/xl XrE/X,

For example, if f(x;,x;) = x1x2/(x1 4+ x2), the extension of f to type-1 fuzzy sets A;
and A, is written as:

f(A1,A) = / /.UAl(xl)*NAz(xz)/ adu (2.72)

X1 +x2

xleXI XgEXz

and not an(Al,Az) = Al X A2/(A1 +A2)

To compute f(Ay,...,A,) using (2.71), f(x1,...,x,) and pa, (x1)% -+ S pa, (x,)
must be computed for Vx; € Xi,...,Vx, € X,. It is easy to write a computer pro-
gram to do this, although sometimes it can be done analytically, as is demonstrated
in the next three examples.

Example 2.21 Let Fy, ..., and F,, be type-1 interval fuzzy numbers having domains
[, r1], ..., and [I,, r,], respectively. Then Y} | F; is also a type-1 interval fuzzy
number whose domain is [Y.7 [, > " ri]. The proof is by mathematical
induction.
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(a) For F; and F», using (2.71), the algebraic sum of F; and F, can be obtained
as

F1+F2:/ / (Ix1)/(u+w) (2.73)
uelly,rn] Jwell,r)

Observe from (2.73) that: (1) each term in F| + F3 is equal to the sum u + w for
some u € [Iy,r1] and w € [I, 2], the smallest term being (/; + 1) and the lar-
gest being (r; +r,); and (2) since both F; and F, have continuous domains,
F1 + F, has a continuous domain; hence, F; + F, is a type-1 interval fuzzy
number with domain [l; + lp, 7y + 72).

(b) The proof of the general result is straightforward, and is left to the reader
(Exercise 2.26).

Example 2.22 Let Fy,..., and F, be type-1 interval fuzzy numbers having
domains [Iy,r],..., and [l,, r,), respectively. Then, > " | a;F; + b (where each a;
as well as b is a positive real number) is also a type-1 interval fuzzy number whose
domain is [ a;l;+b, >+, a;ri+b]. The derivation of these results follows.

Consider F; = 1/[l;, r;]. Multiplying F; by the positive real number a; (expressed
as the type-1 fuzzy set 1/a;) yields [use (2.71)]25

a,-Fi = /EV 1/(61,’1)) V = [l,‘, V,'} (274)

Adding the positive real number b (expressed as the type-1 fuzzy set 1/b) to a;F;
yields (see 2.73)

a,-F,-—i—b = / 1/(61,V+b) V= [l,-,r,-] (275)
veV
Substituting w = a;v + b into (2.75), it follows that:
a,-Fi—i-b:/ I/W W= [a,-l,-—l—b,airi—&—b] (276)
wew

Consequently, from Example 2.21 and (2.76), the domain of Z?:I a;F;+ b is
[E?:l a;l; + b, Z?:l airi + b] , Q. E. D.

Note that, when [[;, r;] is expressed in terms of its center and spread, as [c¢; —
si,ci+si], for which ;=c¢;—s; and r; =c;+s;, then [ZLI a;l; + b,
Syairi+b]l = 3L aci+b—Y1 aisi, > aici+b+ > ais;], which is
sometimes a useful alternate way to express the domain of > ", a;F; + b.

ZNote that 1% 1 = 1 regardless of whether the t-norm is minimum or product.
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Exercise 2.27 asks the reader to obtain the comparable results when a; are
positive or negative real numbers.

Example 2.23 Given n type-1 Gaussian fuzzy sets Fy,...,F,, with means
my, ..., m, and standard deviations oy,...,d,, i.e.,

2
1 —m .
Fi:/ exp ——( ) x i=1,...,n 2.77
xeX [ 2 Oj ( )

The affine combination Z:’: | aiFF; + b, where a; and b are crisp constants, is also
a type-1 Gaussian fuzzy set with mean ) ., a;m; + b and standard deviation X',
where

n 2 2 . _ .
s — nzizl a; o; %f prf)@uct t-norm is .used (2.78)
>ilaio;]  if minimum t-norm is used

The proofs of these results, which can be found in Karnik and Mendel (1998,
Appendix C.9), use the results from Exercises 2.24 and 2.25.

211 a-Cuts®®

In the first edition of this book there was no material about a-cuts, because both
type-1 and interval type-2 rule-based systems did not need them. Beginning in
Sect. 6.7.3, it will be seen that a-cuts play a central role for general type-2 fuzzy
sets and systems, something that was not known when the first edition of this book
was written.

Definition 2.9 (Zadeh 1975) The a-cut of type-1 fuzzy set A, denoted A,, is an
interval of real numbers, defined as:

Ao = {xlpa(x) = a} (2.79)

where a € [0, 1].

Example 2.24 An example of an a-cut is depicted in Fig. 2.13, and in this example,
A, = [1.9,5.5]. Observe that the a-cut lies on the x-axis.

Example 2.25 Given a specific type-1 fuzzy set A, it is easy to obtain formulas for
the end-points of an a-cut, e.g. see Table 2.3. In order to obtain these formulas,
such as the ones for the triangular distribution, solve the two equations /(x) = « for
the left end-point and r(x) = « for the right end-point of A,.

5If a reader is interested only in type-1 and interval type-2 fuzzy sets and systems, this section,
as well as Sects. 2.12 and 2.13, can be omitted.
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Fig. 2.13 A trapezoidal 4 1,(x)
type-1 fuzzy set and an a-cut
(Mendel and Wu 2010 ©
2010, IEEE)

Table 2.3 Examples of type-1 fuzzy sets and their a-cut formulas (Mendel and Wu 2010 © 2010,
IEEE)

Type-1 fuzzy set a—cut formula
“#A (x) y A(v = [aaa ba}
' =[m—a(l —a),m+b(l —a)]

= [m + (m — m)a,my — (my — m)a]

“luA(x) Aa = [aouba}
=[m —a(l —a),my+b(l — )]
=[d+(m —d)a, b — (b —m)a]

Theorem 2.2 The following set-theoretic properties hold for a-cuts:
(ANB), =A.,NB, (2.80)
(AUB), =A,UB, (2.81)
Equations (2.80) and (2.81) state that the a-cut of the intersection (union) of two

type-1 fuzzy sets equals the intersection (union) of their a-cuts.

Proof Because the proof of (2.81) is so similar to the proof of (2.80), only the proof
(2.80) is provided here; the proof of (2.81) is left as an exercise (Exercise 2.28).
This proof is taken from Klir and Yuan (1995, p. 35), and is given for the minimum
intersection operator.
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Fig. 2.14 Square-well Au(xla)
function 4 (x|cr) (Mendel and
Wu 2010 © 2010, IEEE) 17

For any x € (ANB),, it follows from Definition 2.9 that y4np(x) > a; hence,
minfua(x), pp(x)] > «. This means pa(x)>a and pp(x) >« which implies
X € Ay N B,, and consequently (ANB),CA, N B,.

Conversely, for any x € A,NB,, x € A, and x € B,. This means, again from
Definition 2.9, that u4(x) > o and pp(x) > a; hence, min[u4(x), pip(x)] > @ which
means  pang(x) >a. This implies x€ (ANB),, and consequently
Ao NB,C(ANB),.

Combining the two parts of this proof, one concludes that (AN B), = A, N B,.

2.12 Representing Type-1 Fuzzy Sets Using a-Cuts

One of the major roles of a-cuts is their capability to represent a type-1 fuzzy set. In
order to do this, first the following indicator function is introduced:

I, (x) = { 0 ron (2.82)

Associated with I (x) is the following square-well function:
pa(x|la) = aly, (x) = a/A, (2.83)

This function, an example of which is depicted in Fig. 2.14, raises the a-cut A,, off
of the x-axis to height (level) a.

Theorem 2.3 (Decomposition Theorem) A type-1 fuzzy set A can be represented
as:

pa(x) = U pa(x|a) = sup {a/A,} x€X (2.84)
a€l0,1] a€l0,1]

where U is the fuzzy union (i.e., sup over [0, 1]).
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Fig. 2.15 Example to A1, (x)
illustrate the Decomposition I
Theorem when 13 a-cuts are O =1
used o,

o, ¥

PR & A S—— o

O A e

o =0 . > X

=
=
W

This theorem was introduced in Zadeh (1971) and also appears in Zadeh (1975,
p- 223), where it is called a resolution identity. It is also called a “Decomposition
Theorem” because A is decomposed into a collection of square-well functions (i.e.,
intervals raised to level «) that are then aggregated using the union operation (with
respect to «). An example of (2.84) is depicted in Fig. 2.15. In that figure: (1) the
blue dashed lines are the a-cuts raised to level «; (2) the red dots show pa(x)
computed by using (2.84); and, (3) at x;,x, and x3, the dashed vertical lines
intersect many of the dashed blue lines, but they terminate at their maximum values,
the respective red dot, according to (2.84).

Theorem 2.3 holds for continuous and discrete universes of discourse, since
(2.84) is valid for both universes, and is valid for convex and non-convex type-1
fuzzy sets. Note that greater resolution is obtained by including more «-cuts, and
the calculation of new a-cuts does not affect previously calculated a-cuts. A proof
of Theorem 2.3 can be found, e.g., in Klir and Yuan (1995, p. 41) or Wang (1997,
p- 369). It is not included herein because, once one understands (2.84), it becomes a
rather obvious result.

Example 2.26 (Taken from Mendel, et al. 2014, p. 38) Let A =0.2/x; +0.4/
X2 +0.6/x3 +0.8/x4 + 1 /x5. Some indicator functions for A are:

Ing, (x) = 1/x1 + 1/x2 4+ 1/x3+ 1 /x4 + 1 /x5
Iy, (x) = 0/x1 + 1/x2 + 1/x3 4+ 1 /x4 + 1 /x5
Lo (X) = 0/x1 +0/x2 + 1 /x5 + 1 /x4 + 1 /x5 (2.85)
Lags (x) = 0/x1 +0/x2 +0/x3 + 1 /x4 + 1 /x5
In,,(x) = 0/x1 +0/x2+0/x3+0/x4+ 1 /x5

Their associated square-well functions are:

1a(x]0.2) = 0.2/x; +0.2/x,+0.2/x3 + 0.2 /x4 + 0.2 /x5

pa(x]0.4) = 0/x1 +0.4/x +0.4/x3 4+ 0.4 /x4 4+ 0.4 /x5

pa(x]0.6) = 0/x1 +0/x, +0.6/x3 4+ 0.6 /x4 + 0.6 /x5 (2.86)
pa(x]0.8) = 0/x1 +0/x2+0/x340.8/x4 +0.8 /x5

pa(x)1.0) = 0/x1 +0/x2 +0/x3 +0/x4 + 1/x5
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Applying (2.84) to these functions, it follows that:
A = 1 (x]0.2) U pia (x]0.4) U 14 (x]0.6) U pu4 (x]0.8) U pua (x]1.0) (2.87)
When performing these unions, focus on a specific domain point, e.g. x = x4, for
which
ta(x4) = max(0,0.2,0.4,0.6,0.8) /x4 = 0.8/x4 (2.88)
Performing these unions for the five domain points, whose MFs are non-zero, it
is straightforward to recover A = 0.2/x; +0.4/x; +0.6/x3 4+ 0.8 /x4 + 1 /x5.

Example 2.27 For a convex type-1 fuzzy set, such as the ones in Table 2.3,
Ay = [aa,ba] (a €[0,1]), and (2.84) can be expressed as:

pa(x) = sup {a/[an,ba]} x € X (2.89)
acl0,1]

The following is a corollary to Theorems 2.2 and 2.3:

Corollary 2.1 The intersection and union of type-1 fuzzy sets A and B can be
computed by using their a-cuts, as follows:

pang(x) = U a/(AaNBy,) (2.90)
a€0,1]

pavs) = | o/(AaUB.) (2.91)
a€0,1]

Proof From Theorem 2.3, it follows that:

pans(®) = |J mnsxle) = |J o/(AnB), (2.92)
]

ael0,1

Applying (2.80) to (2.92), it follows that:

pans) = | o/(AaNB.) (2.93)
a€0,1]

which is (2.90). Because the proof of (2.91) is so similar to the proof of (2.90) it is
not provided here.

Equation (2.90) is also true when N 1is replaced by t-norm symbol . An
important feature of (2.90) and (2.91) is that, since A, and B, are intervals (or
multiple intervals) of real numbers, A, UB, and A, N B, are easily computed.

Example 2.28 Here (2.91) is applied to the two type-1 fuzzy sets A and B that are
depicted in Fig. 2.16a, to verify that the correct answer is obtained for payp(x).
The union of A and B, computed as max(u (x), up(x)) is depicted as the red curve
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(a) (b)
A r'y
AU B
A B
» X > X
(©) d)
A A
oald, p ol B,
PR A Se——— » X
(e) ®
A A
L al4,vB) AUB
------------------ =x S S S S S S S S -

Fig. 2.16 a Type-1 fuzzy sets A and B, b AUB = max{ua(x), ug(x)}, ¢ a-cuts of A raised to
level a d a-cuts of B raised to level o, e A,UB, raised to level «, and
fAUB = U,g0,1) @/ (Aa UB,)

in Fig. 2.16b. Some a-cuts that are raised to level o for A and B, are depicted (as
the dashed lines) in Fig. 2.16c, d, respectively. By superimposing all of these
dashed lines for /A, and «/B, one obtains’’ «/(A,UB,) in Fig. 2.16e. The
envelope of all of the «/(A,UB,) in Fig. 2.16e provides the red curve in
Fig. 2.16f, which is in agreement with the red curve in Fig. 2.16b. Each point on
the red envelope can be obtained by going to a specific value of x, drawing a

?TRecall that A, U B, is a set of real numbers that includes all elements in either A, or B,.
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vertical line up from it, and choosing the height of that line as the value of the
highest dashed horizontal line that intersects it.

2.13 Functions of Type-1 Fuzzy Sets Computed by Using
a-Cuts

Recall*® (Sect. 2.10) that the Extension Principle states that when the function
y=f(x1,x2,...,x,) is applied to type-1 fuzzy sets X; (i =1,...,r) the result is
another type-1 fuzzy set, ¥, whose MF py(y) is given by (2.70). Because py(y) is a
type-1 fuzzy set, it can, therefore, be expressed in terms of its a-cuts as follows (see
(2.79), (2.82)—(2.84), where Y, plays the role of A,):

Yo = {ylur(y) = a} (2.94)

Iy, (x) = {(1) ) g v (2.95)

py(yla) = aly, (y) = /Y, (2.96)

py (v) = aeLmJl] py (y]a) = (xsel[l()l?l]{a/ya} y € Dy (2.97)

In order to implement (2.95)—(2.97), a method is needed to compute Y, and this
is provided in the following:

Theorem 2.4 (a-Cuts Decomposition Theorem®”) Ler Y = (X1, X, ..., X,) be
an arbitrary (crisp) function, where X; (i =1,...,r) is a type-1 fuzzy set whose
domain is Dy, and o-cut is (X;),. Then, under the Extension Principle:

Y, :f((Xl)(w H) (X2)a) (298)

and the height of Y equals the minimum height of all X;.

Equation (2.98) shows that the a-cut of a function of type-1 fuzzy sets equals
that function applied to the a-cuts of those type-1 fuzzy sets. Theorem 2.4 does not
address how to compute f((X;),, . . -, (X2),,). Example 2.30 below shows how to do
this for a specific nonlinear function, and, when this theorem is used in later
chapters of this book for other functions, explanations will be given for how to

28Much of the material in this section (up to Example 2.29) is taken from Mendel and Wu (2010,
Sect. 5A.2, © IEEE 2010).

?The statement of this theorem is adapted from Klir and Yuan (1995, Theorem 2.9) and is taken
from Mendel and Wu (2010). Zadeh (1975) states this result without a proof for it. Nguyen (1978)
seems to be the first to provide necessary and sufficient conditions for (2.98) to hold.
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compute f((X1),,- .., (X2),) for those functions. It is no exaggeration to say that
this theorem is now vitally important for general type-2 fuzzy systems.

Proof For all y € Dy, from (2.94) it follows that®®

yEYy & py(y) >a (2.99)

Under the Extension Principle in (2.70),

py(y) >a s ( )‘sup( )miﬂ{ﬂxl (x1)y ey px, ()} > (2.100)
X1 yeeey X ) [Y=F (X151 X

It follows that:

sup min{py, (x1),. .., px, (%)} > @

(V1 e ) [y = (1)

< (3x19 € Dy, and --- and x,9 € Dy, )
(y =f(x10, ..., x0) and min{px, (x10), - - -, 4x, (x0)} > @)

< (3xy0 € Dy, and -- - and x,9 € Dy, ) such that (2.101)
(y =f(x10, ..., %0) and [py, (x10) >« and --- and py, (x,0) > a])

< (3x10 € Dx, and --- and x,9 € Dy, ) such that
(y =f(x10,- - %) and [x19 € (X1), and --- and x,0 € (X,),])

Sy Ef((X1)ys--- (X2),)

Hence, from the last line of (2.101) and (2.100),

such that

py(v) Za <y € f(Xi),-- - (X2),) (2.102)

which is (2.98). Because the right-hand side of (2.100) (read from right to the left)
indicates that « cannot exceed the minimum height of all uyx.(x;) (otherwise there is
no a-cut on one or more X;), the height of ¥ must equal the minimum height of all X;.

Example 2.29 Let”! A =[a,b,c] and B = [p,q,r] be two triangle type-1 fuzzy
numbers whose MFs are:

o
|
BN

a<x<b
b<x<c

oS
=

(2.103)

pia(x) = {

S
S

30This proof is similar to the one that is given for Theorem 2.9 in Klir and Yuan (1995), where it is
only provided for a function of a single variable. Even so, our proof of Theorem 2.4 follows the
proof of their Theorem 2.9 very closely; however, their theorem does not explain how sub-normal
type-1 fuzzy sets should be handled. Such sub-normal type-1 fuzzy sets are quite common in
type-2 fuzzy sets because many kinds of lower MFs (see Chap. 6) are sub-normal.

3!This example is adapted from Dutta, et al. (2011).
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x=p
p PSX=4q
r—x quér

r—q

pp(x) = (2.104)

Then the a-cuts of A and B are (use the first row of Table 2.3 in which m; = a,
m = b and my = ¢):

Ay =[(b—a)a+a,c— (c—b)q] (2.105)
By =[(g—p)a+p,r—(r—qa] (2.106)

Here the MF of A + B, the sum of two type-1 fuzzy numbers, is computed.
To begin, the @ — cuts of A and B are added using interval arithmetic, namely

[r+s]+[t+ul =[r+ts+u (2.107)
Consequently:

Ao +B,=[(b—a)a+a,c—(c—b)a]+[(g—plat+p,r—(r—q)]

2.108
=la+p+b—-—a+qg—p)a,c+r—(c—b+r—q)a] ( )

To find 4+ p5(x) equate to x both the first and second components in (2.108)
[note that this is the reverse of what was done to obtain the a-cuts in (2.105) and
(2.100)1:

x=a+p+b—-—a+q—p (2.109a)
x=c+r—(c—b+r—q (2.109b)

Next, express « in terms of x and then set « = 0 and o = 1 in (2.109a, 2.109b) to
obtain a respective value of « together with the respective domain of x, as:

__x—(atp) . )
= btq) —(atp)’ (@a+p)<x<(b+q) (2.110a)
(ctr)—

“ern—rg Crosxs(etr) (2.110b)

Because « is the MF grade of A + B (this is a crucial observation) it follows that:

(a+p) (a+ <x<
> p)<x<(b+q)
pa+5(x) = {“’*ﬂ,; ) (2.111)
wn-wrg (bra)<x<(etr)

Observe that A+B is also a type-1 fuzzy number, ie.
A+B= [(a+p)7 (b+4q), (C+r)]'
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A very interesting exposition about interval computing (e.g., using « - cuts) and
fuzzy sets is Kreinovich (2008).

2.14 Multivariable MFs and Cartesian Products

Most discussions in this chapter have been for type-1 fuzzy sets that depend on only
one variable. This section describes how to characterize type-1 fuzzy sets that
depend on up to p variables, xi,x,...,X,.

For two variables, x; and x;, type-1 fuzzy set A is defined on the Cartesian
product X; x X, i.e.,

A = {((r1,x2), palxr,x2)) by € Xp,x2 € Xo}
= {((x1,x2), pa (31, %2)) (%1, %2) € Xy X X2} (2.112)

where p14(x1,x;) is a general function of x; and x,. When X; x X, is continuous,
then A can also be written as

a- / pa (31, 0), (x1,32) (2.113)

or, if X; x X, is discrete, X4 X X»4, then A can be written as

A= leex,d ZXZEXM pia(x1,%2) / (x1,%2) (2.114)

When the MF pi4(x1,x;) is separable, which occurs when x; and x, do not
interact with one another, then it is expressed in terms of g4, (x1) and pa,(x2), as

pra (X1, %2) = i, (x1) % i, (x2) (2.115)

where * denotes a t-norm such as minimum or product. In this book only separable
MFs are used.
The extensions of these two-variable results to more than two variables is

straightforward, e.g., for p variables, when the MF g4 (x1, X2, . . .,xp) is separable,
then

pa (X1, X2, -5 Xp) = i, (x1) K pa, (2) K - - - K, () (2.116)
where x; € X1,x, € Xa,...,x, € X,, which can be interpreted as the Cartesian

product of the type-1 fuzzy sets Aj,As,...,A, in the product space
X1 XXy X x X,
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Equation (2.116) is frequently written as
pa (X1, X2, -5 Xp) = pux, (1) gy, (2) K - - - Fepa, () (2.117)

Using the notation of (2.117), X; plays a double role as the label of the fuzzy set
and as the universe of discourse for x;. Usually, this does not cause any confusion.
(2.117) is widely used in Chap. 3.

2.15 Cirisp Logic

According to the Encyclopedia Britannica, “Logic is the study of propositions and
their use in argumentation.” According to Webster’s Dictionary of the English
Language, “logic is the science of formal reasoning, using principles of valid
inference,” and “ logic is the science whose chief end is to ascertain the principles
on which all valid reasoning depends, and which may be applied to test the
legitimacy of every conclusion that is drawn from premises.” Although
multi-valued logic exists, most of us are most familiar with two-valued
(dual-valued) logic in which a proposition is either true or false. With the advent
of fuzzy logic, this kind of logic is also referred to as crisp logic, which was first
systematized by Aristotle thousands of years ago, in ancient Athens.

From Fig. 1.2, observe that one of the major components of a fuzzy system is
Rules. In this book, rules will be expressed as logical implications, i.e., in the forms
of IF-THEN statements, e.g.,

IF xis A,THEN yis B,wherex € X andy € ¥

A rule represents a special kind of relation between A and B; its MF is denoted
ta—g(x,y). What is a proper and appropriate choice for this MF? Nothing that has
been presented so far helps us to answer this question, because an implication
resides within a branch of mathematics known as logic, and so far only set theory
has been discussed. Fortunately, as stated in Klir and Folger (1988, p. 24):

It is well established that propositional logic is isomorphic to set theory under the appro-
priate correspondence between components of these two mathematical systems.
Furthermore, both of these systems are isomorphic to a Boolean algebra, which is a
mathematical system defined by abstract (interpretation-free) entities and their axiomatic
properties. ... The isomorphisms between Boolean algebra, set theory, and propositional
logic guarantee that every theorem in any one of these theories has a counterpart in each of
the other two theories. ... These isomorphisms allow us, in effect, to cover all these theories
by developing only one of them.

Consequently, not a lot of time will be spent reviewing crisp logic; but, some
time must be spent on it, especially on the concept of implication, in order to reach
the comparable concept in fuzzy logic.
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Rules are a form of propositions.>® A proposition is an ordinary statement
involving terms that have been defined, e.g., “The damping ratio is low.”
Consequently, one could have the following rule: “IF the damping ratio is low,
THEN the system’s impulse response oscillates a long time before it dies out.” In
traditional propositional logic, a proposition must be meaningful to call it “true” or
“false,” whether or not one knows which of these terms properly applies.

Logical reasoning is the process of combining given propositions into other
propositions, and then doing this over and over again. Propositions can be combined
in many ways, all of which are derived from three fundamental operations: con-
Jjunction (denoted p A q), where one asserts the simultaneous truth of two separate
propositions p and ¢q (e.g., damping ratio is low and bandwidth is large); disjunction
(denoted p V ¢q), where one asserts the truth of either or both of two separate
propositions (e.g., I will design an analog filter or I will design a digital filter); and,
implication (denoted p — ¢g), which usually takes the form of an IF-THEN rule, an
example of which has been given in the previous paragraph. The IF part of an
implication is called its antecedent whereas the THEN part is called its consequent.

In addition to generating propositions using conjunction, disjunction, or impli-
cation, a new proposition can be obtained from a given one by prefixing the clause
“it is false that ...”. This is the operation of negation (denoted ~ p). Additionally,
p < q is the equivalence relation; it means that p and g are both true or false.

In traditional propositional logic an implication is said to be true if one of the
following holds: (1) antecedent is true, consequent is true, (2) antecedent is false,
consequent is false, and (3) antecedent is false, consequent is true. The implication
is called false when (4) antecedent is true, consequent is false. Situation (1) is the
familiar one of common experience. Situation (2) is also reasonable, for if one starts
from a false assumption one expects to reach a false conclusion, however, intuition
is not always reliable. One may reason correctly from a false antecedent to a true
consequent (e.g., IF 1 = 2, THEN 3 = 3; note that 1 = 2 is false, but, adding 2 = 1
to this false statement, lets one correctly conclude that 3 = 3); hence, a false
antecedent can lead to a consequent which is either true or false, and thus both
situations (2) and (3) are allowed in traditional propositional logic. Finally, situation
(4) is in accord with our intuition, for an implication is clearly false if a true
antecedent leads to a false consequent.

A logical structure is constructed by applying the aforementioned five operations
to propositions. The objective of a logical structure is to determine the truth or
falsehood of all propositions that can be stated in the terminology of this structure.

A truth table is very convenient for showing relationships between several
propositions. The fundamental truth tables for conjunction, disjunction, implication,
equivalence, and negation are collected together in Table 2.4, in which symbol
Tmeans that the corresponding proposition is true, and symbol F means that it is false.

The fundamental axioms of traditional propositional logic are: (1) every
proposition is either true or false, but not both true or false; (2) the expressions

*2Much of the rest of this section is paraphrased from Allendoerfer and Oakley (1955).
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Table 2.4 Truth table for five operations that are frequently applied to propositions (Mendel
1995a © 1995, IEEE)

P q PAg rVg P—4q P=q ~p
T T T T T T F
T F F T F F F
F T F T T F T
F F F F T T T

given by defined terms are propositions; and (3) the truth Table 2.4 for conjunction,
disjunction, implication, equivalence, and negation. Using truth tables, one can
derive many interpretations of the preceding operations and can also prove rela-
tionships about them.

A tautology is a proposition formed by combining other propositions (p, g, 7, ...)
which is true regardless of the truth or falsehood of p, ¢, r, ... . The most important
tautology for our work is:

(p—aq) = ~pr(~q) (2.118)

A proof of this tautology, using truth tables, is given in Table 2.5. Observe that
the entries in the two columns p — g and ~ [p A (~ g)] are identical, which proves
the tautology. This tautology can also be expressed as

(p—4q) <= (~p)Vq (2.119)

the truth of which is also demonstrated in Table 2.5. The importance of these
tautologies is that they let one express the MF for p — ¢ in terms of MFs of either
propositions p and ~ g or ~ p and g, which is very important for transitioning from
crisp to fuzzy logic.

Some of the most important mathematical equivalences between logic and set
theory are:

Logic Set theory
A N
\ U

~

—
[

Table 2.5 Proofs of (p — ¢q) < ~[pA(~gq)] and (p — gq) < (~p)V g (Mendel 19952 ©
1995, IEEE)

p q P—q ~q pPA(~9g) ~[pA(~q) ~p (~p)Vaq
T T T F F T F T
T F F T T F F F
F T T F F T T T
F F T T F T T T
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Table 2.6 Validations of (2.120) and (2.121) (Mendel 1995a © 1995, IEEE)

() pg(y) 1 —pp(x) 1 —pg(y) 1 —minfu,(x), 1 — pe(y)]  max[l — s, (x), ()]

1 1 0 0 1 1
1 0 0 1 0 0
0 1 1 0 1 1
0 0 1 1 1 1

Additionally, as mentioned earlier, there is a correspondence between elemen-
tary logic and Boolean Algebra (0, 1). Any statement that is true in one system
becomes a true statement in the other, simply by carrying through the following
changes in notation:

Logic Boolean algebra (0, 1)
T 1
F 0
A X
\% +
~ !
Rad =
Piqs7s- - ab,c,...

In this list, ’ stands for complement, and a, b, c, ... are arbitrary elements of the
two-element set {0, 1}.

Using the facts that (p — ¢q) < ~[pA(~gq)] and (p — q) < (~p) Vg, and
the equivalence between logic and set theory, two MFs can be obtained for p — gq.
The first of these tautologies lets us show that

fp—q(%,Y) = 1 = ptprg(x,y) = 1 — min[g,(x), 1 = pig()] (2.120)
and the second of these tautologies lets us show that>
Kleene-Dienes : ,ullffq()@ Y) = fpug(x,y) = max[1 — p1,(x), pq(v)] (2.121)

To validate the truth of these two MFs, construct a Boolean truth table, such as
the one in Table 2.6. Observe that the entries in the last two columns agree with the
entries in Table 2.4 for p — g, where the logical T and F are interchanged with
Boolean 1 and 0, respectively.

3 A named implication MF (e.g., Kleene-Dienes) refers to the person or persons attributed to it in
Klir and Yuan (1995, Table 11.1, p. 309).
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The implication MFs given in (2.120) and (2.121) are by no means the only ones
that give agreement with p — g. Two others are shown here [see Klir and Yuan
(1995, Table 11.1) for many more]:

Reichenbach : i (x,y) = 1 — 1, (x)[1 — p14(y)] (2.122)
and
Lukasiewicz : 7 (x,y) = min[1, 1 — 2,(x) + p14(y)] (2.123)

The MF in (2.122) is similar to the one in (2.120), except that a product operation is
used for conjunction instead of the minimum operation.

In logic, an inference rule is a logical form consisting of a function that takes
premises, analyzes their syntax, and returns a conclusion. In traditional proposi-
tional (crisp) logic there are two very important inference rules, Modus Ponens and
Modus Tollens:

Modus Ponens:

Premise: x is A
Implication: IF x is A THEN y is B
Consequence: y is B.

Modus Ponens is associated with the implication “A implies B” (A — B). In
terms of propositions p and g, Modus Ponens is expressed as (p A (p — q)) — q.

Modus Tollens:

Premise: y is not B
Implication: IF x is A THEN y is B
Consequence: x is not A.

In terms of propositions p and ¢, Modus Tollens is expressed as
@np—aq)—p

Whereas Modus Ponens plays a central role in engineering applications of logic,
due in large part to cause and effect, Modus Tollens does not seem to have yet
played much of a role.

2.16 From Crisp Logic to Fuzzy Logic

Fuzzy logic is a type of logic that includes more than just true or false values. It is
the logic that deals with situations where one cannot give a clear yes/no (true/false)
answer. In fuzzy logic, propositions are represented with degrees of truthfulness or
falsehood, i.e., fuzzy logic uses a continuous range of truth values in the interval [0,
1] rather than just true or false values. In fuzzy logic, Aristotle’s laws of the
Excluded Middle and Contradiction are usually broken.
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Fuzzy logic begins by borrowing notions from crisp logic, just as fuzzy set
theory borrows from crisp set theory. As in our extension of crisp set theory to
fuzzy set theory, our extension of crisp logic to fuzzy logic is made by replacing the
bivalent MFs of crisp logic with their fuzzy MFs. That is all there is to it; hence, the
IF-THEN statement “IF x is A, THEN y is B,” where x € X and y € Y, has a MF
ta—p(x,y) where pa_p(x,y) € [0,1]. Note that p14—p(x,y) measures the degree of
truth of the implication relation between x and y, and it resides in the Cartesian
product space X x Y. Examples of such MFs are:

pra—p(x,y) = 1 — minfus (x), 1 — pip(y)] (2.124)
paZ 5 (x,y) = max[1 — 114 (x), p(y)] (2.125)

and
pa—p(%y) = 1 = pa(x) (1 = pp(y)) (2.126)

which, of course, are fuzzy versions of (2.120)—(2.122), respectively.
In fuzzy logic, Modus Ponens is extended to Generalized Modus Ponens:

Premise: x is A*
Implication: IF x is A THEN y is B
Consequence: y is B*.

Compare Modus Ponens and Generalized Modus Ponens to see their subtle
differences, namely, in the latter, fuzzy set A* is not necessarily the same as rule
antecedent fuzzy set A, and fuzzy set B* is not necessarily the same as rule con-
sequent B.

Example 2.30 (Mendel 1995a) Consider the rule “IF a man is short, THEN he will
not make a very good professional basketball player.” Here fuzzy set A is short
man, and fuzzy set B is not a very good professional basketball player. Given
Premise 1, as “This man is under five feet tall,” A* is the fuzzy set man under five
feet tall. Clearly A* £ A; but, A* is similar to A. The following consequence is now
drawn: “He will make a poor professional basketball player.” Here B* is the fuzzy
set poor professional basketball player, and B* # B, although B* is indeed similar
to B.

In crisp logic a rule will be fired only if the premise is exactly the same as the
antecedent of the rule, and the result of such rule firing is the rule’s actual con-
sequent. In fuzzy logic, on the other hand, a rule is fired so long as there is a
non-zero degree of similarity between the premise and the antecedent of the rule,
and the result of such rule firing is a consequent that has a non-zero degree of
similarity to the rule’s consequent.
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Generalized Modus Ponens is a fuzzy composition where the first fuzzy relation
is merely the fuzzy set A*. Consequently, using (2.56), up-(y) is obtained from the
following sup-star composition (also called the compositional rule of inference):

pue (y) = sup[pa- (x) %k pa—p(x,y)] y € ¥ (2.127)

xeX

To help us understand the meaning of (2.127), some examples will be consid-
ered. In all these examples the fuzzy set A* is assumed to be a fuzzy singleton, i.e.,

I x=x
fa (x) = {0 % and Vx € X (2.128)
In Chap. 3 this will be called a singleton fuzzifier and one will learn why it is so
popular. For the singleton fuzzifier, (2.127) becomes:

LB (y) = sup [,U/A* (x) *MAHB (xa y)]

xeX

= sup[pa—p(x',y), 0] = pa—p(x',y) y €Y (2.129)

Eq. (2.129) is true regardless of whether one uses minimum or product for .
Observe that for the singleton fuzzifier the supremum operation is very easy to
evaluate, because p14-(x) is non-zero at only one point, x'.

Example 2.31 To begin, the result of using (2.129) for ps—_p(x',y) in (2.120) is
examined, i.e.,

p-(¥) = pa—p(x',y) = 1 —min[pa (x'), L — pp(y)] y € Y (2.130)

A graphical interpretation of this result is given in Fig. 2.17. Starting with p5(y)
in (a), 1 — pp(y) is computed as shown in (b), and, for the given level of p(x')
shown in (b), min[us(x'), 1 — pp(y)], also shown in (b), is then constructed. Note
that the level shown for p(x’) in (b) was chosen arbitrarily (by the author), where
pa(x’) € [0, 1]. Finally, 1 — min[ua(x"), 1 — pup(y)] is constructed, as shown in (c).

(a)

1 Hy ()

Fig. 2.17 Construction of ug-(y) in (2.130). a Consequent MF pp(y), b construction of
min{us (X'), 1 — pp(y)], and ¢ pp: (y) (Mendel 1995a © 1995, IEEE)
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(a) (b)
A 1 () A u,-()

L=, (") + 1, ()

1+ 14

l_ﬂﬂ(x,)
>y >y

Fig. 2.18 Construction of - (y) in (2.132). a Consequent MF pg(y), b construction of fip-(y)
(Mendel 1995a © 1995, IEEE)

The result shown in (c) is disturbing for an engineering application, i.e., given a
specific input x = x/, the result of firing a specific rule, whose consequent is
associated with a specific fuzzy set of finite support [the base of the triangle in (a)],
is a fuzzy set whose support is infinite. Somehow a bias (constant) has gotten into
the output so that regardless of x’ the output is never zero [unless p4(x') = 1]. This
does not seem desirable for engineering applications.

Example 2.32 Perhaps the problem experienced in Example 2.31 was a result of a
poor choice for pa_p(x',y). Therefore, the result of using pf ,(¥',y) obtained
from (2.123), is examined next, i.e.,

i p(,y) = min[l, 1 — pa (') + ps(y)] y € ¥ (2.131)

which, by the way, is the implication MF given in the important paper (Zadeh
1973). Substituting this expression for 15 (¥, y) into (2.129), it follows that:

p(y) = py_p(¥',y) = min[1, 1 — pa(X) + pp(y)] y € ¥ (2.132)

A graphical interpretation of this result is given in Fig. 2.18. As in Example
2.31, the level shown for 4 (x')—and subsequently for 1 — s (x’')—was chosen
arbitrarily. Once again, a result has been obtained in Fig. 2.18b that includes a bias.
It is easy to demonstrate that all of the other choices provided earlier for p4—.p(x,y)
have the same problem. Even many choices not listed here have the same problem.

2.17 Mamdani (Engineering) Implications

Mamdani (1974) seems to have been the first one to recognize the problem just
demonstrated. Based on simplifying the computations associated with (2.127), he
chose to work with the following minimum implication (inference)
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Table 2.7 Demonstration that minimum and product implications do not agree with 11, .4(x,y)
(Mendel 1995a © 1995, 1IEEE)

(%) Hq(y) min {4, (x), g ()] tp () 114 () Fp—q (X, Y)
1 1 1 1 1
1 0 0 0 0
0 1 0 0 1
0 0 0 0 1
,UJA—vB(xmy) = mln[,uA(x)a,u’B(y)] x€X, y€ Y (2133)

Later, Larsen (1980) proposed the following product implication (inference)

pa—p(X,y) = pa(X)pup(y) x€X,yeY (2.134)

Again, the reason for this choice was simplicity of computation.**
Equations (2.133) and (2.134) can be expressed collectively as

pia—p(x,y) = pa(x)kpup(y) x€X,yey (2.135)

where * is a t-norm, product, or minimum, and is frequently referred to as a
Mamdani implication regardless of whether the t-norm used is the minimum or
product.

Today, minimum and product implications are the most widely used implica-
tions in the engineering applications of fuzzy logic; but, what do they have to do
with traditional propositional logic? Table 2.7 demonstrates that neither minimum
implication nor product implication agrees with the accepted propositional logic
definition of implication; hence, minimum and product implications have nothing to
do with traditional propositional logic. Consequently, minimum and product
implications—Mamdani implications—can be thought of as engineering
implications.

Because of the use of engineering implication functions in rule-based fuzzy
systems and their disconnect from material implication, I now believe it would be
better to call such systems “fuzzy systems” rather than “fuzzy logic systems”.
Hence, in this book ‘fuzzy system” is used instead of “fuzzy logic system”, but
“fuzzy system” is not abbreviated to FS, because to do so would confuse it with a
fuzzy set.

**There is a paragraph in the lower right-hand column on p. 359 of Mendel (1995a) that contains
an error. Observe that the derivation of (2.129) has accounted for all values of x, including x # X/,
because it uses (2.128). For some reason that I cannot recall, in the erroneous paragraph, I claim
that for all x # X/, g (y) = 1, which I then interpret as a form of non-causality, i.e., a rule will
be fired for all x # x'. I then argue for the use of a Mamdani or Larsen implication on the basis of
their causality. This is incorrect; however, it does not affect anything else in the 1995 tutorial.
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Example 2.33 The purpose of this example is to demonstrate that both the mini-
mum and product implications lead to output fuzzy sets that seem quite reasonable
from an engineering perspective, in that they only alter the shape of pp(y) and do
not introduce a bias. As in Examples 2.31 and 2.32, singleton fuzzification is
assumed, i.e., pa-(x) is given by (2.128).

Considering minimum implication first, (2.129) becomes

pa(y) = minfjua (), ps(y)]y € ¥ (2.136)

A graphical interpretation of this result is given in Fig. 2.19. As in those earlier

examples, the level shown for 4 (x) was chosen arbitrarily. Observe from

Fig. 2.19b that given a specific antecedent x = x’ the result of firing a specific rule is

a fuzzy set whose support is finite and whose shape is a clipped version of pp(y).
Considering the product implication next, (2.129) becomes:

pip(y) = pa(X)us(y)y € Y (2.137)

A graphical interpretation of this result is given in Fig. 2.20. Similar conclusions
are drawn from this figure as were drawn for minimum implication. In this case, the
shape of the fuzzy output set is a scaled (attenuated) version of pg(y).

Overall conclusions are that minimum and product implications are, indeed,
useful engineering implications, and, that up: (y) can be expressed as

(a) (b)
M (Y) A ()

1 14

/\

4, (x") /\

Fig. 2.19 Construction of pp-(y) in (2.136). a Consequent MF pp(y), b construction of pp-(y)
(Mendel 1995a © 1995, IEEE)

t >V >y

(a) (b)
M () A u,-()

1 14 /\

M (x) /\

Fig. 2.20 Construction of pg(y) in (2.137). a Consequent MF piz(y), b construction of jup-(y)
(Mendel 1995a © 1995, IEEE)

1 » Y y
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pus(v) = pa (¥ ) depup(y)y € Y (2.138)

where % is either the minimum or product.

Example 2.34 When there is some uncertainty about the measurement of input
variable x, then the measurement can be modeled as a type-1 fuzzy number (in
Chap. 3 this will be called a non-singleton fuzzifier). Let the measured value of x be
denoted x'. In this example a type-1 fuzzy number is created that is centered about
X' by using the following Gaussian MF for A*:

fia- (%) = exp(f[(x —X)/on]? / 2) (2.139)

Here only a single antecedent rule is considered, one whose antecedent MF is
also assumed to be a Gaussian, namely:

pa(x) = exp(—[(x —mp)/oa) / 2) (2.140)

Mamdani product implication and product t-norm are assumed, and the goal here
is to evaluate the sup-star (product) composition in (2.127).
First, it is shown that the sup-star composition in (2.127) can be expressed as

(yey)

) = (supla (pa 0] )  pn) (2.141)

xeX

Using product implication, p4—pg(x,y) = pa(x)ug(y), and using product t-norm
* = X, (2.127) becomes:

xeX

pn(9) = suplsn. (s a0)] = (suplnac COa (o)) > pns)  (2:142)

which is (2.141).

Next, the value of x is established where sup,cy[ta-(x)pa(x)] occurs. Let
F(x) = pas (x)pa(x), and substitute the Gaussian MFs given in (2.139) and (2.140)
into it, to see that

Flx) = exp{é l<xa;x)2 + (" ;;"A>2] } =exp{ e} (2143)

To maximize f(x), ¢(x), must be minimized; hence, one proceeds as follows:

agch) _ 2<x—2ﬂ> +2<x —zmA> (2.144)

OAx 04
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Note that &?p(x)/0x*> = 2/a3, +2/06% > 0; hence, setting d¢(x)/dx = 0 leads
to the value of x that minimizes p(x), and subsequently maximizes f(x), i.e.:
Op(x)/0x = 0 = X = Xpay, which leads t0 (Xpax — ¥')03 + (Xmax — ma)o3, =0,
from which it is straightforward to show that

0%.my + a3x
Xmax =
03 + 03

(2.145)

Finally, f(Xmax) = Sup,cx[pa- (x)pa(x)] is computed. Substitute x = X,y into
s (x)pa(x) and use the middle part of (2.143), to obtain:

S (Xmax) = sup|pa- (x) pa (x)] = pa- (Xmax) 4 (Xmax )

xeX

— eXp{; [(%) 2 + (%) 2] } (2.146)

Using (2.145), it follows that:

Xmax — X 0x,mp+ 05X — (05 +03,)x  oan(my —X)

= 2.147
O Ax (O’i +6§,*)O_A* (63\+0%*) ( )
Xmas —Ma _ O3 ma+ 03X — (0 +03.)ma _ oa(Y —ma) (2.148)
oA (O'% + fo*)UA (0,24 + O-i*) .
Consequently,

1 [oixm — X+ AN - m/oz] }

i) = exp{_i (G )

{ 1
= exp —5

Observe that f(xp.x) depends on the measured value of x, X, and so it can be
treated as a function of x. Observe, also, that f(x’) is also a Gaussian function, one
that is centered about m, and has a variance that is equal to 0/2, + af‘*; hence, this
Gaussian is more spread out than either p4-(x) or p4(x). Once can therefore con-
clude that the effect of uncertainty on the measured input is to spread out the
antecedent’s MF.

Exercise 2.40 asks the reader to repeat these computations for Mamdani mini-
mum implication and the minimum t-norm.

(- mA)2
(63 +04.)

} =f(x) (2.149)
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2.18 Remarks

So far, all discussions about rules have been for rules with single antecedents, e.g.,
IF x is A, THEN y is B. Chap. 3 and later chapters describe and characterize rules
that have more than one antecedent, e.g.,

IF x; is F; and xp is F> and ... and x, is F},, THEN y is G

In such a multiple-antecedent rule, x; € X;,...,x, € X,,, y€ Y, and Fy,..., F, and
G are fuzzy sets.

Some other topics, which appear frequently in the fuzzy set literature and are
sometimes used in engineering applications of fuzzy set and logic, include: cardi-
nality, similarity and subsethood. Because none of them are used in this book,
although they could be used in other applications of rule-based systems, they are
left for Exercises 2.43, 2.44 and 2.45, respectively.

The different t-norms, t-conorms, and complements that are available from fuzzy
set theory provide some (tough) choices that have to be made in a fuzzy system.
Zimmerman (1991, pp. 42-43) describes eight criteria that might be helpful in
selecting the connective’s operator. Unfortunately, I found most of those criteria to
be so subjective that I could not use them in my engineering applications of fuzzy
sets.

It is very difficult to make a decision about which t-norm or t-co-norm to use in
the fuzzy domain because usually different numerical values are obtained for each
choice. It is only back in the crisp domain where the same numerical values are
obtained for the different choices that one can make a choice based on complexity
(simplicity) of the choice. Interestingly, Zadeh seems to only use the minimum or
product for conjunction and the maximum for disjunction, the least complex
choices.

Most rule-based engineering applications of fuzzy sets use: (1) the minimum or
algebraic product t-norm for fuzzy intersection, (2) the maximum t-conorm for
fuzzy union, and (3) 1 — pa(x) for the MF of the fuzzy complement. These choices
are adhered to in this book.

Finally, I want to comment on fuzzy sets and probability.’® Some people
maintain that there is no difference between fuzzy sets and probability. When I am
asked about this, often at the beginning of a lecture or course on fuzzy sets and
systems, I ask the following question: “How many of you have had a formal course
on probability?” Usually, all hands go up. Then I ask: “How many of you have had
a formal course on fuzzy sets and systems.” Usually, no hands, or only a very small
number of hands go up. I then state that in order to explain the differences between
fuzzy sets and probability, one must first spend time formally understanding fuzzy

*This is based on Ockham’s razor principle; see footnote 13 in Chap. 6 (page 272) for a dis-
cussion about this principle.

3The rest of the material in this section is taken for the most part from Mendel (1995a).
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sets. Only then can intelligent comparisons be made between that which one
understands (probability) and that which one will understand (fuzzy sets).

Having just read this chapter, fuzzy sets and probability can now be discussed
intelligently.

A lot has been written about fuzzy sets and their relation to probability [e.g.,
(Cheeseman 1988; Kosko 1990; Laviolette and Seaman 1994; Lindley 1982) and,
IEEE Trans. on Fuzzy Systems, March 1994, Special Issue]. Many fuzzy set the-
orists maintain that fuzzy sets are quite different than probability, for a wide variety
of reasons, including the facts that: the laws of excluded middle and contradiction
are broken for fuzzy sets, but are not broken in probability, and, that conditional
probability must be defined in probability theory, but can be derived from first
principles using fuzzy sets (Kosko 1990, 1992). Others maintain that fuzzy sets
subsume probability. Subjective (as distinguished from frequency-based) proba-
bilists on the other hand, maintain that anything one can do with fuzzy sets can also
be done with subjective probability, and that the latter is to be preferred because it
has an axiomatic basis, whereas fuzzy sets do not. They bemoan the fact that
engineers, who are the largest users of fuzzy systems, are not adequately trained in
subjective probability.

The fact of the matter is that there is some truth to both sides of fuzziness versus
probability. While it is of great intellectual interest to establish the proper con-
nections between fuzzy sets and probability, this author does not believe that doing
so will change the ways in which one solves problems, because both probability
and fuzzy sets should be in the arsenal of tools used by engineers. Fuzzy sets will
not solve all problems, nor will probability.

That fuzzy sets are a tool of enrichment and not replacement is clearly explained
in Bezdek and Pal (1992) who ask the question: “Where do fuzzy models fit in with
other models?” They then give the following answer (Bezdek and Pal 1992, ©
IEEE 1992):

Fuzzy models belong wherever they can provide collateral or competitively better infor-
mation about a physical process. ... we note that each of the following disciplines provides
some information about the dynamics of motion: Newtonian mechanics, relativistic
mechanics, statistical mechanics, quantum mechanics, and auto mechanics. These models
provide us with different, useful, auxiliary, and sometimes contradictory information about
various facets of dynamics. Each contributes something about the physical world, so it is
with various classes of models. ... From a different point of view, because every hard set is
fuzzy but not conversely, the mathematical embedding of conventional set theory into fuzzy
sets is as natural as the idea of embedding the real numbers into the complex plane. In both
cases we can expect the larger ‘space’ to contain answers to (real) questions that cannot be
found in the smaller one. Thus the idea of fuzziness is one of enrichment not of replacement.

Addressing the fuzziness versus probability issue, Bezdek and Pal also ask:
“Isn’t fuzziness just a clever disguise for probability?” Their answer is ([5], © IEEE
1992):

... an emphatic no. There is a strong philosophical argument against regarding fuzziness as
the surrogate for (frequency-based) probability. The spirit of this argument is contained in
(the following) example. Let L = set of all liquids, and let fuzzy subset L = {all (potable)
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liquids}. Suppose you had been in the desert for a week without a drink and you came upon
two bottles marked C and A [bottle C is labeled 1 (C) =0.91 and bottle A is labeled
Pr|A € L] = 0.91]. Confronted with this pair of bottles, and given that you must drink from
the one you choose, which would you choose to drink from? Most readers when presented
with this experiment immediately see that while C could contain, say, swamp water, it would
not ... contain liquids such as hydrochloric acid. That is membership of 0.91 means that the
contents of C are fairly similar to perfectly potable liquids (e.g., pure water). On the other
hand, the probability that A is potable = 0.91 means that over a long run of experiments, the
contents of A are expected to be potable in about 91% of the trials; in the other 9% the
contents will be deadly—about a 1 chance in 10. Thus, most subjects will opt for a chance to
drink swamp water. ... There is another facet to this example, and it concerns the idea of
observation. Continuing then, suppose we examine the contents of C and A and discover
them to be Dixie beer and hydrochloric acid, respectively. Note that, after observation, the
membership value of C is unchanged while the probability value for A drops from 0.91 to
0.0. This example shows that these two models possess philosophically different kinds of
information: fuzzy memberships, which represent similarities of objects to imprecisely
defined properties; and probabilities, which convey information about relative frequencies.

Appendix 1: Properties of Type-1 Fuzzy Sets

This appendix presents details about properties/laws of type-1 fuzzy sets and
examines the following frequently used laws to see if they remain satisfied under
maximum t-conorm and either minimum or product t-norms:

Reflexive, anti-symmetric, transitive, idempotent, commutative, associative, absorption,
distributive, involution, De Morgan’s, and identity

Our reason for doing this is that rules in a rule-based system may make use of the
words “and”, “or”, “unless”, “not”, etc., but all of the mathematics for such a
system is worked out in this book only for canonical rules that use the words “and”
and “or”. Section 3.2 shows how the former rules can be transformed into the
canonical rules by using some of the above laws. So, it is important to know when
or if the use of these laws is correct.

The exact nature of all the preceding laws is given in the second column of
Table 2.8. These laws are all satisfied for crisp sets (for the minimum and product
t-norms), due to the facts that: min(0,0) =0 and 0 x 0 =0, min(1,0) =0
and 1 x0=0, min(0,1) =0 and 0 x 1 =0, and, min(l,1) =1 and 1 x 1 = 1.
That they are all satisfied for maximum t-conorm and minimum t-norm (a so-called
“dual t-conorm and t-norm pair”) is well known (e.g. Klir and Yuan 1995) and
proofs for this situation are left to the reader (Exercise 2.41).

The rest of this appendix focuses on the maximum t-norm and product t-norm
pairing. Reflexive, anti-symmetric, and transitive laws do not make use of any
t-norm; hence, they are automatically satisfied for maximum t-conorm and product
t-norm. Commutative and associative laws are also satisfied, because both maxi-
mum and product operations are commutative and associative; i.e., for x € X
(V = maximum):
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Table 2.8 Summary of set-theoretic laws and whether or not they are satisfied for type-1 fuzzy
sets under maximum t-conorm and either minimum or product t-norms*

Set theoretic laws Minimum Product

t-norm t-norm
Reflexive A < pia Yes Yes
Anti-symmetric A < g, g < g = 4 = UB Yes Yes
Transitive pa < pp, e < e = pa < pe Yes Yes
Idempotent pa Vs = pa Yes Yes
paX g = pia Yes NO
Commutative pa 'V g = g V pa Yes Yes
paXpp = ppkpia Yes Yes
Associative (a V pg) V e = pa V (g V pc) Yes Yes
(padkpp) ke = pak(upkpc) Yes Yes
Absorption pak(pa V pg) = pa Yes NO
pa V (pakpp) = pia Yes Yes
Distributive pa¥k (g V pe) = (pakpg) V (pakpuc) Yes Yes
pa V (upkpc) = (pa V pp)k(pa V puc)  Yes NO
Involution My = A Yes Yes
De Morgan’s 1A V g = pz X jig Yes NO
Laws paXpig = iz V pig Yes NoO
Identity V0 = i Yes Yes
pakl = g Yes Yes
wmVl=1 Yes Yes
1a%0 =0 Yes Yes

Adapted from Table 1 of Karnik and Mendel (2001)
#Arguments of all MFs have been omitted; hence, p4, for example, is short for 114 (x)

Under product t-norm, the second part of the absorption laws is satisfied,
because pi4(x) X pp(x) < pa(x), so that pa(x) V (pa(x) X pp(x)) = pa(x). The first
part of the distributive laws is satisfied; i.e., product is distributive over maximum.
The first part of the idempotent laws is also satisfied; i.e., pa(x) V pa(x) = pa(x).
The involution law is satisfied, since complement is defined as pz(x) = 1 — pa(x).
And, all the identity laws are satisfied (i.e., pa(x) V O = pa(x), pa(x) x 1 = pa(x),
pa(x) V1 =1, and ps(x) x 0 = 0).
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None of the other laws are satisfied under product t-norm, because:

e Idempotent laws—second part

1A (x) X pa(x) # palx) (2.150)

e Absorption laws—first part: assume, e.g. that s (x) > pg(x); then,

() X (a(X) V p(2)) = j1a(x) X pa () = JB(x) # palx)  (2.150)

e Distributive laws—second part: assume, e.g. that pa(x) > pp(x) and
ta(x) > pe(x); then,

pa(x) V (g (x) X pe(x)) = pa(x)

e De Morgan’s laws:

pa(x) V pg(x) = 1= (pa(x) V pp(x)) (2.153)
# pia(x) x pug(x) = (1 — pa(x)) x (1 = pp(x))
pia(x) X pp(x) =1 = pa(x) x pup(x)

(2.154)
# pa(x) V pp(x) = max{(1 — pa(x)), (1 — pp(x))}

Exercises

2.1 Fuzziness as a concept that lets an object reside in more than one set but to
different degrees may be traced back to antiquity. Go on the Internet and find
a picture of the statue called the Guardian Sphinx (530 BC.).

(a) What are the three sets for this statue?
(b) What membership grade would you assign to each of the three
sets?

2.2 Fuzziness as a concept that lets an object reside in more than one set but to
different degrees has occurred in art, even before Zadeh formalized it. For
example, it occurs in the works of the Belgian painter René Magritte. Go on
the Internet and find the following paintings by him and answer the related
question:

(a) The Explanation (1952): What is the degree of similarity between
the carrot and the wine bottle?

(b) Homage to Alphonse Allais (1964): What is the degree of simi-
larity between the cigar and the fish?
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2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

2.11

Suppose that a car is described by its color. What scale could be used for
color? Create five terms for color and sketch MFs for each term.
Establish MFs for:

(a) real numbers close to 10

(b) real numbers approximately equal to 6
(c) integers very far from 10

(d) complex numbers near the origin

(e) light (weight)

(f) heavy (weight).

List six linguistic variables from the field of acoustics (or any field that is of
interest to you).

Using the rules in Example 2.5 as illustrations, list four more rules and their
associated MFs.

Let X be the set of all men and Y be the set of all women. Consider the
linguistic variable “weight,” and the set of terms {very skinny, skinny, just
right, heavy, very heavy}. Create MFs for these terms for both men and
women.

Consider the judgments listed here, and assume that they can be mapped onto
an interval scale ranging from O to 10. Define five fuzzy sets for each of them
and sketch what you feel are appropriate MFs for them.

(a) touching
(b) eye contact
(c) smiling
(d) acting witty
(e) flirtation.

Western logic and thinking has been dominated for the most part by the
Aristotelian laws of contradiction and the excluded middle. Eastern thinking
has not. Eastern religions and concepts such as the Yin and the Yang (female
and male/opposite forces) have caused some to speculate that this is why
China and Japan were more receptive to fuzzy logic than were people in the
West. For example, it’s possible for each of you to reside in Yin and Yang
simultaneously, but to different degrees. Explain this in terms of fuzzy sets.
Prove that, for crisp sets A and B, min[u, (x), up(x)] provides the correct MF
for intersection, given in (2.12).

For crisp sets A and B, prove the:

(a) commutative law
(b) associative laws
(c) distributive laws
(d) De Morgan’s laws.
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2.12

2.13

2.14

2.15

2.16

2.17
2.18

2.19

2 Type-1 Fuzzy Sets and Fuzzy Logic

Consider three fuzzy sets, A, B, and C, whose MFs are (unnormalized)
Gaussians, i.e., ua(x) =exp [—%(x - 3)2}, ug(x) = exp [—%(x - 4)2} and
pe(x) = exp [—%(x - 6)2] Sketch each of the following:

(a) pansnc(x)
(b) paupuc(x)
(c) M(AuB)mc(x) and piay@BnC) (x)
(d) tansuc(x) and paniuc)(x)
(e) taopue()-

Consider the fuzzy sets A and B, where pu4(x) = exp {—%(x—3)2} and
() = exp|—3(x — 4)°].

(a) Sketch psp(x) for the following t-conorms: maximum, algebraic
sum, bounded sum and drastic sum. Which t-conorm gives the
largest and smallest values for 4 p(x) ?

(b) Sketch panp(x) for the following t-norms: minimum, algebraic
product, bounded product and drastic product. Which t-norm
gives the largest and smallest values for pnp(x)?

Using (2.34) and (2.35), show that . s(u,v) and pens(u,v) are given by
(2.38) and (2.39), respectively.

Verify the max-min and max-product composition of the crisp relations for
the (3, 3) element of R3(U, W) in (2.43).

Consider the fuzzy relations “u is lighter than v’ or “u is about the same
weight as v.” Assume that ¥ € U and v € V where U and V are discrete
universes of discourse, and U has four elements whereas V has six elements.

(a) Pick U and V to use in the rest of this exercise.

(b) Establish MFs for lighter and about the same, i.e., p(u,v) and
thars (4, v), where the numbers in (1, v) and p(u, v) agree with
a comparison of the numbers in U and V.

(c) Compute piy (U, v).

Perform all of the calculations needed to obtain picomp (1, w) given in (2.54).
Repeat Example 2.15 using the product t-norm. Compare these results with
the ones given in (2.54) which were obtained using the minimum t-norm.
Are they significantly different?

Consider the fuzzy relation “u is lighter than v’ on U x V, and the fuzzy
relation “v is heavier than w” on V x W. Assume that U, V, and W are
discrete universes of discourse, and U has four elements, V has six elements,
and W has three elements.
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2.20

2.21

2.22

2.23

2.24

(a) Pick U, V, and W to use in the rest of this exercise.

(b) Establish MFs for lighter and heavier, i.e., p;(u,v) and p,(v,w),
where the numbers in p;(u,v) and p;(v,w) agree with a com-
parison of the numbers in U, V, and W.

(c) Compute pyop(u, w) using minimum t-norm.

(d) Compute fop (¢, w) using product t-norm.

(e) Compare the results from (c) and (d).

3

Consider the fuzzy relation “u is lighter than v’ on U X V. Assume that
U and V are discrete universes of discourse, and U has four elements and
V has six elements.

(a) Pick U and V to use in the rest of this exercise.

(b) Establish a MF for lighter, i.e., p;(u,v), where the numbers in
w;(u,v) agree with a comparison of the numbers in U and V.

(c) Construct a MF for the fuzzy set skinny, fisinny(u), on U.

(d) Compute the composition of “u is skinny” and “u is lighter than

V”a ,Ulskinnyol(v)-
Using the same universe of discourse as in Example 2.17, develop MFs for:

(a) very likely
(b) not-too-likely.

Suppose that U = {-5,—-4,-3,-2,-1,0,1,2,3,4,5} and fuzzy set A is
characterized by the MF

pa(x) =02/ —5+04/ —4+04/ —3405/ —240.5/
—140.6/0+0.9/1+1/240.8/3+0.5/4+0.1/5

(a) Determine the MF for the fuzzy set B that is associated with
Hray(y) when y = f(x) = x4+ 242
(b) Determine the MF for the fuzzy set B that is associated with
Hir(a) (y) when y = [x].
Suppose that X; = {1,2,3,4} and X, = {—1, -2, -3, —4}, and fuzzy sets
A; and A, are characterized by the following MFs:

pia, (x1) = 0.5/140.5/2+0/3+1/4 and
fia,(x2) =1/ — 140/ —2+4025/ —3+0.5/ — 4

Determine the MF for the fuzzy set B that is associated with fip(4,4,)(Y),
when y = f(x1,x2) = x} — 2x3.

Given the type-1 Gaussian fuzzy set F;, with mean m; and standard deviation
g;, prove that a;F;+ b is a Gaussian fuzzy set with mean a;m;+b and
standard deviation |a;0;|. Note that this result does not depend on the kind of
t-norm used, since a; and b are crisp numbers.
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2.25

2.26
2.27

2.28
2.29
2.30

2.31

2.32
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Given n type-1 Gaussian fuzzy sets Fy, ..., F,, with means my, ..., m, and
standard deviations o7, .. .0y, as in (2.77), prove that >} | F; is a Gaussian
fuzzy set with mean ) | m; and standard deviation X", where

S _ { Vi, a7 if product t-norm is used

> ,0; if minimum t-norm is used

[Hints: (1) First prove the results for two sets and then for three sets;
(2) show that the supremum of the minimum of two Gaussians is reached at
their point of intersection lying between their means.]

Complete part (b) in the proof of Example 2.21.

In Example 2.22, obtain the comparable results when ag; are positive or
negative real numbers.

Prove (2.81).

Repeat Example 2.28 but now for piyqp(x).

Let’”  X;(i=1,...,n) be fuzzy sets with Gaussian MFs,

px, (x;) = exp(—[(xi - ci)/ai]2/2>, and w; >0 be constant weights with

>, wi = 1. Using the Extension Principle with the minimum t-norm, prove
that Y, =Y, wiX; is a fuzzy set with MF
py,(ya) = exp(f[ w— D wici]z/ [>r wiai]z). [Hint: Prove this by
using mathematical induction.]

Let™® A = [a,b,c] and B = [p,q,r] be two triangle type-1 fuzzy numbers
with MF given in (2.103) and (2.104), respectively. Compute the MF of:

(a) A—B
(b) exp(A)
(0) In(A)
(d) VA

(o) (4)'".

Let” A =a,b,c] and B = [p,q,r] be two positive triangle type-1 fuzzy
numbers with MF given in (2.103) and (2.104), respectively. Compute the
MF of:

(a) A-B
(b) A+B
(©) (4)™

3TThis exercise is adapted from Wang and Mendel (2016).
3This exercise is adapted from Dutta et al. (2011).
3This exercise is adapted from Dutta et al. (2011).
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Fig. 2.21 Type-1 trapezoidal 4
fuzzy number for Exercise

2.33

2.33

2.34

2.35

2.36

2.37
2.38

For the non-normal type-1 trapezoidal fuzzy number, A; = (a;, b;, ¢;, di; w;),
whose MF is depicted in Fig. 2.21, prove that (Wei and Chen 2009):

(@ A+A = (Cll 4+ay, by + by, c1+ca,d; +d2;min(w1,wz)), where
a;, b;, ¢; and d; are real numbers.

(b) A] —A2 = ((11 — dz,bl — C2,C1 — bz,dl — az;min(wl,wz)),
where a;, b;, ¢; and d; are real numbers.

(C) A1 -Az ~ (a1 X az,bl X bz,Cl X Cz,dl X dz;min(wl,wQ)),
where a;, b;, ¢; and d; are positive real numbers.

(d) Al/A2 ~ (al/dz,b1/02, Cl/bz,dl /612; min(w1 s Wz)), where a;, bi,
¢; and d; are non-zero positive real numbers.

In (c) and (d), = means that the result is a convex type-1 fuzzy set, as in
(2.7), in which g(x) and h(x) are not straight lines.
Using truth tables show that the following are tautologies [3]:

(a) pA(gVr) < (pANg)V(pAr)
(b) pV(gAr) = (pVa)N(pVr)
(c) pA(@AT) = (pNg)Ar
(d) pV(gVr) = (pVq)Vr

Use truth tables to determine whether or not the following propositions are
tautologies:

(a) PAg)— (pVaq)
(b) ((p—= @) N(r—=s)AN(pVr)]—(qVs)
(c) (pAg)—r1)=(p—=r)V(g—r)

Prove that [(AAC)— D]A[(BAC)— D]« [(AV B)AC — D][Hint:
(p—4q) < (~p)Val

Validate the truth of the crisp implication MFs given in (2.122) and (2.123).
Repeat Example 2.32 for the following implication MFs, and indicate which
of these has a bias in its output:
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(a) Kleene-Dienes in (2.121)
(b) Reichenbach in (2.122)

(c) Godel : i_p(x',y) = {L 0) ) > iy
(d) Gaines Resher: uS¥ ,(x',y) = { (1) 5:((;{)) iil;(é))

2.39

(a) For the upward sloping lines in Fig. 2.22a, show that the sup-min
composition between the lines and the triangle always occurs at
the intersection of the line and the right-hand leg of the triangle.

(b) For the downward sloping lines in Fig. 2.22b, show that the
sup-min composition between the lines and the triangle always
occurs at the intersection of the line and the left-hand leg of the
triangle.

2.40 Everything is the same as in Example 2.34, except that in this exercise
minimum implication and minimum t-norm are used.

(a) Show that, in this case, the sup-star composition in (2.127) can be
expressed as

ps(y) = min | sup[min[gia- (x), pa (x)]], 15 ()

xeX

(b) Show that sup,.y[min[ua-(x), ua(x)]] occurs at the intersection
point of the two Gaussian MFs, namely at

X = Xmax = (04ma+0,X) /(04 +0,).

A1, () A ()

» ) 4
(a) Upward sloping line (b) Downward sloping line

Fig. 2.22 Type-1 fuzzy sets for Exercise 2.39
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2.41

2.42
2.43

2.44

(c) If possible, obtain a formula for sup,y[min[pa- (x), pa(x)]].

(d) Assume a Gaussian consequent MF ug(y). Sketch the fired-rule
MF pip(y). How is this obtained directly from sketches of pu4: (x),
pia(x) and fi5(y)?

(e) Repeat part (d) for a triangular consequent MF.

(f) Compare the result in part (e) with the result in Fig. 2.19.

Show that for type-1 fuzzy sets all the set-theoretic laws that are in Table 2.8
are satisfied under maximum t-conorm and minimum t-norm.

Verify (2.153) and (2.154) numerically.

As one knows, crisp set A can be defined by using its MF in (2.1). The
number of elements that are in A is called its cardinality. So, for a crisp set its
cardinality can be obtained by summing all of its MF values. Using this
idea®, one can also define the cardinality of a type-1 fuzzy set A, |A|,
analogously (De Luca and Termini 1972), i.e. for a discrete universe,
A| = [, pa(x)dx. Observe

that |A| increases as N increases, and limy ., S| 11 (x;) does not exist. Wu
and Mendel (2007) handle this by defining a normalized cardinality, p(A),
for a type-1 fuzzy set in which DeL.uca and Termini’s cardinality definition
for continuous universes |A| = [, pa(x)dx, is discretized, i.e.

|A| = Zf\[: | ka(x;), and for a continuous universe,

p(A) = %‘Zf’;l ta(x;), where |X| = xy — x; is the length of the universe of
discourse used in the computation. X can be part of the complete universe of
discourse because for some MFs (e.g., Gaussian, Bell) the complete uni-
verses of discourse are infinite. Usually x; (i = 1,...,N) are chosen equally
spaced in the domain of x;; in this case, p(A) converges to its continuous
version, [, pa(x)dx as N increases.

(a) Compute |A| for the triangle and trapezoidal type-1 fuzzy sets that
are in Table 2.3.

(b) Compute p(A) for the same MFs used in (a) for N = 10, 50, 100,
and compare these results with |A|.

Similarity is sometimes used in a rule-based fuzzy system, so this exercise
explores similarity for type-1 fuzzy sets. Similarity is about set equality. Two
crisp sets A and B are equal if they contain exactly the same elements. In

“OThe wording of the rest of this exercise is taken from Wu and Mendel (2007, p. 5383). The
following is also taken from Wu and Mendel (2007, pp. 5382-5383): Definitions of the cardinality
of type-1 fuzzy sets have been proposed by several authors, including De Luca and Termini
(1972), Kaufman (1977), Gottwald (1980), Zadeh (1981), Blanchard (1982), Klement (1982) and
Wygralak (1983). Basically there are two kinds of proposals (Dubois and Prade 1985; Wygralak
2003): (1) those that assume that the cardinality of a type-1 fuzzy set should be a precise number,
and (2) those that claim it should be a fuzzy integer. De Luca and Termini’s definition of
cardinality (also called the power of a type-1 fuzzy set) is for the first proposal, is the one that is
given in the statement of this exercise, and is the most frequently used definition of cardinality.
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crisp set theory either two sets are equal or they are different. For fuzzy sets
one knows that everything is a matter of degree; thus for two type-1 fuzzy
sets A and B, it is reasonable to define a degree of similarity. As usual (in this
book), crisp sets are our starting point.

As is stated in Nguyen and Kreinovich (2008): It is known that for two crisp sets
A and B: (1) ANBCA U B (create a Venn diagram to convince yourself of the truth
of this), and (2) A = Biff ANB = AUB. So, for crisp sets, to check whether A = B
consider the ratio |A N B|/|A U B| where |+| denotes the cardinality of - (see Exercise
2.43 about cardinality). In general this ratio is between 0 and 1; the smaller the
ratio, the more there are elements from A U B which are not part of AN B, and thus
elements from one of the sets A and B that do not belong to the other of these two
sets. Thus, for crisp sets, this ratio can be viewed as a reasonable measure of degree
to which A is equal to B.

Because there are many definitions of cardinality for a type-1 fuzzy set, and
because there can be many ways to define the similarity between two type-1 fuzzy
sets (Mendel and Wu 2010 mention that there are at least 50 reported expressions for
determining how similar two type-1 fuzzy sets are), this exercise focuses on what is
arguably the most popular and useful definition of similarity, the so-called Jaccard
similarity measure, named after P. Jaccard (Jaccard 1908), who is credited with such
a formula.*' The Jaccard similarity measure, sm;(A, B), for type-1 fuzzy sets A and
B, is: sm;(A, B) = f(ANB)/f(AUB). Usually, function fis chosen as the cardinality
where N = min and U = max. For a continuous universe of discourse:

_ |[ANB| _ Jx min(ea(x), pp(x))dx
AUB| [, max(pa(x), pup(x))dx

smy(A, B)

(a) What is the formula for sm, (A, B) for discrete universes of discourse?

(b) Compute smy(A,B) for the two type-1 fuzzy sets that are depicted in
Fig. 2.23a.

(¢) Compute smy(A,B) for the two type-1 fuzzy sets that are depicted in
Fig. 2.23b.

“IPlease note that the use of a crisp number for the similarity of type-1 fuzzy sets is not being
absolutely advocated for. Arguments can be given for using a type-1 fuzzy set similarity measure
just as well as or for using a crisp number for similarity. The application may dictate which kind of
measure is preferable. Of greater importance is that a similarity measure should satisfy some
desirable properties, otherwise any kind of a measure between two type-1 fuzzy sets could be
claimed to be a similarity measure. Four desirable properties for a type-1 fuzzy set similarity
measure sm(A, B) are (e.g., Mendel and Wu 2010, Ch. 4): (1) Reflexivity: sm(A,B) = 1 < A = B,
(2) Symmetry: sm(A, B) = sm(B,A); (3) Transitivity: If C <A < B (Note: A < B if s (x) < pp(x)
for x € X), where C is an arbitrary fuzzy set on domain X, then sm(C,A) > sm(C,B); and
(4) Overlapping: If ANB # (, then sm(A, B) > 0; otherwise, sm(A, B) = 0. sm;(A, B) satisfies
these four properties.



Exercises 95

» X

0 Lo ;o 0 Do :
005 1 15 2 25 3 35 005 1 15 2 25 3 35

Fig. 2.23 Two type-1 fuzzy sets, A and B, for Exercise 2.44

2.45 Subsethood is also sometimes used in a rule-based fuzzy system, so this
exercise explores subsethood for type-1 fuzzy sets. Subsethood is about set
containment. Containment is dependent on the order of the two sets, A and B,
i.e. A can be contained in B but B does not have to be contained in A, e.g.
when A = {1,2,3} and B ={1,2,3,4,5,6}, A C B but B ¢ A. For crisp
sets, it is only when A = B that A is contained in B and B is contained in
A. For fuzzy sets one knows that everything is a matter of degree; thus, for
two type-1 fuzzy sets A and B, it is reasonable to define a degree of sub-
sethood. As usual (in this book), crisp sets are our starting point.

As is stated in Nguyen and Kreinovich (2008): It is known that for two crisp sets
A and B: (1) ANBCA and (2) ACB iff ANB = A (create Venn diagrams to con-
vince yourself of the truth of these). So, for crisp sets, to check whether A is a subset
of B consider the ratio |A N B|/|A| where |-| denotes the cardinality of - (see Exercise
2.43 about cardinality). In general this ratio is between 0 and 1, and it equals 1 if
and only if A is a subset of B. The smaller the ratio the more there are elements from
A which are not part of the intersection ANB and thus not part of set
B. Consequently, for crisp sets, this ratio can be viewed as a reasonable measure of
the degree to which A is a subset of B (see, also, Kosko 1990, 1992).

Because there are many definitions of cardinality for a type-1 fuzzy set as well as
the intersection of two type-1 fuzzy sets, there can be many ways to define the
subsethood®” between two type-1 fuzzy sets. This exercise focuses on what is

“?Please note that the use of a crisp number for the subsethood of type-1 fuzzy sets is not being
absolutely advocated for. Arguments can be given for using a type-1 fuzzy set subsethood measure
just as well as or for using a crisp number for subsethood. The application may dictate which kind
of measure is preferable. Of greater importance is that a subsethood measure should satisfy some
desirable properties, otherwise any kind of a measure between two type-1 fuzzy sets could be
claimed to be a subsethood measure. Three desirable properties for type-1 fuzzy set subsethood
measure ss(A, B) are (e.g., Mendel and Wu 2010, Ch. 4): (1) Reflexivity: ss(A,B) =1 < A<B
(Note: A < B if pis(x) < pg(x) for x € X); (2) Transitivity: If C <A < B, then ss(A, C) > ss(B, C),
where C is an arbitrary fuzzy set on domain X, or if A <B, then ss(C,A) <ss(C, B) for any C;
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arguably the most widely used definition of subsethood due to Kosko (1990) and
denoted here as ssx (A, B). For a continuous universe of discourse,

Jxe min(pa (x), i (x))dx

ssx(4, B) = Sy 1a(x)dx

(a) Explain why ssx (A, B) # ssg(B,A).

(b) What is the formula for ssg (A, B) for discrete universes of discourse?

(¢) Compute ssg(A,B) for the two type-1 fuzzy sets that are depicted in
Fig. 2.23a.

(d) Compute ssg(A,B) for the two type-1 fuzzy sets that are depicted in
Fig. 2.23b.
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