
Chapter 2
An Explanation for Why Natural Frequencies Shifting in Structures
with Membrane Stresses, Using Backbone Curve Models

X. Liu, D.J. Wagg, and S.A. Neild

Abstract In this paper, the phenomenon of natural frequencies shifting due to the nonlinear stiffness effects from membrane
stress is studied using a nonlinear reduced order model based on backbone curves. The structure chosen for study in this paper
is a rectangular plate with a pinned constraint along all edges. To analytically explore the frequency varying phenomenon,
a four nonlinear-mode based reduced-order model that contains both single-mode and coupled-mode nonlinear terms is
derived. The process of deriving the reduced order model is based on a normal form transformation, combined with a
Galerkin type decomposition of the governing partial differential equation of the plate. This allows a low number of ordinary
differential equations to be obtained, which in turn can be used to derive backbone curves that relate directly to the nonlinear
normal modes (NNMs). The frequency shifting is then investigated relative to the backbone curves. Modal interactions,
caused by nonlinear terms are shown to cause the frequency shifts. In the final part of the paper, an attempt is made to
quantify the frequency shifting due to different nonlinear effects.

Keywords Nonlinear reduced order model • Backbone curves • Nonlinear modal interaction • Second-order normal form
method • Thin plate

2.1 Introduction

The need for accurate prediction of the nonlinear response of plates and shells has rapidly increased, especially for structures
with low weight but under high environmental loads, such as aircraft fuselage structures subjected to high aeroelastic and/or
acoustic loading. However, linear analysis techniques fail to capture nonlinear effects, particularly at high levels of dynamic
excitation when, for example, the natural frequencies can vary with amplitude. For plate structures, it is generally accepted
that when the transverse deflection approaches the thickness of the plate, the effect of the nonlinearity becomes significant.
For a pinned plate, this is primarily because the in-plane stress starts to make the response amplitude dependent [1].

One approach to studying this problem is to perform full-order model simulations using a finite element software. It is
often desirable to augment this approach by comparing with a reduced order modelling (ROM) or, more specifically,
nonlinear reduced order modelling (NROM) techniques [2]. NROMs consist a low number of modes that include linear
and nonlinear terms, typically in the form of a series of quadratic and cubic terms in the modal coordinates. The underlying
linear modes can be easily determined using the classic linear modal techniques, i.e. a linear Galerkin decomposition method
and linear normal form method [3]. The challenge in developing an accurate NROM is in the determination of the nonlinear
stiffness coefficients. The methods for computation of the nonlinear stiffness coefficients can mainly be divided to direct
and indirect approaches. The direct approaches apply the modal transformation on the full-order nonlinear stiffness matrices
[4, 5] or decompose the nonlinear partial differential equations (PDE) [6]. Note this later approach is only possible for simple
geomerties where a PDE model exists. The indirect approaches use static nonlinear solution of a full finite element model to
determine stiffness coefficients [7–10].

Even with nonlinear reduced-order models, the forced responses can often be complex and varied which still limits the
amount of design insight that can be obtained. Instead, researchers usually consider the response of the equivalent unforced
and undamped systems. Many authors have studied undamped, unforced systems including beams, cables, membranes, plates
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and shells, see for example [11–13]. The free response of nonlinear systems has been studied using several different analytical
approaches: nonlinear normal modes (NNMs) [14–16] and backbone curves [17–19].

In this paper we demonstrate the effect of different kinds of nonlinear stiffness terms on the natural frequency shifting
behaviour by considering a rectangular plate with all edges being simply supported. In Sect. 2.2, the full-order model is built
in Abaqus® and the linear and nonlinear simulation results are compared to illustrate the nonlinear dynamic behaviour of the
plate under the high load excitation situation. The nonlinear reduced order model is developed by decomposing the partial
differential equations of motion of the plate based on the Galerkin method in Sect. 2.3. In Sect. 2.4, the simulations results
of two NROMS (uncoupled and coupled models) are quantitatively compared with the FE results. Based on the NROM, in
Sect. 2.5, backbone curves of the plate obtained using the second-order normal form methods are computed to present the
effects of the different nonlinear terms. Conclusions are drawn in Sect. 2.6.

2.2 Nonlinear Dynamic Behaviour of a Thin Plate

Figure 2.1 shows a schematic representation of the example plate studied in this paper with coordinate system .OI x; y; z/
having the origin O at one corner. For an arbitrary point of coordinates .x; y/ on the middle surface of plate, its out-of-plate
displacement is denoted by w.x; y/. All edges of the plate are simply supported and its geometric dimension and material
properties are listed in Table 2.1.

Firstly, the full-order simulations were performed by Abaqus® finite element software to illustrate the resonant frequencies
shifting phenomenon. 1600 thick shell elements (S8R in Abaqus) were used to discretize the plate and S8R is used as it
includes membrane stretching effects for large displacements. Here the integrator, Abaqus/Implicits, in Abaqus/Standard
solver was used. For ensuring a stable (physical) response, the value of the only parameter ˛n specifying the integrator is
chosen, ˛n D � 1

6
to impose adequate numerical damping during integration. Each set of simulations was performed for an

identical load setting with the different controls, i.e. Nlgeom ‘Off’ and ‘On’, for exclusion and inclusion of the nonlinear
effects of large displacements respectively.

As a forcing input, random data with the sample rate of 10 kHz for a period T D 50 s was generated using Matlab®

function rand initially and then substituted into Abaqus® as the random input amplitude. The model was integrated over
the input period at a minimum sample time of 10�8 s. The displacement responses at the centre of top-right quadrant of
the plate (with coordinates Œx; y� D 3

4
Œa; b�) is used as a metric, which guarantees that the contributions of the first four

bending modes are included. Figure 2.2 shows the configurations of the modes considered whoses natural frequencies are
!n1 D 58:707 rad=s, !n2 D 143:33 rad=s, !n3 D 150:24 rad=s and !n4 D 234:83 rad=s.

Figure 2.3 shows the response of the plate when a random uniform pressure is applied on to the left-bottom quadrant
of the plate. Two different forcing magnitudes, denoted as A, were used: in Fig. 2.3a the random force magnitude is low,
A D 10�2, so that the maximum displacement response amplitude of the plate is less than 20% of the thickness of the
plate, i.e. wmax < 0:2h. In Fig. 2.3b the random force magnitude is relative high, A D 1, so that the maximum displacement

O

z

x

y

Fig. 2.1 Plate and the coordinate system

Table 2.1 Properties of the plate

Length (mm) Width (mm) Thickness (mm) Density (kg/m3) Young’s modulus (GPa) Poisson ratio

a D 500 b D 520 h D 5 � D 2700 E D 70 v D 0:31
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Fig. 2.2 Mode shapes of the first four bending modes of the plate
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Fig. 2.3 Power spectral density of the FE simulation displacement response at the point with the coordinates .x; y/ D 3
4
.a; b/ when the plate

is under randomly excitation on left-bottom quarter area at two power level (a) A D 1�2 and (b) A D 1. The blue and red lines represent the
integration results excluding and including the nonlinear effects respectively and the black dash lines denote the linear modal frequencies

response amplitude is larger than the thickness of the plate, i.e. wmax > h. From Fig. 2.3, it can be seen that for the low level
excitation situation the linear and nonlinear results are on top of each other and their resonant frequencies are close to the
corresponding linear modal frequencies. This implies that the plate behaves linearly for this case. While when the excitation
level increases, the difference between the linear and nonlinear results is obvious. For this case, the resonant frequencies of
linear results are still close to the linear frequencies, but the nonlinear results have all shifted to the right significantly.

Figure 2.4 shows simulation results when the plate is under a hybrid excitation of random and harmonic forces. The
random component is identical to that used for case (b) in Fig. (2.3) and the harmonic component is a point force applied
at the centre of the plate. The specific sinusoidal loading point is chosen for exciting Mode I only (among the four bending
modes under consideration) to increase the power (amplitude) of the first mode. Hence the frequency of the sinusoidal force
is accordingly chosen to be equal to the first linear modal frequency, i.e. � D !n1.

From Fig. 2.3, we know that under the low level random excitation, all four modes are behaving linearly and no frequency-
shifting is observed. For the linear result in Fig. 2.4, it can be seen that there is no obvious difference for the resonant
frequencies and power spectral density (PSD) for Mode II, III and IV compared with Fig. 2.3 except for the PSD of Mode
I increasing due to the extra harmonic force. For the nonlinear results, there are now clear double peaks around first modal
frequency and furthermore the resonant frequencies are shifting to the right for Modes II, III and IV.

The results shown in Figs. 2.3 and 2.4, demonstrate how nonlinear effects can cause the resonant frequencies to shift when
the amplitudes of response become large.
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Fig. 2.4 Power spectral density of the FE simulation displacement response at the point with the coordinates .x; y/ D 3
4
.a; b/ when the plate

is under the hybrid excitation consisting of the random component identical to that used for (a) in Fig. 2.3 and the harmonic component with the
amplitude Fh D 5 � 10�3 at frequency � D !n1

2.3 Nonlinear Reduced Order Model (NROM)

Now the nonlinear reduced order models are developed to study the nonlinear frequency shifting of the plate. The nonlinear
model described in terms of modal coordinates derived by Wagg et al. [6] is used for this purpose. The derivation process of
the model development is briefly introduced here and the full details can be found in [6].

Firstly, through the analysis based on the von Kármán nonlinear strain-displacement relationships, the partial differential
equation of motion for the plate behaving in the nonlinear region is written as,

�h
@2w

@t2
C DO2O2w �

�
@2ˆ

@y2

@2w

@x2
� 2

@2ˆ

@x@y

@2w

@x@y
C @2ˆ

@x2

@2w

@y2

�
D Pf ; (2.1a)

1

Eh
O2O2ˆ C @2w

@x2

@2w

@y2
�

�
@2w

@x@y

�2

D 0; (2.1b)

where O2 D @2

@x2 C @2

@y2 , D D Eh3

12Œ1�v2�
and other parameters are defined in [6]. Substituting the Galerkin variables,

w.x; y; t/ D
MX
1

NX
1

Xm.x/Yn.y/qmn.t/; (2.2)

and the Airy function

ˆ.x; y; t/ D
RX
1

SX
1

‚r.x/‰s.y/Frs.t/; (2.3)

into Eq. (2.1), where qmn.t/ is a time-dependent modal coordinate and Xn.x/ and Ym.y/ are the mode shapes, and then
applying the orthogonality conditions gives a set of ordinary differential equations of motion of vibration modes as
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Rqij C !2
ijqij C

M;N;G;H;T;U;R;SX �1ghturs�3mnrsij

�2rs
qghqtuqmn D fij: (2.4)

where,

!2
ij D �2

�
i2

a2
C j2

b2

� s
D

�h
; fij D

Z a

0

Z b

0

Pf XiYjdydx; (2.5)

and,
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0
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0

�
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dx2
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r2
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; (2.6b)

�3mnrsij D 4

�hab
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0
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0

�
‚r

d2‰s

dy2

d2Xm

dx2
Yn

� 2
d‚r

dx

d‰s

dy

dXn

dx

dYm

dy
C d2‚r

dx2
‰sXm

d2Yn

dy2

�
XiYjdydx: (2.6c)

For the plate with a simply supported boundary condition, the mode shapes and space functions of the Airy functions are,

Xm.x/ D sin
�m�

a
x
�

; Yn.y/ D sin
�n�

b
y
�

; ‚r.x/ D sin
� r�

a
x
�

; ‰s.y/ D sin
� s�

b
y
�

: (2.7)

Substituting Eq. (2.7) with the parameters values of the plate in Table 2.1 into Eqs. (2.4)–(2.6) with the imposed modal
damping terms gives equations of motion in the modal coordinates that can be written as

Rq C Cq C ƒq C Nq.q/ D Fm; (2.8)

where C is a vector of damping coefficients, ƒ is a diagonal matrix of the squares of modal natural frequencies, Nq is the
column vector containing the nonlinear terms whose lth element may be written

N.l/
q D

NX
rD1

NX
sDr

NX
tDs

˛.l/
n qrqsqt; (2.9)

and Fm is a vector of modal forcing terms. Table 2.2 lists the values of the linear modal natural frequencies and the non-zero
coefficients of nonlinear terms for the first four modes of the plate.

2.4 Simulation Results of the NROM

From Eq. (2.9), we know that there exist two types of nonlinear terms, i.e. single-mode nonlinear terms, q3
i , and coupled-

mode nonlinear terms, qiqjqk (where i ¤ j and i ¤ k) in the equation of motion of ith mode. In order to study the effect
of the nonlinear terms on resonant frequency shift, two kinds of nonlinear four-mode truncation models for the example
structure are used, i.e. the coupled (with nonlinear coupled-mode terms) and uncoupled (no coupled-mode terms) cases.
Their respective equations of motion are stated as,

Rq C C Pq C ƒq C Nq.q/ D Fm.t/ and RQq C C PQq C ƒ Qq C QNQq. Qq/ D Pm.t/; (2.10)
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Table 2.2 Model coefficients for the lowest four nonlinear modes of the plate

Mode no. !n (rad/s) Coefficients .�109/ Nonlinear term

I

i D 1; j D 1

58.9 ˛I
1 D 5:45 q3

1

˛I
2 D 23:6 q1q2

2

˛I
3 D 22:7 q1q2

3

˛I
4 D 24:4 q1q2

4

˛I
5 D 74:3 q2q3q4

II

i D 1; j D 2

143.9 ˛II
1 D 23:6 q2

1q2

˛II
2 D 31:4 q3

2

˛II
3 D 65:1 q2q2

3

˛II
4 D 124:3 q2q2

4

˛II
5 D 74:3 q1q3q4

III

i D 2; j D 1

150.8 ˛III
1 D 22:7 q2

1q3

˛III
2 D 65:1 q2

2q3

˛III
3 D 31:4 q3

3

˛III
4 D 132:4 q3q2

4

˛III
5 D 74:3 q1q2q4

IV

i D 2; j D 2

235.8 ˛IV
1 D 24:4 q2

1q4

˛IV
2 D 124:3 q2

2q4

˛IV
3 D 132:4 q2

3q4

˛IV
4 D 55:8 q3

4

˛IV
5 D 74:3 q1q2q3

where the modal force vector Fm.t/ may be written

Fm D Prr.t/ C Ph cos.�t/; (2.11)

where r.t/ is the random input signal, Pr is the vector magnitude of the modal random force component and Ph is the vector
amplitude of the harmonic component. Nq and QNQq are the nonlinear term vectors, written

Nq D

0
BB@

˛I
1q3

1 C ˛I
2q1q2

2 C ˛I
3q1q2

3 C ˛I
4q1q2

4 C ˛I
5q2q3q4

˛II
1 q2

1q2 C ˛II
2 q3

2 C ˛II
3 q2q2

3 C ˛II
4 q2q2

3 C ˛II
5 q1q3q4

˛III
1 q2

1q3 C ˛III
2 q2

2q3 C ˛III
3 q3

3 C ˛III
4 q3q2

4 C ˛III
5 q1q2q4

˛IV
1 q2

1q4 C ˛IV
2 q2

2q4 C ˛IV
3 q2

3q4 C ˛IV
4 q3

4 C ˛IV
5 q1q2q3

1
CCA ; and QNQq D

0
BB@

˛I
1 Qq3

1

˛II
2 Qq3

2

˛III
3 Qq3

3

˛IV
4 Qq3

4

1
CCA : (2.12)

In both NROMs, the viscous damping is used and the damping ratio is � D 0:1% for all modes. These two equations are
integrated over the identical force time history defined at discrete data points using the fourth order Runge-Kutta integration
operator. The random data used is identical to that used in the previous FE simulation. The discrete time period between
consecutive time history points is 10�4 s and the integration was performed over a time period of 50 s. The displacement
response at the identical point considered in the FE simulation is here used again.

Figure 2.5 shows the simulation results of Eq. (2.10) when Pr D 4�10�2

�2�h
Œ1; 1; 1; 1�T and Pr D 4

�2�h
Œ1; 1; 1; 1�T with

Ph D Œ0; 0; 0; 0�T which is equivalent to the excitation situation used for FE results in Fig. 2.3, i.e. Pf .x; y/ D r.t/ and

Pf .x; y/ D 10r.t/ for 0 � x � 1
2
a; 0 � y � 1

2
b. From the results when Pr D 4�10�2

�2�h
Œ1; 1; 1; 1�T, it can be seen that the

results of uncoupled and coupled models are nearly identical and their resonant frequencies are close to the linear modal
frequencies. As expected, this confirms that the effect of the modal coupling terms is insignificant for the low response
amplitude situation. For the high-level excitation situation, the resonant frequencies for both models have shifted to higher
frequencies. However the frequency shift level of the coupled model is more obvious than that of the uncoupled model.
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Fig. 2.5 Power spectral density of the NROM simulation displacement response x D q1 C
p

2

2
q2 C

p

2

2
q3 C 1

2
q4 which is equivalent to that

of the point with the coordinates .x; y/ D 3
4
.a; b/ at the plate when all four modes are randomly excited at two different power levels: (a)

Pr D 4�10�2

�2�h Œ1; 1; 1; 1�T. (b) Pr D 4
�2�h Œ10; 10; 10; 10�T. The blue and red lines represent the results of the uncoupled and coupled models

respectively and the black lines denote the linear modal frequencies
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Fig. 2.6 Power spectral density of the NROM simulation displacement response x D q1 C
p

2

2
q2 C

p

2

2
q3 C 1

2
q4 which is equivalent to that

of the point with the coordinates .x; y/ D 3
4
.a; b/ when all four modes are randomly excited and Mode I is sinusoidal forced simultaneously:

Pr D 4�10�1

�2�h Œ1; 1; 1; 1�T, Ph D 4�10�3

�hab Œ5; 0; 0; 0�T and � D !n1

This implies that both single-mode terms and coupled-terms can cause frequency shifting in the nonlinear region. For this
case, both models are regarded to be qualitatively correct compared with the full-order simulation results.

Furthermore, the NROM is used to simulate the plate under excitation situation considered in Fig. 2.4, so the force
amplitude Pr D 4�10�1

�2�h
Œ1; 1; 1; 1�T and Ph D 4�10�3

�hab Œ5; 0; 0; 0�T was used and the results are presented in Fig. 2.6.
We can see that for Modes II, III and IV , the resonant frequencies of the coupled model have a frequency shift, while the
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uncoupled model results do not compared with the linear modal frequencies. For this case, it is the coupled model that can
more accurately represent the nonlinear behaviour of the full-order FE model.

2.5 Effect of the Nonlinear Coupled-Mode Terms Explanation

In this section, we use the backbone curves to illustrate the effect of the nonlinear terms on the frequency shifting.
The backbone curves describe the loci of dynamic responses of a system unforced and undamped and can be used to
represent the global dynamic characteristics of the system. In order to compute backbone curves, the second-order normal
form technique is applied to solve the nonlinear equation of motion of the plate. This technique consists of a series of
transformations which result in approximated expressions for the resonant modal equation of motion describing the dynamics
of the fundamental response components of the nonlinear system. These expressions can be solved to find the relationship
between the fundamental responses amplitude and frequency of the underlying linear modes which can then be used, along
with the inverse of the aforementioned transformation, to find the harmonic components and the responses in the physical
coordinates.

Here, only the outcome of the application of this technique to the example system is given and the complete description
related to the second-order normal form method can be found in [6].

From Eq. (2.8), the equation of motion for the equivalent conservative system is written

Rq C ƒq C Nq.q/ D 0; (2.13)

which, after the application of the second-order normal form method, results in the time-invariant equations, such that

��
!2

n1 � !2
r1

� C 1

4

�
3˛I

1U2
1 C 2˛I

2U2
2 C 2˛I

3U2
3 C 2˛I

4U2
4

�	
U1 D 0; (2.14a)

��
!2

n2 � !2
r2

� C 1

4

�
2˛II

1 U2
1 C 3˛II

2 U2
2 C .2 C p/˛II

3 U2
3 C 2˛II

4 U2
4

�	
U2 D 0; (2.14b)

��
!2

n3 � !2
r3

� C 1

4

�
2˛III

1 U2
1 C .2 C p/˛III

2 U2
2 C 3˛III

3 U2
3 C 2˛IV

4

�	
U3 D 0; (2.14c)

��
!2

n4 � !2
r4

� C 1

4

�
2˛IV

1 U2
1 C 2˛IV

2 U2
2 C 2˛IV

3 U2
3 C 3˛IV

4 U2
4

�	
U4 D 0; (2.14d)

where p D ej2j�2��3j and Ui, !ri and �i are the fundamental response amplitude, frequency and phase of qi respectively.
Through successively setting U2 D U3 D U4 D 0, U1 D U3 D U4 D 0, U1 D U2 D U4 D 0 and U1 D U2 D U3 D 0 in
Eq. (2.14) we obtain the expressions of four single-mode backbones, as

S1 W !2
r1 D !2

n1 C 3

4
˛I

1U2
1; (2.15a)

S2 W !2
r2 D !2

n2 C 3

4
˛II

2 U2
2; (2.15b)

S3 W !2
r3 D !2

n3 C 3

4
˛III

3 U2
3: (2.15c)

S4 W !2
r4 D !2

n4 C 3

4
˛IV

4 U2
4: (2.15d)

In addition, there exist two in-unison double-mode backbone curves DC
23.i/ and D�

23.i/ composed of contributions of Mode II
and III which can be calculated by using an identical expression,

D2̇3.i/ W

8̂<
:̂

U2
3 D U2

.i/ C 	.i/U2
2;

�2 D !2
.i/ C 3

4

.i/U2

2 :

(2.16)
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where, U.i/, !.i/, 	.i/ and 
.i/ are time-invariant that

U2
.i/ D 4

3

!2
n3 � !2

n2

˛II
3 � ˛III

3

; !.i/ D ˛II
3 !2

n3 � ˛III
3 !2

n2

˛II
3 � ˛III

3

; 	.i/ D ˛III
2 � ˛II

2

˛II
3 � ˛III

3

; 
.i/ D ˛II
3 ˛III

2 � ˛II
2 ˛III

3

˛II
3 � ˛III

3

: (2.17)

For backbone curves DC
23.i/, the modal coordinates are in-phase while for D�

23.i/ the modes are anti-phase, i.e.

DC
23.i/ W j�2 � �3j D 0; D�

23.i/ W j�2 � �3j D �: (2.18)

As for the above backbone curves, their expressions are based on the assumption that any other non-resonant coupled mode,
is not activated.

Now, if the Mode I and IV are assumed to be activated and respond sinusoidally at any frequencies except for those that
may potentially cause resonant interaction with Mode II or III, such as !r1.4/ D 1

3
!r2.3/ or !r1.4/ D !r2.3/, the expressions

of backbone curves for Mode II and III are modified. For the single-mode backbone curves which are noted as OS2 and OS3 for
distinction, they can be calculated using,

OS2 W !2
r2 D O!2

n2 C 3

4
˛II

2 U2
2; (2.19)

OS3 W !2
r3 D O!2

n3 C 3

4
˛III

3 U2
3; (2.20)

where

O!n2 D !2
n2 C 1

2

�
˛II

1 U2
1 C ˛II

4 U2
4

�
and O!n3 D !2

n3 C 1

2

�
˛III

1 U2
1 C ˛III

4 U2
4

�
: (2.21)

For the double-mode backbone curves, OD2̇3.i/, their expressions are changed to be

OD2̇3.i/ W

8̂<
:̂

U2
3 D OU2

s3.i/ C 	s3.i/U2
2;

�2 D O!2
s3.i/ C 3

4

s3.i/U2

2:

(2.22)

where,

OU2
.i/ D U2

.i/ C �1.i/U
2
1 C �4.i/U

2
4 and O!2

.i/ D !2
.i/ C 1

2

�
�1.i/U

2
1 C �4.i/U

2
4

�
: (2.23)

Here the constants �1.i/, �4.i/, �1.i/ and �4.i/ are computed using

�1.i/ D 2

3

˛III
1 � ˛II

1

˛II
3 � ˛III

3

; �4.i/ D 2

3

˛III
4 � ˛II

4

˛II
3 � ˛III

3

; �1.i/ D ˛II
3 ˛III

1 � ˛II
1 ˛III

3

˛II
3 � ˛III

3

; �4.i/ D ˛II
3 ˛III

4 � ˛II
4 ˛III

3

˛II
3 � ˛III

3

: (2.24)

Comparing Eqs. (2.15b), (2.15c) and (2.16) with Eqs. (2.19), (2.20) and (2.22), the general computation expressions of
backbone curves are identical for the situation with and without the effect of Mode I and IV . While, considering Eqs. (2.21)
and (2.23), it can be seen that by considering the non-resonant modes the resonant frequencies of both single- and double-
backbone curves of Mode II and III increase or decrease depending on the sign of the corresponding coefficients and the
frequency varying level depends on the values of the response amplitude of Mode I and IV .

Figure 2.7 shows backbone curves results of Mode II and III of the example plate. Note that the coordinates are
nondimentionalised using NUi D Ui=h and N� D �=!n2 and U4 D 0 is used otherwise the results cannot be presented visually.
In Fig. 2.7, the backbone curves have been projected onto a three-dimensional space of the modal response amplitude against
frequency with varying response amplitude of Mode I. From the results, it can be seen that the resonant response frequencies
of all backbone curves for Mode II and III have shifted to higher frequency-increasing as NU1 increases.
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Fig. 2.7 Backbone curves of nonlinear normal modes II, in (a), and III, in (b), of the example plate with varying response amplitude of mode
I. Single-mode backbone curves OS2 and OS3 are shaded in blue and red respectively and double-mode backbone curves, OD˙

23.i/ are in green. The
black dash lines indicate the effective linear natural frequencies described by Eq. (2.21) and magenta lines indicate the effective bifurcation points
described by Eq. (2.23). Blue, red and green lines represent the backbone curves S2, S3 and D˙

23.i/ respectively

2.6 Conclusions

In this paper, the nonlinear dynamic behaviour of a rectangular plate with an ideal edge-pinned constrain has been considered.
In particular, the effects of different nonlinear terms, i.e. single-mode and coupled-mode terms, on the natural frequency
shifting have been analysed. This is an important topic because it may be helpful for selection of nonlinear terms included in
nonlinear reduced order models for different excitation situations.

First, we modelled the plate in the finite element software, Abaqus®, and the implicit integrator in Abaqus/Standard was
used for integrating the response for two cases of force configuration, i.e. random and hybrid excitation. The results including
and excluding the effect of geometrical nonlinearity were compared to show the nonlinear effect on the natural frequency.
Then the partial differential equation of motion of the plate was used to directly compute the nonlinear reduced order model.
Based on the ‘full’ nonlinear reduced order model, two kinds of four-mode truncation models, i.e. coupled and uncoupled
models, for the example plate were used for response simulation. The results were compared with the nonlinear behaviour
predicted by the full FE model.

Finally, the second-order normal form method was used to estimate the backbone curves including the nonlinear modal
interactions. From the results, we can see that for the low response situation, the effect of all nonlinear terms is insignificant
which is consistent to the finding in the existing literature. When the nonlinear systems under a high loading, nonlinear
cross-coupling terms are the main mechanism that cause frequency shifting for the multi-mode excitation situations. This
findings in this paper may be useful for the nonlinear terms selection in nonlinear reduced order models that are significant
for nonlinear system response prediction and identification.
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