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Abstract. At PKC 2006, Chevallier-Mames, Paillier, and Pointcheval
proposed a very elegant technique over cyclic subgroups of F, eliminat-
ing the need to encode the message as a group element in the ElGamal
encryption scheme. Unfortunately, it is unclear how to adapt their scheme
over elliptic curves. In a previous attempt, Virat suggested an adapta-
tion of ElGamal to elliptic curves over the ring of dual numbers as a
way to address the message encoding issue. Advantageously the result-
ing cryptosystem does not require encoding messages as points on an
elliptic curve prior to their encryption. Unfortunately, it only provides
one-wayness and, in particular, it is not (and was not claimed to be)
semantically secure.

This paper revisits Virat’s cryptosystem and extends the Chevallier-
Mames et al.’s technique to the elliptic curve setting. We consider elliptic
curves over the ring Z/p°Z and define the underlying class function. This
yields complexity assumptions whereupon we build new ElGamal-type
encryption schemes. The so-obtained schemes are shown to be semanti-
cally secure and make use of a very simple message encoding: messages
being encrypted are viewed as elements in the range [0,p — 1]. Further,
our schemes come equipped with a partial ring-homomorphism prop-
erty: anyone can add a constant to an encrypted message —or— multiply
an encrypted message by a constant. This can prove helpful as a blinding
method in a number of applications. Finally, in addition to practicability,
the proposed schemes also offer better performance in terms of speed,
memory, and bandwidth.

Keywords: Public-key encryption - ElGamal encryption - Elliptic
curves * Class function - Standard model

1 Introduction

Encryption is one of the most fundamental cryptographic primitives. It allows
parties to exchange data privately. In the asymmetric setting, a (certified) public
encryption key is made publicly available and the matching decryption key is
kept private. Anyone can encrypt messages with the public key but only the
intended recipient (possessing the private key) is able to decrypt ciphertexts.
We refer the reader to Appendix A for background on public-key encryption.
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ElGamal Encryption. The classical ElGamal public-key encryption scheme
[12] readily extends to any group G wherein computing discrete logarithms
is assumed to be intractable. In order to avoid sub-group attacks using the
Pohlig-Hellman algorithm [25], the underlying group is usually restricted to a
prime-order group G = (g); see also [4]. We let ¢ denote the order of G.

The description of G and the generator g are made public. A random ele-
ment y = ¢* € G is drawn for some randomly chosen x < Z/qZ. The public-
key /private-key pair is defined by (pk, sk) with pk = {G, ¢, g} and sk = {z}; the
message space is M = G. The encryption of a message m € G is given by the
pair (c1, o) where

ci=g¢" and co=my"

for a random integer r <~ Z/qZ. Given the ciphertext C' = (c1,¢3) € G x G,
message m is then recovered thanks to secret key x as m = ca/c1”.

As described above, the ElGamal scheme is known to meet the IND-CPA secu-
rity notion under the decisional Diffie-Hellman (DDH) assumption [29]. Loosely
speaking, the DDH assumption states that no efficient algorithm can distinguish
between the distributions (g, g%, ¢°, g*°) and (g, g%, ¢°, ¢°) where a,b, ¢ & Z/qZ.

Message Encoding. Elliptic curve cryptography [22,24] benefits from the absence
of sub-exponential algorithms to solve the underlying hard problem, the elliptic
curve discrete logarithm problem. Elliptic curve cryptosystems therefore fea-
ture smaller key sizes, which results in significant gains in speed and memory.
When applied to elliptic curves over a finite field, ElGamal encryption compels
to express the plaintext message m as a point on an elliptic curve or, more pre-
cisely, as a point on a prime-order subgroup G thereof. This requires an injective
encoding function mapping the message space to G. Such encodings are provided
in [2,14,15] for certain elliptic curves. Unfortunately they do not apply to prime-
order elliptic curves as those recommended in most cryptographic standards.

Another option is to leverage the property that any element w € G = (g) is
uniquely represented as w = g* for some t € Z/qZ. This leads to the ‘exponent’
ElGamal scheme (see e.g. [10]). A message m C Z/qZ is encoded as g™. The
corresponding ciphertext then becomes (c¢1,¢o) with ¢; = ¢" and ¢ = g™ y" for
some 1 < 7 /qZ. Unfortunately, decryption now involves the computation of a
discrete logarithm in G: m is the discrete logarithm of ¢o/c1* w.r.t. base g. Since
discrete logarithms are supposed to be hard in G, this limits the message space
to a small subset of Z/¢Z so that discrete logarithms can be solved through, e.g.,
exhaustive search or Pollard’s lambda method [26].

Yet another option is to modify the scheme by introducing a hash function.
The resulting scheme is referred to as the hash-ElGamal scheme. In more details,
let h: G — {0,1}¢,w +— h(w) be a hash function that maps group elements to
(-bit strings. The message space is defined as M = {0,1}*. The encryption
of a message m € M is given by (c1,c2) with ¢; = ¢" and ¢co = m @ h(y").
This variant elegantly solves the encoding problem. On the downside, unless
one is willing to model h as a random oracle, the security analysis requires
either additional assumptions on i — which should behave as a computationally
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secure (a.k.a. entropy-smoothing [27]) key derivation function — or larger key
sizes [3,17,18]. Indeed, as observed in [18, Appendix A], using an information-
theoretically secure key derivation function, the Leftover Hash Lemma [20,21]
would require y” to come from a distribution with about 300 bits of min-entropy
in order to produce a 128-bit symmetric encryption key.

To overcome the message-encoding issue, Virat came with a different app-
roach in [30]. Her idea consists in working with an elliptic curve over the ring
F,[e], namely the ring of dual numbers over the prime field F,. Doing so, the
message space becomes F,; i.e., messages are now viewed as integers in the set
{0,...,p — 1} rather than points on an elliptic curve.

Homomorphism Property. Malleability of ciphertexts is usually seen as an unde-
sirable property. It proves nevertheless very useful in certain applications. Exam-
ples include electronic voting, electronic commerce or, more generally, privacy-
preserving computations. The basic ElGamal scheme satisfies a homomorphism
property with respect to the group law in G. Namely, if - denotes the group
law in G then given the ElGamal encryption of messages mi,me € G, any-
one can derive the encryption of my - mo. Indeed, letting Ci = (c1,1,¢1,2) and
Cy = (c2,1,¢2,2) the respective encryption of m; and mg, with ¢;; = ¢™ and
cia=my" (i € {1,2}), it is easily checked that

Cs=(c1,1-¢2,1,C2,1 - C2,2)

is the encryption of message ms = my - mg € G. For elliptic-curve ElGamal,
including Virat’s cryptosystem, this translates into the encryption of the (elliptic-
curve) addition of two points. When the exponent variant is used, composing two
ciphertexts yields the encryption of a message ms = mj; + mo (mod ¢), where
messages my and my are viewed as elements in a small subset of Z/¢Z.

Hash ElGamal is only partially homomorphic, w.r.t. the XOR operator. Given
the encryption of a message m, anyone can compute the encryption of a message
m’ = m @ K for any chosen value K € {0,1}*. If C = (c1,c2) with ¢; =
9" and ca = m @ h(y") then C' = (c¢1,c,) with ¢4 = K @ co is the hash-
ElGamal encryption of m/’. This holds true, regardless of the underlying group.
In particular, this is verified for elliptic curves.

Our Contribution. Compared to the classical elliptic-curve ElGamal encryption
scheme, there are several drawbacks in Virat’s cryptosystem. First it is compu-
tationally more demanding. Second it leads to an increased ciphertext expansion
ratio. This is particularly damaging for elliptic curve cryptosystems as they are
primarily designed to reduce the bandwidth. Third and more importantly, the
security of the scheme is rather weak. It is only shown to be one-way; in partic-
ular; it does not provide semantic security.

We propose in this paper new ElGamal-type cryptosystems that enjoy the
same advantage as Virat’s cryptosystem (namely, no message encoding as points
on elliptic curves) but without its drawbacks. In an earlier work, Chevallier-
Mames et al. [9] astutely observe that certain mathematical properties of inte-
gers modulo p?, where p is a prime number, allow getting rid of the message
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encoding from the classical ElGamal cryptosystem. Unfortunately, the solution
of [9] is not known to be readily instantiable over elliptic curve subgroups. As a
consequence, the Chevallier-Mames et al. [9] system loses the benefit of shorter
keys enabled by elliptic curve cryptography. In this work, we solve a problem left
open by Chevallier-Mames et al. [9] and provide an adaptation of their scheme [9]
to the elliptic curve setting. The resulting encryption schemes features the same
ciphertext expansion ratio as [9] and retains the partial homomorphism proper-
ties (additive or multiplicative). We prove that they are semantically secure in
the standard model under a natural hardness assumption. We also describe a
chosen-ciphertext secure extension of these schemes.

2 Encoding-Free ElGamal Schemes

2.1 Virat’s Cryptosystem

Let K be a finite field of characteristic p # 2,3. The ring of dual numbers of K
is K[e] with £2 = 0.
Consider the elliptic curve FE over K[e] given by the Weierstrafl equation

E:y?=24+ax+b (1)

with a,b € K[e] and 4a®+27b% # 0. The set of points (z,y) € K[e] xK]e] satisfying
this equation together with the points at infinity, Oy = (ke : 1 : 0) with k €
K, form an Abelian group under the chord-and-tangent rule. Explicit addition
formulae are provided in [31, Table 2.1]. This group is denoted by E(K[e]) and
its order by #E(K]e]). Since E(K[e]) contains the p-torsion subgroup formed by
the points at infinity, its order is a multiple of p.

Virat’s cryptosystem relies on elliptic curves over F,[¢] for some prime p > 3.
Hence let E be an elliptic curve over Fp[e] as per Eq. (1) of order pg for some

prime ¢ # p, and let P be a generator of E(F,e).

KeyGen(1?). On input security parameter \, generate a cyclic group E(F,le]) =
(13) of order pq as above. Next, choose a random integer z < Z/qZ and
compute Y = [zp]P.

The public key is pk = {E(F,[¢]), ¢,P,Y} and the private key is sk = {z}.

Encrypt(pk, m). The encryption of a message m € F,, is given as follows:

1. Choose a random integer r < Z/qZ;

2. Choose a random finite point (zq,yo) < FE(F,);

3. Define M = (xo+me,yo +y1€) where y; is the unique solution in FF,, such
that M € E(F,e]);

4. Compute the points Cy = [rp]P and Cy = M + [r]Y;

5. Output the ciphertext C' = (Cl,é'z).

Decrypt(sk, C'). The decryption of C' = (Cy,C3) is obtained as M = Cy — [2]Cy
using secret key x, which in turn yields the value of m.



Encoding-Free ElGamal-Type Encryption Schemes on Elliptic Curves 23

In a variant, Virat suggests to define the elliptic curve E over F[e] but with
curve parameters a,b € IFp,. It is then shown that the scheme is one-way under
the computational Diffie-Hellman assumption in E(F,) [30, Theorem 6.4].

Given the z-coordinate of a finite point in E(Fp[e]), there are two possible
values for its y-coordinate. So 2|p| 4 1 bits suffice to represent C; or Ca, leading
to a ciphertext expansion ratio of 4 + 1 [30, Sect. 5.2].

Remark 1. When the curve parameters a,b € F,, Lemma 1 in [1] implies that
for every finite point P = (zo + 21, y0 + y1¢) € E(Fp[e]) there exists a unique
k € F, such that P = P 4+ Oy with P = (z0,0) € E(F,). It thus turns out
that [p|P = [p|P + [p](ke : 1:0) = [p]P € E(Fp). In this case, it is interesting
to define the public key as pk = {E(F,[¢]),q,Q,Y} where Q = [p]ls € E(F,)
and to evaluate C as C1 = [r|Q € E(F,). The ciphertext expansion ratio then
drops to 3 + 1 using a compressed point representation (i.e., C; is represented
with |p| + 1 bits and Cp with 2|p| + 1 bits).

2.2 The Chevallier-Mames—Paillier—Pointcheval Scheme

The scheme of Chevallier-Mames et al. [9] is based on the class function over
cyclic subgroups of . Specifically, for primes p and ¢ such that ¢ | p — 1, given
a cyclic subgroup (g) C F; of order ¢, the class of w = g mod p (w.r.t. §) is
denoted by [w] and is defined as the unique integer in Z/pZ such that

gCRT([[w]],a)

for some § € (Z/p?Z)* of order pq and such that § = g (mod p), and where
CRT([w], ) is an integer such that

mod p? = w

CRT([w],a) = [w] (mod p) and CRT([w],a)=a (mod q);
see [9, Sect.4.1]. For example, if § = (1 — kp) g mod p? with k := % then

(w? mod p?) — 1

[w] =

mod p.

Proof. Observe that ¢ = ¢?

elements in (Z/p?Z)*, 1—kp (

q. Hence, it follows that w = g
wi = (1- kp)lle =1 — (k[w

g (mod p) as required. Remark also that, as
od p?) is of order p and gP (mod p?) is of order
T([[w]] @) = (1 —kp)* (g?)* (mod p?) and thus
qQ)p =1+ [w]p (mod p?). 0

5E

|=)Q

Equipped with such an efficiently computable class function, the encryption
scheme of Chevallier-Mames et al. goes as follows.

KeyGen(1*). On input security parameter \, generate a prime p and an element
g € I}, of large prime order ¢. Next, compute y = g* mod p for some random
integer x <~ Z/qZ. The public key is pk = {F5,q,9,y} and the private key is
sk = {z}.
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Encrypt(pk, m). The encryption of m € Z/pZ is given by the following algorithm:
1. Choose a random r < Z/qZ. Compute ¢; = g" mod p and d = y" mod p;
2. Define co = m + [d] (mod p);
3. Output the ciphertext C = (c1, ¢2).
Decrypt(sk,C). C = (c1,¢a) is decrypted as m = ¢a —[¢1” mod p] (mod p) using
the private key sk = z.

3 New Cryptosystems

Rather than considering elliptic curves over the ring F,[e], we work with elliptic
curves defined over the ring Z/p?Z. Borrowing the terminology of [9], this allows
us to define a class function whereupon new ElGamal-type cryptosystems are
derived. See also [16] for another family of cryptosystems making use of elliptic
curves defined over a ring.

3.1 Class Function on Elliptic Curves

Since F, = Z/pZ C Z/p*Z, we can view an elliptic curve given by a Weierstraf
equation (with curve parameters a,b € F,) over the ring Z/p?Z. In order to deal
with the points at infinity, we regard the projective form

Y?Z =X+ aXZ?+b2°.
The set of points on this elliptic curve over Z/p?Z is denoted by E(Z/p*Z).

The subset of points that reduce to O = (0 : 1 : 0) modulo p is denoted by
E1(Z)p?Z); see [28, Sect. 2.

Proposition 1. Using the previous notations, we have
EVZ/p*Z) = {(ap:1:0)|0<a<p—1}.

Proof. By definition, we have Ey(Z/p*Z) = {(X : Y : Z) € E(Z/p*Z) | (X :
Y:Z)=(0:1:0) (mod p)}. Since Y = 1 (mod p) we obviously have Y # 0
(mod p?) and so we can write Ey(Z/p*Z) = {(3 : 1: £) € E(Z/p*Z) | (X :
Y:Z2)=(0:1:0) (modp)} ={(ap:1:9p) € E(Z/p*Z) |0 < a,y <p—1}.
Plugging (ap : 1 : vp) into the Weierstral equation yields yp = 0 (mod p?) <=
v =0 (mod p). We therefore get E1(Z/p*Z) = {(ap:1:0)|0<a<p-1}. O

The theory of formal groups [28, Proposition 1V.3.2] implies that E(Z/p?7Z)
is a group isomorphic to the additive group (Z/pZ)*. We have

I': E(Z)p°Z) = (Z/pZ) ", (ap:1:0) — a.

Hence, the sum of two elements (ayp : 1 : 0) and (agp : 1 : 0) in E1(Z/p?7Z)
is given by (asp : 1 : 0) with as = (a1 + a2) mod p. This also implies that
E1(Z/p?Z) is a cyclic group of order p. Letting U = (p : 1 : 0), we can write
B\(2/p*Z) = (U).
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Given a finite point P = (x,y) € E(F,), with y # 0, we define

3 a2 2 A(P
A(P):(x +aa:+bp y*) mod p and w(p)zéy)modp.

[In the definition of A(P), point P is lifted; i.e., its coordinates z and y are
viewed as integers.|
This gives rise to the map

O—O0

: — 2
Vi) = B, {@c,y) (o + (D).
To ease the notation, we will sometimes write P for ¥ (P).

We assume that E is not an anomalous curve (i.e., #E(F,) # p) and we let
¢ = ordg(P) denote the order of point P € E(F,). We define V = [p|P. Clearly,
we have that V is of order q. R

Consider now the subgroups G = (P) C E(F,) of order ¢ and G = (U,V) C
E(Z/p*Z) of order pq. Any element Q € G can uniquely be written as

Q= [BU + [a]V for some a € Z/qZ and § € Z/pZ. (2)

We call integer (3 the class of @ and write 8 = [@]. The crucial observation is
that ¥(G) C G. Asa consequence, to any element @ € G, we similarly define its
class as [@]. To ease the notation, we will sometimes omit the tilde and simply
write [@].

It is worth noticing that computing the class is easy. By definition, from the
unique decomposition of a point Q € G as Q = [BIU + [a]V with g = [Q], it
immediately follows that [¢]@Q = [¢8]U = (¢fp : 1:0) and thus

—==% mod p. (3)

3.2 An Additive Cryptosystem

With the above setting, we can now describe our first cryptosystem. The message
space is Z/pZ for some prime p.

KeyGen(1*). On input security parameter ), generate an elliptic curve E over
the prime field F,, and a point P € E(F,) of large prime order g. Next,

compute the point Y = [2]P € E(F,) for some random integer = <~ Z/qZ.
The public key is pk = {E(F}), ¢, P,Y} and the private key is sk = {z}.
Encrypt(pk, m). The encryption of a message m € Z/pZ is given by the following
algorithm:
1. Choose a random integer r <- 7/qZ;
2. Compute in E(F,) the points Cy = [r]P and Cy = [r]Y;

3. Compute g = [Ca];



26 M. Joye and B. Libert

4. Define ca = m + S (mod p);
5. Output the ciphertext C' = (Ch, c2).

Decrypt(sk,C). The decryption of C = (Ci,cq) is obtained as m = ¢y —
[¥([z]C1)] (mod p) using the secret key .

The above cryptosystem presents a number of advantages. First, the cipher-
texts are very compact. In their basic version, they feature a 3 + 1 ciphertext
expansion ratio. This ratio can even be reduced to only 2 + 1 by using a com-
pressed representation for Cy. Second, as will be shown in Sect. 4, it meets the
standard IND-CPA security level in the standard model (while Virat’s cryp-
tosystem only satisfies one-wayness). Third, the proposed cryptosystem is to
some extent malleable. More precisely, if (C1,c2) denotes the [additive] encryp-
tion of a message m then (Cy,c2 + K (mod p)) is the encryption of message
m + K (mod p) for any K € 7Z/pZ. Fourth, encryption is very fast. In an
on-line/off-line mode [13], the encryption of a message m only requires a mere
addition modulo p. Fifth, in contrast to classical E1Gamal on elliptic curves over
F),, no prior encoding of the message as a point on an elliptic curve is required.

3.3 A Multiplicative Cryptosystem

The previous cryptosystem is additive. As Z/pZ is equipped with both addition
and multiplication, we can define a multiplicative cryptosystem by replacing
Step 3.2 in the encryption process accordingly.

KeyGen(1*) Idem.
Encrypt(pk, m). The encryption of a message m € Z/pZ is given by the following
algorithm:
1. Choose a random integer r < Z/qZ;
2. Compute in E(F,) the points Cy = [r]P and Cy = [r]Y;
3. Compute § = [Ca];
4. Define co =m - (mod p);
5. Output the ciphertext C = (Ch, c2).
Decrypt(sk,C). The decryption of C' = (C1, c2) is obtained as m = co/[¥([x]C1)]
(mod p) using the secret key z.

This multiplicative variant shares the advantages as its additive counterpart.
The difference resides in that it is partially homomorphic w.r.t. multiplication;
that is, if (C1, ¢2) is the [multiplicative] encryption of a message m then (Cy, ca- K
(mod p)) is the encryption of message m - K (mod p).

4 Security Analysis

4.1 Complexity Assumptions

Let E(F,) be an elliptic curve over the prime field F,, and let G C E(F,) a cyclic
subgroup thereof. Let also P be a generator of G and P = W(P) € E(Z/p*Z).
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We remind that the class of a point @ € G (w.r.t. P), denoted [@], is the unique
integer 3 € Z/pZ such that ¥(Q) = [B]U + [o]V where U = (p : 1 : 0) and
V = [p]P.

Given P and [a|P, [)|P & G = (P) C E(F,), the elliptic curve class computa-
tional Diffie-Hellman (Class-CDH) problem is to compute the class of [ab]P; i.e.,
[[ab]P]. Likewise, the elliptic curve class decisional Diffie-Hellman (Class-DDH)
problem is to distinguish between the two distributions (P, [a]P, [b]P, [[ab]P])
and (P, [a)P, [b]P, V) for a,b < [0,#G) and 9 & Z/pZ. We assume that these
two problems are hard.

More formally, define an instance-generating algorithm G taking as input
a security parameter A and returning (the description of) a cyclic group G C
E(F,), its order ¢ = #G, and a generator P, as above. We consider the following
experiment for an adversary A.

Class 4,g(N):
1. Run G(1*) and obtain (E(F,), g, P);
2. Choose a,b <~ Z/qZ and compute [a]P and [b]P;
3. Ais given (E(F,),q, P, [a]P, [b]P) and outputs ' € Z/pZ;
4. The output of the experiment is 1 if 5’ = [C] where C = [ab]P €
E(F,), and 0 otherwise.

Definition 1. The Class-CDH assumption says that for any probabilistic poly-
nomial-time adversary A there exists a negligible function negl such that

Pr[Class4,g(\) = 1] < negl(}).

Definition 2. The Class-DDH assumption says that for any probabilistic poly-
nomial-time adversary A there exists a negligible function negl such that

Pr [A(E(]Fp), ¢, P, [a]P, [bP, [[ab]P]) = 1] .
Pr [A(E(Fp), g, P, [a]P, [P, )= 1} ’ < negl()),

where the probabilities are taken over the experiment of running (E(F,), q, P) <
G(1*) and choosing a,b < 7./qZ and ¥ < Z/pZ.

4.2 Semantic Security

Clearly the one-wayness of our cryptosystems is equivalent to the Class-CDH
assumption.

We show below that the proposed cryptosystems are semantically secure
under the Class-DDH assumption. We state:

Theorem 1. The schemes of Sects. 3.2 and 3.3 are IND-CPA under the Class-
DDH assumption.
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Proof. In order to deal with the two cryptosystems at the same time, we write
the second part of the ciphertext, ¢z, as co = m 8 (mod p) where x stands for
addition modulo p or multiplication modulo p.

The goal is to construct a distinguisher D against the Class-DDH problem
from an IND-CPA attacker A against the scheme. Consider the following algo-
rithm D receiving as challenge the Class Diffie-Hellman triplet ([a]P, [b]P, 3) for
(E(F,),q,P) « G(1*), where either 8 = [[ab]P] or B = ¥, with a,b <~ Z/qZ
and ¥ & Z/pZ:

Set Y = [a]P and define pk = {E(F,,q,P,Y};

Call A(pk) and receive two messages mg and m; in Z/pZ;
Choose a bit b at random and define C = ([a]P, m; * 3);
Return ciphertext C' to A and obtain its output bit b';
Output 1 if ¥ = b, and 0 otherwise.

G N =

When § = [[ab]P], C is a faithful ciphertext for message m;. On the contrary,
when 8 = ¢, C appears as a random value, independent of my;. As a result, if
€(\) denotes the probability that A wins the IND-CPA game, this means that

Pr[’D(E(IE‘p)7 q,P,[a]P, [b]P, [[ab]P]]): 1] =€())

and 1

Pr[D(E(Fp),q, P,[a]P,[b]P, )= 1] =5
But the Class-DDH assumption says that their difference should be a negligible
function in A, that is, [e(A) — 3| < negl(). O

5 Extension

5.1 Chameleon Hash Functions

Chameleon hash functions [23] are hash functions associated with a pair (hk, tk)
of hashing/trapdoor keys. The name chameleon refers to the ability for the owner
of the trapdoor key to modify the input without changing the output.

A chameleon hash function is defined by a tuple of three algorithms: (CMKg,
CMhash, CMswitch). The key-generation algorithm CMKg, given a security para-
meter \, outputs a key pair (hk, tk) + CMKg(1*). The hashing algorithm out-
puts y = CMhash(hk, m,r) given the public key hk, a message m and random
coins 7 € Rpasn. On input of m,r,m’ and the trapdoor key tk, the switching
algorithm " < CMswitch(tk, m,r,m’) outputs r’ € Rpqsn such that

CMhash(hk, m,r) = CMhash(hk, m’,r").

Collision-resistance mandates that it be infeasible to find pairs (m/,r") # (m,r)
such that CMhash(hk, m,r) = CMhash(hk,m’,r") without knowing ¢k. Unifor-
mity guarantees that the distribution of hashes is independent of the message
m, in particular, for all hk and m,m’, the distributions

{r < Rhasn: CMhash(hk,m,r)} and {r < Rpasn: CMhash(hk,m’,r)}

are identical.
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5.2 A Chosen-Ciphertext-Secure Construction

In this section, we describe an IND-CCA2-secure extension of our schemes which
builds on the approach of Cash, Kiltz and Shoup [7] in its security analysis. We
present below the additive variant. The multiplicative variant proceeds similarly.

KeyGen(1*). On input security parameter \, generate an elliptic curve E over
the prime field F,, and a point P € E(F,) of large prime order g. Then, do
the following.

1. Choose Yo, y1, 20, 21 “ Z/qZ and compute points Yy, Y1,Zy, 21 € E(F,)
as

Yo = [y P, Y1 = [P,
Z() = [2,“0]1‘)7 Zl = [ZﬂP

2. Choose a chameleon hash function CMH = (CMKg, CMhash, CMswitch)
that ranges over Z/qZ, with a key pair (hk, tk) «— CMKg(1*). We denote
by Rhnasr the randomness space of the hashing algorithm.

The public key is pk = {E(F,),q,P,Y0,Y1,Zp,Z1,hk} and the matching
private key is sk = {vo, y1, 20, 21}
Encrypt(pk, m). To encrypt a message m € Z/pZ, do the following.
1. Choose r & Z/qZ as well as s E Rhashs

2. Compute in E(F,), Co = [r]Yp and Cy = [r]P;
3. Compute 8 = [Co] and ¢o = m + 3 (mod p);
4. Compute t = CMhash(hk, (co,C1), Shasn) € Z/qZ;
5. Compute
Cs = [rt]Yo + [r]Zo, Cs = [rt]Y1 + [r)Zy;

6. Output the ciphertext C' = (co,C1,C2,C3, Shash)-
Decrypt(sk,C). Given the ciphertext C' = (¢g,C1,C2,C3, Shasn) and the private
key sk = (yo,¥1, 20, 21), conduct the following steps.
1. Compute t = CMhash(hk, (co,C1), Shash) € Z/qZ;
2. Return L if C # [ty + 20]C1 or Cs # [ty1 + 21]Ch; _
3. Compute Cp = [yo]C1 and return m = ¢y — 8 mod p, where 3 = [Co].

The above description follows a method suggested in [32] in that it makes use
of a chameleon hash function to authenticate the message-carrying part ¢y of the
ciphertext. We note that, instead of a chameleon hash function, the scheme could
also use a strongly unforgeable one-time signature as in the Canetti-Halevi-Katz
methodology [6]. However, this would incur longer ciphertexts. If we want to
minimize the ciphertext overhead, the Boyen-Mei-Waters technique [5] can be
used to eliminate the randomness sj,s, 0of the chameleon hash function at the
expense of introducing O(X) additional elliptic curve points in the public key.

Theorem 2. The scheme is IND-CCA2-secure under the Class-DDH assump-
tion, provided that the chameleon hash function is collision-resistant.



30 M. Joye and B. Libert

Proof. The proof proceeds with a sequence of games. For each ¢, we denote by
S; the event that the adversary wins in Game 1.

Game 0: This is the real game. In this game, the adversary A is given the
public key pk and the challenger B answers all decryption queries by faith-
fully running the decryption algorithm. In the challenge phase, A chooses
two distinct messages mg,m1 € Z/pZ and obtains a challenge ciphertext
C* = (co*,C1*,C2*,C3%, s},5,) which encrypts mg, for some random bit
d & {0,1}. In the second phase, the adversary A is granted further access to
the decryption oracle. At the end of the game, A outputs a bit &’ € {0,1}
and we denote by Sy the event that d’ = d.

Game 1: This game is identical to Game 0 but the challenger B rejects all pre-
challenge decryption queries C' = (cg,C1,C2,Cs, Shasn) such that Ch = Cy*.
Since C1* is uniformly distributed in (P) and independent of A’s view before
the challenge phase, the probability that B rejects a ciphertext that would
not have been rejected in Game 0 is at most gge./q, where gge. is the number
of decryption queries. We have | Pr[S1] — Pr[So]| < Guec/q-

Game 2: In this game, the challenger B aborts if it realizes that, before or after
the challenge phase, A has made a decryption query C' = (cg,C1,C2,Cs,
Shask) such that

t = CMhash(hk, (co,C1), Shasn) = CMhash(hk, (co*,C1*), s} 4sn) = t*-

Clearly, the latter event would contradict the collision-resistance property
of the chameleon hash function. Moreover, Game 2 and Game 1 proceed
identically until the latter event occurs, so that we obtain the inequality
| Pr[Sy] — Pr[Sy]| < AdvOMHash(y),

Game 3: This game is identical to Game 2 with the sole difference that the
challenger B automatically rejects all post-challenge decryption queries of the
form C = (¢p*,C1*,Ca,C3, Shash), where (Ca,C3) # (Co*,C3*). This change
is only conceptual since these ciphertexts would be rejected in Game 2 as
well. We thus have Pr[S3] = Pr[Sa].

Game 4: In this game, we modify the generation of the public key. At the
outset of the game, B chooses a random value t* € Z/qZ in the range of the
hashing algorithm CMhash, by hashing a random string R’ using a random
Shash = Rhash- It also picks v,w <= Z/qZ and sets Y1 = [y]|P + [w]Yp. It also

picks 70,71 < Z/qZ and sets
Zy = [-1"]Yo + [10]P, Zy = [-t"Y1 + [n]P,

which implicitly defines the private key as y; = v+ wyo, z0 = —t*yo + o and
z1 = —t*y1 + 1. In the challenge phase, B computes the challenge as

Gy =[P, 2" = [nlCr”, Cs" = [n]CT

while myg is blinded as ¢o* = mq + 8* (mod p), where 3* = [Co*], where
Co* = [yo]C1*. Finally, B uses the trapdoor key tk of the chameleon hash
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function to obtain s}, ., = CMswitch(tk, (R', s},,.5), (co*,C1*)) such that t* =
CMhash(hk, (c5,C1*), S} ash)-
In Game 4, we remark that the public key pk and the challenge ciphertext
C* = (co*,C1*,C2*,C3*, 5% ,.p,) both have the same distribution as in Game
3, so that A’s view has not changed. We have Pr[S4] = Pr[Ss].

Game 5: In this game, we modify the decryption oracle. Namely, at each
decryption query C' = (c,C1,C2,C3, Shash), the challenger B computes the
chameleon hash value t = CMhash(hk, (co,C1), Shash) as well as

Wi = [(t — t*)"" mod ¢](Ca — [10]C1)
Wy = [(t — t*)71 mod q} (03 — [’}/1]01)

At this point, B returns L if Wa # [y]C1 + [w]W;. Otherwise, B computes
Wy = @ (W), obtains 8 = [W;] and returns m = ¢g — 8 (mod p).

It is easy to see that, in the adversary’s view, Game 5 is identical to Game
4 until the event Fy that B fails to reject a ciphertext that would have been
rejected in Game 4. Using the same arguments as in [7,11], we can prove that
Pr[F5] < q4ec/q. Specifically, event F5 can only occur for a decryption query
on an invalid ciphertext C' = (¢g, C1,C2,C3, Shash) where

Ci=[P, Co=[+r]([tlYo+Z), Cs=][+r"]([tN+2)

and either ' # 0 or v/ # 0. This implies that Wy = [r + r1]Yp and Wa =
[r 4+ r2]Y7, where 1 #£ 0 (resp. ro # 0) if and only if ' # 0 (resp. v # 0).
It is easy to see that, if 7o = 0 and ;1 % 0 or ;1 = 0 and ro # 0, the
equality Wa = [y]C1 + [w]W1 never holds and we thus assume that r1 # 0
and ro # 0. However, in this case [y]C1 + [w]W1 can be written [r]Y7 +
[wr1]Yp, which is the sum of an information-theoretically fixed value [r]¥; and
another term [wr1]Yp that is completely undetermined in A’s view: indeed,
for a fixed V1 = [y]P + [w]Yp, we have ¢ equally likely candidates for w
at the first decryption query such that ' # 0 or r” # 0. For this query,
we can only have the equality Wo = [y]C1 + [w]W1 by pure chance, with
probability 1/q. Throughout the game, each invalid decryption query allows
an unbounded adversary to eliminate one candidate for w. Hence, after ¢
queries, the adversary is left with a probability of 1/(¢ — ¢) of inferring the
right w. In the worst case, this probability is smaller than 1/(¢ — ggec) for a
given decryption query. A union bound over all decryption queries gives the
inequality | Pr[Ss] — Pr[Sy]| < Pr[F5] < qaec/(q — Gdec). We remark that the
private exponents (yo,y1, 20, 21) are not used any longer in Game 5 and we
thus rely on the Class-DDH assumption to move to Game 6.

Game 6: This game is like Game 5 with the difference that, in the challenge
ciphertext C* = (¢o*, C1*,Co2*,C5*, s},.1), Co* is chosen as a uniformly ran-
dom element of Z/pZ. Under the Class-DDH assumption, this change should
not be noticeable to A and we can write | Pr[Sg] — Pr[S5]| < Adv©#ss-PPH()),

In Game 6, we easily see that Pr[Ss] = 1/2 since the challenge ciphertext can
be seen as an encryption of a random message of Z/pZ, which is completely inde-
pendent of mg and m;. When counting probabilities throughout the sequence of
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games, we find that |Pr[Sp] — 1/2| is bounded by a sum of negligible functions
under the aforementioned assumptions. a
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A Appendix

A.1 Public-Key Encryption

A public-key encryption scheme consists of three algorithms: (KeyGen, Encrypt,
Decrypt).

Key generation. The key generation algorithm KeyGen is a randomized algo-
rithm that takes on input some security parameter A and returns a matching
pair of public key and secret key for some user: (pk, sk) <~ KeyGen(1*).

Encryption. Let M be the message space. The encryption algorithm Encrypt
is a randomized algorithm that takes on input a public key pk and a plaintext
m € M, and returns a ciphertext C. We write C' < Encrypt(pk, m).

Decryption. The decryption algorithm Decrypt takes on input secret key sk
(matching pk) and a ciphertext C, and returns the corresponding plaintext
m or a symbol L indicating that the ciphertext is invalid. We write m «
Decrypt(sk,C) if C is a valid ciphertext and L« Decrypt(sk,C) if it is not.

It is required that Decrypt(sk7 Encrypt(pk, m)) = m for any message m € M.

A.2 Security Notions

Beyond the basic property of one-wayness, data privacy in a public-key encryp-
tion scheme is captured by the notion of semantic security: An adversary should
not learn any information whatsoever about a plaintext given its encryption
beyond the length of the plaintext. This notion is known to be equivalent to
the (easier to deal with) notion of indistinguishability of encryptions [19]. Fur-
thermore, since the encryption key is public, an adversary can always encrypt
messages of its choice; in other words, the adversary can mount chosen-plaintext
attacks. It is therefore customary to let IND-CPA denote the security notion
achieved by a semantically secure public-key encryption scheme.

The advantage of an adversary A = (A;,.As) in the IND-CPA experiment is
defined as
Pr {(pk,sk) — KeyGen (1), (mg, m1, s) < A1 (pk), ] 1 )

C* — Encrypt(pk, mp) : Aa(mg,m1,s5,C*) =b 2

b2 10,1}
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where the probability is taken over the random coins of the experiment according
to the distribution induced by KeyGen(1*) as well as the ones of the adversary,
and mg, m; € M. An encryption is IND-CPA if the advantage of any polynomial-
time adversary A is negligible a a function of A.

The IND-CPA security notion offers an adequate security level in the presence
of a passive adversary. The “right” security level against active attacks is that of
IND-CCA2 security, or security against chosen-ciphertext attacks. The definition
of the adversary’s advantage as given by (*) extends to the IND-CCA2 model
but the adversary A = (A;,.43) is now given an adaptive access to a decryption
oracle to which it can submit any ciphertext of its choice with the exception that
As may not query the decryption oracle on challenge ciphertext C*.

A.3 Consistent Lifting Problem

In this section, we extend the results of [8] to the elliptic curve setting.

Let E(F,) be an elliptic curve over the prime field F, and let G C E(F,) be
a cyclic subgroup thereof. Let also P be a generator of G (i.e., G = (P)) and
P =w(P) € E(Z/p°7Z).

Given P and @ := [a]P <£~(G, the elliptic curve consistent lifting (ECCL)
problem is to compute Q' := [a]P. It is easily seen that this problem is equivalent

to the discrete logarithm problem in G. Indeed, given access to an ECCL solver,
— Q1]
. L
From Hasse’s theorem, we know that a = a or a = a+p; this can be easily decided
by checking if @ = [a]P or @ = [a@+ p]P. The other direction is straightforward.
Given access to an ECDL solver, on input @, we obtain a and then can compute

Q' = [a]P where P = ¥U(P).

on input @, we receive @' and then can obtain @ := a mod p as a mod p.
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