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Abstract. The goal of this work is to give explicit interconnections
between control theory and coding. It is well-known the existence of a
closed relation between linear systems over finite fields and convolutional
codes that allow to understand some properties of convolutional codes
and to construct them. The connection between convolutional codes and
linear systems permit to consider control as well as analyze observability
of convolutional codes under linear systems point of view.

An accurate look at the algebraic structure of convolutional codes
using techniques of linear systems theory as well a study of input-state-
output representation control systems. A particular property considered
in control systems theory called output-controllability property is ana-
lyzed and used for solve the decoding process of this kind of codes.

1 Introduction

At the origin, coding theory has been devoted mainly to information theory. In
coding theory had, in fact, emerged from the need for better communication and
better computer data storage. Concretely, convolutional codes are used on many
occasions to transfer data with high demands on speed. To this end, we require
potent codes of high rates. These codes are frequently implemented in composite
with a hard-decision code, particularly Reed Solomon. Before turbo codes, such
constructions were the most efficient, coming closest to the Shannon limit.

The convolutional codes are an alternative to the block codes because of
their simplicity of generation with a little shift register. The main difference
between them is the introduction of the concept of memory, that is, the coding
at any given time will not depend only on the word to be coded, also on those
previously coded. These codes have a great advantage over those of blocks in
channels with high noise (high probability of error). Wireless communications
or satellite communications stand out among their uses.

Convolutional codes were introduced by Elias [3] which suggests using a
polynomial matrix G(z) in the encoding process and allow the generation of the
code line without using a previous buffer. G.D. Forney in [4] explained that the
term “convolutional” is used because the output sequences can be regarded as
the convolution of the input sequence with the sequences in the encoder.

There is a considerable amount of literature on the theory of convolutional
codes over finite fields, see [1,3,5,9–11,13–17] or [21], for example. In particular,
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in [16] the author find an overview of the different approaches to the subject of
convolutional code. In this work we use the definition of convolutional code as
submodule of F[z]n being interesting ir order to obtain a realization as linear
system. First order and input-state-output representations can be found in [18,
19,22,23].

2 Convolutional Codes over Finite Fields

Let Fq be the finite field of q = pr elements, the set of the input alphabet channel.
In the sequel, and if the confusion is not possible, we denote Fq simply as F.

Definition 1. A rate (n, k) convolutional code C, over a finite field F is a finitely
generated F[z]-submodule of Fn[z] of rank k.

A convolutional code C can be expressed in a matrix form (called generator
matrix) as follows.

G(z) : F[z]� −→ F[z]n

u(z) −→ v(z) = G(z)u(z)

of order n× �, � ≥ k, whose columns collect a system of generators of the finitely
generated submodule representing the code, that is to say C = Im G(z).

Note that F[z] is a principal ideal domain and then a convolutional code C
has a well-defined rank k and there exists a full-rank matrix G(z) (of rank k)
such that C = colsp

F[z]G(z).
So, it is possible to refine the definition of generator matrix considering the

notion of encoder, (see [23], for more details).

Definition 2. An encoder to C is a matrix

G(z) :F[z]k −→ F[z]n

u(z) −→ v(z) = G(z)u(z)

such that Im G(z) = C and G(z) is injective.

If we assume that G(z) is a n × k matrix with entries in F[z], the set

C = {v(z) ∈ F
n[z] | ∃u(z) ∈ F

k[z] such that v(z) = G(z)u(z)}

defines a submodule of Fn[z]. Note that Im (G) is a finitely generated submodule.
The above definition implies that a n × k polynomial matrix is an encoder

of C if its columns form a basis of the free module C. In particular, an encoder
is a generator matrix which l = k and G(z) is injective.

We denote by νi the maximum of all degrees of each of the polynomials of
each column and we can assume that ν1 ≥ ν2 ≥ ... ≥ νk up to realignment. The
number ν1 is called the memory of the code and the collection of numbers νi are
known as Forney’s indices.



Families of Convolutional Codes over Finite Fields: A Survey 19

Remember that in convolutional codes, the coding of a word varies accord-
ing to the words transmitted previously. And just the memory of the code ν1
corresponds to the number of previous words on which the encoding depends.
Notice that if ν1 = 0 the convolutional code is a block code.

Moreover, there exists another parameter related with convolutional codes
and their encoders; that is, the complexity of both objects. The relation between
these complexities is the key of the definition of a minimal encoder.

Definition 3.(a) The complexity of the encoder (also called constraint length)
is c =

∑k
i=0 νi.

(b) The degree or complexity of a convolutional code C is the highest degree of
the full size minors of any encoder, and it is denoted by δ(C).

We ask if these two numbers ever coincide, the answer is “in general no”, and
for the case where they coincide we have the following definition.

Definition 4. Let C ⊂ F[z]n be a (n, k)-convolutional code. An encoder matrix
G(z) of C is called minimal if and only if the complexity of the encoder coincides
with the complexity of the code. That is to say c = δ(C)

It is well known that if we apply a basis change in F[z]k, it does not change
the path of the map G(z). Then, we have the following results relating minimal
encoders:

Lemma 1. Let G(z) be an n × k polynomial matrix of rank k defining a convo-
lutional code C = colspF[z]G(z). Let Ĝ(z) be an n × k polynomial matrix of rank
k over F[z]. The following statements are verified:

1. G(z) and Ĝ(z) define the same behaviour if and only if there exists a k × k

unimodular matrix U(z) such that Ĝ(z) = G(z)U(z)
2. There exists an unimodular matrix U(z) such that Ĝ(z) = G(z)U(z) is a

minimal encoder.
3. If G(z) and Ĝ(z) are minimal encoders of C then they have the same column

degrees.

Definition 5. The column degrees (κ1, ..., κk) of any minimal encoder Ĝ(z) of C
are known as the Kronecker or controllability indices of the code. We can reorder

them if it is necessary such that κ1 ≥ . . . ≥ κk. The invariant δ =
∑k

i=1
κi is

the degree of complexity of the code C.

(In some coding literature, δ is called the complexity of the code).
Note that the controllability indices of a convolutional code are unique and

invariant of the code. If we consider a minimal encoder of a convolutional code
then the controllability indices and Forney’s indices are equal, and in this case,
κ1 = ν1 is the memory of the encoder.

We give some notions about observable convolutional codes that are useful
in the following Chapter.
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Definition 6. Let G(z) be an encoder of a (n, k) convolutional code C over F.
A syndrome former for the code C is a homomorphism of modules given by

ψ : F[z]n → F[z]n−k

with the property that Im G(z) ⊆ Ker ψ.

Definition 7. Let G(z) be an encoder of a (n, k) convolutional code C over F.
The convolutional code C is observable if and only if G(z) is right-prime, i.e. all
k × k-minors are non-zero and they have non trivial common factors (z�, � ∈ N

are trivial).

Proposition 1. Let G(z) be an encoder of a (n, k) convolutional code C over F.
The convolutional code C is observable if and only if there exits an encoder G(z)
and a syndrome Former ψ such that the following sequence is exact

0 → F[z]k
G(z)−→ F[z]n

ψ−→ F[z]n−k → 0

in other words, if a convolutional code C is observable there exists a polynomial
matrix H(z) (a syndrome former) with the property that v ∈ C if and only if
H(z)v(z) = 0.

The representation of a code among relatively different representations
by means of a polynomial matrix is not unique, but we have the following
proposition.

Proposition 2. Two n×k rational encoders G1(z), and G2(z) define the same
convolutional code, if and only if there exists a k × k unimodular matrix U(z)
such that G1(z)U(z) = G2(z).

Remember that a polynomial matrix P (z) ∈ F[z] is unimodular if there exists
another matrix Q(z) such that P (z)Q(z) = I.

After a suitable permutation of the rows, we can assume that the generator
matrix G(z) is in the form

G(z) =
(
P (z)
Q(z)

)

(1)

with right coprime polynomial factors (block of polynomials) P (z) ∈ F(n−k)×k

and Q(z) ∈ Fk×k, respectively.
It is possible to consider the equivalent rational encoder where Q(z) �= 0

(
P (z)
Q(z)

)

Q−1(z) =
(
P (z)Q−1(z)

I

)

. (2)

In the convolutional codes the Hamming distance can be defined as in block
codes, the number of symbols in which two encoded bit sequences differ.

In convolutional codes the free distance dfree(C) of a code C is defined as the
minimum Hamming distance between two encoded bit sequences. This depends
on the number of errors that the code is able to correct. As in block codes, the
Hamming distance is calculated by comparing the outputs with the null input.
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In a more formal form

Definition 8.

dfree(C) = min {wt(v(z)) | v(z) ∈ C with v(z) �= 0}.

where the weight wt(v(z)) of v(z) = v0 + v1z + . . . + vlz
l ∈ F

nq[z] (with l ≥ 0)
is defined as the sum of the Hamming weights of all their coefficients, that is,

wt(v(z)) =
l∑

i=0

wt(vi).

and Hamming weight wt(v) of a vector vi ∈ F
n, is the number of its nonzero

components.
The importance of free distance is because it determines the corrective capac-

ity of the code.

3 Convolutional Codes and Linear Systems

In this section, we recall the systems theory tools by introducing the input-
state-output representation; then, we will talk about convolutional codes using
the linear systems theory; and also introduce the realization for the transition
between codes and linear systems.

A discrete linear time-invariant system is described by the equations
{

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) (3)

where A ∈ Mδ(F), B ∈ Mδ×k(F), C ∈ Mp×δ(F), D ∈ Mp×k(F) (in our particular
setup p = n−k) are constant matrices over the field F, and u(t) ∈ F

k, x(t) ∈ F
δ,

y(t) ∈ F
p are the input, state and output vectors, respectively.

We will denote a system simply as the quadruple of matrices (A,B,C,D).
With initial condition x(0) = 0, a solution of the Eq. (3) can be obtained

by making use of the Z-transform. Let u(z), x(z), y(z) be the Z-transforms of
the variables u, x, y of a time-invariant linear system. Then by applying the
Z-transform to the equations of the system we obtain

{
zx(z) = Ax(z) + Bu(z)
y(z) = Cx(z) + Du(z) (4)

and as a result we have

y(z) = (C(zIδ − A)−1B + D)u(z), (5)

called the transfer function of the system, and the rational matrix

C(zIδ − A)−1B + D =
1

det(zIA)
Cadj(zIA)B + D,
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where adj(M) represents the adjoint matrix of M , is called the transfer matrix,
(notice that the transfer matrix will always be a rational matrix).

The values z0 ∈ F (where F denotes the algebraic closure of the field F) such
that det(z0Iδ − A) = 0 are called eigenvalues of A and the set of all eigenvalues
is called spectrum of A and is denoted by Spec(A).

The bridge between linear systems theory and convolutional codes is given
by a duality between codes and sets input/state/output representations that are
controllable state space systems.

Given a convolutional code, with a specific encoding matrix G(z), we can
find four matrices (A,B,C,D) of adequate sizes, corresponding to the size of
the encoder, defining the system

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

v(t) =
(

y(t)
u(t)

)

x(0) = 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (6)

where x(t) is called state vector, u(t) information vector, y(t) parity vector and
v(t) the code vector or codeword. The linear system (A,B,C,D) associated to
the encoder G(z) is called a realization of G(z). We are interested in minimal
realizations.

In terms of the input-state-output representation of a convolutional code, we
have the following characterization of the free distance.

Definition 9.

dfree(C) = min

{ ∞∑

t=0

wt(ut) +
∞∑

t=0

wt(yt)

}

Where the minimum is considered over all non-null code words.
Due to algebraic reasons, we assume throughout the paper that the code

words are of finite weight.
Another well-studied concept in convolutional codes theory is that of column

distances. The jth column distance of the code C is defined as the following
manner

Definition 10.

dj = min

{
j∑

t=0

wt(ut) +
j∑

t=0

wt(yt)

}

,

where the minimum is taken over all trajectories (ut, yt) of the system (6) with
initial vector u0 �= 0.

It is clear that
d0 ≤ d1 ≤ d2 ≤ . . .

and hence there exists an integer r such that dr = dr+j for all j ≤ 0. This largest
possible column distance is of central importance in coding theory.
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Proposition 3.
dfree = lim

j→∞
dj

Codes with a large free distance and the largest possible column distances are
very desirable.

3.1 Realization

Linear systems for convolutional codes represent a mechanism to work on every
little sub-piece of the encoding process. If we try to understand the physical con-
trol process, that goes along with the coding, the state of our encoding machine
is modified by both the dynamics matrix and the input matrix.

Now, we present a method to obtain a realization.
Let G(z) be a matrix generator of (n, k) convolutional code, in which we

consider that is in the form
(

P (z)
Q(z)

)
with Q(z) invertible and the degree δ of the

polynomial detQ(z) being maximal among all minors of order k.
We decompose P (z)Q(z)−1 into a polynomial matrix and a strictly proper

matrix.
Let p(z) = zδ +aδ−1z

δ−1+ . . .+a1z+a0 the monic polynomial deduced from
det Q(z). So, the matrix P (z)Q(z)−1 is written in the form

⎛

⎜
⎜
⎜
⎜
⎜
⎝

d11 +
q11(z)
p(z)

. . . d1k +
q1k(z)
p(z)

...
...

dn−k1 +
qn−k1(z)

p(z)
. . . dn−kk +

qn−kk(z)
p(z)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

qij = cij
0 + cij

1 z + . . . + cij
δ−1z

δ−1

(by construction dij ∈ F and degree qij < δ).
First of all and for simplicity, we analyze the case where k = 1.
We consider the following matrices

D =

⎛

⎜
⎝

d11
...

dn−k1

⎞

⎟
⎠ ∈ M(n−k)×1(F).

A =

⎛

⎜
⎜
⎜
⎝

−aδ−1 −aδ−2 . . . −a1 −a0

1 0 . . . 0 0
. . .

0 0 . . . 1 0

⎞

⎟
⎟
⎟
⎠

∈ Mδ(F)

B =

⎛

⎜
⎜
⎜
⎝

1
0
...
0

⎞

⎟
⎟
⎟
⎠

∈ Mδ×1(F)
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C =

⎛

⎜
⎝

c11δ−1 . . . c110
...

...
cn−k1
δ−1 . . . cn−k1

0

⎞

⎟
⎠ ∈ M(n−k)×δ.

A simple calculation shows that C(zIδ − A)−1B + D = P (z)Q(z)−1.

Example 1. We consider the following code

G(z) =

⎛

⎝
1 + z + z2

α + z + α2z2

α2 + z + αz2

⎞

⎠

over the field F4,

G(z) =

⎛

⎝
1 + z + z2

α + z + α2z2

α2 + z + αz2

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + z + z2

α2 + z + αz2

α + z + α2z2

α2 + z + αz2

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

α2 + z + αz2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + z + z2

α2 + z + αz2

α + z + α2z2

α2 + z + αz2

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α + 1 +
1 + α + αz

α2 + z + αz2

α +
(1 + α) + (1 + α)z

α2 + z + αz2

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

;

P (z)Q(z)−1 =

⎛

⎜
⎜
⎜
⎝

1 + α +
α + z

α + (α + 1)z + z2

α +
α + αz

α + (α + 1)z + z2

⎞

⎟
⎟
⎟
⎠

.

Following as before we obtain the following realization (A,B,C,D) of the
convolutional code where

D =
(

α + 1
α

)

, B =
(

1
0

)

,

q11 = α + z = c110 + c111 z
q21 = α + αz = c210 + c211 z

C =
(

c111 c110
c211 c210

)

=
(

1 α
α α

)

p(z) = a0 + a1z + z2 = α + (1 + α)z + z2

A =
(

−a1 −a0

1 0

)

=
(

1 + α α
1 0

)
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A similar result holds for k > 1 case, the single input state-space models that
correspond to the individual transfer functions from each input to each output,
could be stacked into one large k > 1 state-space model.

Example 2. Let G(z) be the following encoder matrix

G(z) =

⎛

⎜
⎜
⎝

1 + z 1
z 1 + z

1 + z + z2 0
0 1 + z + z2

⎞

⎟
⎟
⎠ =

(
P (z)
Q(z)

)

So,

C(zI − A)−1B + D = P (z)Q(z)−1 =

⎛

⎜
⎝

1 + z

1 + z + z2
1

1 + z + z2
z

1 + z + z2
1 + z

1 + z + z2

⎞

⎟
⎠

In this case D = 0 and A =

⎛

⎜
⎜
⎝

−1 0 −1 0
0 −1 0 −1
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠, B =

⎛

⎜
⎜
⎝

1 0
0 1
0 0
0 0

⎞

⎟
⎟
⎠, C =

(
1 1 0 1
1 0 1 1

)

.

An important concept in realization theory is the minimality.

Definition 11. A realization (A,B,C,D) of a transfer matrix G(z) is said to
be minimal if no other realization of G(z) has smaller dimension.

In order to know the minimality of the realization we have the following result

Theorem 1. Let (A,B,C,D) be a realization of G(z). The following statements
are equivalent:

(1) (A,B,C,D) is minimal.
(2) The poles of G(z) are the eigenvalues of A

Theorem 2. Given a transfer matrix G(z), all the minimal realizations of G(z)
are algebraically equivalent.

The equivalence is in the following sense.

Definition 12. Two systems (A,B,C,D) and (A′, B′, C ′,D′) are equivalent if
and only if there exist an invertible matrix P such that

(
A′ B′

C ′ D′

)

=
(

P
Ip

)(
A B
C D

)(
P−1

Ik

)

Notice that this equivalence relation preserve the transfer matrix associate to
the system:

C ′(zI − A′)−1B′ + D′ = CP−1(zI − PAP−1)−1PB + D
= CP−1(P (zI − A)P−1)−1PB + D = CP−1P (zI − A)−1P−1PB + D
= C(zI − A)−1B + D
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3.2 Control Properties of Convolutional Codes

We review the standard conditions about reachability (controllability from the
origin) over the input-state-output representation of a convolutional code C
over F. First, we recall some results.

Definition 13. Let (A,B,C,D) be matrices over F describing a linear system
as in (3). The controllability (reachability) matrix was defined by

C(A,B) =
(
B AB . . . Aδ−2B Aδ−1B

)
(7)

It is well-Known that, a linear system (A,B,C,D) over a field F is reachable
if its controllability matrix has full row rank; that is, rankΦδ(A,B) = δ. Or,
equivalently, the Hautus test is verified.

rank C(A,B) = δ if and only if rank (z0I + A | B) = δ, ∀z0 ∈ F

Remark 1. The controllability depends only on the state equation of the system.

Remark 2. Note that by construction, realization constructed is controllable.

Duality between convolutional codes and reachable state space realization is
useful to construct observable convolutional codes: an input-state-output real-
ization is always a reachable dynamical linear system. If it is also observable,
then the following results allow us to get an associated observable convolutional
code.

Rosenthal and York in [19] show that, starting from a minimal representation
of a convolutional code, then this code is non-catastrophic if and only if the pair
(A,C) is observable.

In terms of linear systems, let (A,B,C,D) be matrices over F describing a
system. The observability matrix is defined by

O(A,C) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C
CA
CA2

...
CAδ−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(8)

Lemma 2. The system (A,B,C,D) is observable if and only rank O(A,C) = δ
or equivalently, by the Hautus Test, ∀ z0 ∈ F,

rank
(
−z0I + A

C

)

= δ

There are multiple realizations (A,B,C,D) for a given linear system. In
particular, δ, the size of matrix A is not constant in the set of all realizations.
Since δ is always a positive integer, it must reach a minimum value for certain
realization. This minimum value of δ is called the McMillan degree of the system.



Families of Convolutional Codes over Finite Fields: A Survey 27

A realization (A,B,C,D) for which δ is equal to the degree of McMillan, we say
that is a minimal realization. It is well known that the minimality property of
a realization is related to the concepts of controllability and observability in the
following sense.

Theorem 3 ([2]). The realization (A,B,C,D) of a linear system is minimal if
and only if (A,B) is a controllable pair and (A,C) is an observable pair.

It is important to note that while in linear systems theory, a realization is
minimal if and only if the pair (A,B) is controllable and the pair (A,C) is
observable, for input-state-output representation of a convolutional code we do
not have the same result. In fact, it is enough that the pair (A,B) be controllable
so that the representation is minimal.

Related to the decodification of the encoders is the output-observability
property.

Output-observability represents the possibility of an internal state, to be only
defined by a finite set of outputs, for a finite number of steps. There are some
literature about this topic, as for example [6–8].

Definition 14. A system (A,B,C,D) is said to be output observable if the state
sequence x(0), . . . , x(�) is uniquely determined by the knowledge of the output
sequence y(0), . . . ,y(�) for a finite number of steps � ∈ N.

Observe that x(1), . . . ,x(�) are determined by the knowledge of x(0) and
u(0), . . . , u(� − 1) and the elements x(0), u(0), . . . , and u(�) can be obtained
solving the following system of matrix equations.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

y(0) = Cx(0) + Du(0)
y(1) = Cx(1) + Du(1)

= CAx(0) + CBu(0) + Du(1)
...

y(�) = Cx(�) + Du(�)
= CA�x(0) + CA�−1Bu(0) + . . . + CBu(� − 1) + Du(�).

(9)

Calling T�(A,B,C,D) (that we simply write T� if no confusion is possible)
the matrix

T� =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C D
CA CB D
CA2 CAB CB D

...
. . . . . .

CA� CA�−1B CA�−2B . . . CB D

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (10)
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We have the following.

Proposition 4. A system (A,B,C,D) is output observable if and only if the
matrix T� has full row rank for all � ∈ N.

Remark 3. If the number of rows is bigger than the number of columns, there
are values of y(0), . . . ,y(�), for which (y(0), . . . ,y(�)) is not a parity vector.

Corollary 1. A necessary condition for output-observability of the system
(A,B,C,D) is that the matrix

(
C D

)
has full row rank.

Therefore, we assume that the number of rows is less than or equal to the
number of columns. It is well known that in this case and for each �, the systems
(9) have solution for all y(0), . . . ,y(�), if and only if the systems have full rank.

Fixing the initial state x(s) = 0, the output-observability matrix allows us
to describe a sequence of trajectories {vs, . . . ,vs+�} in the following manner.

Theorem 4. Let (A,B,C,D) be a representation of a convolutional code. Sup-
pose that the initial state of the system is x(s) = 0, then

{vs, . . . ,vs+�} = Ker T�,

where

T� =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

D −I
CB 0 D −I

CAB 0 CB 0 D −I
...

. . . . . .
CA�−1B 0 CA�−2B 0 . . . CB 0 D −I

⎞

⎟
⎟
⎟
⎟
⎟
⎠

The output observability matrix is related with the syndrome former matrix
used by Rosenthal and York [20], solving the decoding problem.

Let (A,B,C,D) be a realization of a convolutional code.
From the system

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C D
CA CB D
CA2 CAB CB D

...
. . . . . .

CA� CA�−1B CA�−2B . . . CB D

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

x(s)
u(s)

...
u(s + �)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

y(s)
y(s + 1)

...
y(s + �)

⎞

⎟
⎟
⎟
⎠

(11)

we can deduce the syndrome former matrix for the given code.

Proposition 5. Suppose that � ≥ δ. By making elementary transformations to
matrix Eq. (11) we can deduce the syndrome former matrix for the convolutional
code.
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Proof. The system (11) can be rewritten as

⎛
⎜⎜⎜⎜⎜⎝

C
CA
CA2

...

CA�

⎞
⎟⎟⎟⎟⎟⎠

x(s) =

⎛
⎜⎜⎜⎜⎜⎝

D I
CB D I

CAB CB D I
...

. . .
. . .

. . .

CA�−1B CA�−2B . . . CB D I

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−u(s)
−u(s + 1)

...
−u(s + �)

y(s)
y(s + 1)

...
y(s + �)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

and making row elementary transformations, we obtain

(
O(A,B)

0

)

(x(s)) =
(

M1 M2

M3 M4

)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−u(s)
...

−u(s + �)
y(s)

...
y(s + �)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(13)

Then,
(
M3 M4

)
is the syndrome former matrix.

Example 3. In F2, we consider the system (A, b, C,D) with

A =
(

0 1
1 0

)

, B =
(

1
0

)

, C =
(
1 0

)
, D =

(
1
)
.

Then, the system (12) for this particular case is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0
0 1
1 0
0 1
1 0
0 1
1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(x(s)) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0 0 0
1 0 1 1 0 0 0 0 0 0 1 0 0 0
0 1 0 1 1 0 0 0 0 0 0 1 0 0
1 0 1 0 1 1 0 0 0 0 0 0 1 0
0 1 0 1 0 1 1 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−u(0)
−u(1)
−u(2)
−u(3)
−u(4)
−u(5)
−u(6)
y(0)
y(1)
y(2)
y(3)
y(4)
y(5)
y(6)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Now, taking

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0

−1 0 1 0 0 0 0
0 −1 0 1 0 0 0

−1 0 0 0 1 0 0
0 −1 0 0 0 1 0

−1 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The system is reduced to

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0
0 1
0 0
0 0
0 0
0 0
0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(x(s)) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0

−1 1 1 0 0 0 0 −1 0 1 0 0 0 0
0 −1 1 1 0 0 0 0 −1 0 1 0 0 0

−1 1 0 1 1 0 0 −1 0 0 0 1 0 0
0 −1 1 0 1 1 0 0 −1 0 0 0 1 0

−1 1 0 1 0 1 1 −1 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−u(0)
−u(1)
−u(2)
−u(3)
−u(4)
−u(5)
−u(6)
y(0)
y(1)
y(2)
y(3)
y(4)
y(5)
y(6)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

So, the syndrome former matrix is
⎛

⎜
⎜
⎜
⎜
⎝

−1 1 1 0 0 0 0 −1 0 1 0 0 0 0
0 −1 1 1 0 0 0 0 −1 0 1 0 0 0

−1 1 0 1 1 0 0 −1 0 0 0 1 0 0
0 −1 1 0 1 1 0 0 −1 0 0 0 1 0

−1 1 0 1 0 1 1 −1 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

.

On the other hand, the following L-order block Toeplitz submatrix of the
output-observability matrix

TL =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

D
CB D

CAB CB D
...

. . . . . .
CAL−1B CAL−2B . . . CB D

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (14)

allows us to obtain a characterization of the convolutional codes with maximum
distance profile, in terms of its input-state-output representation.

Remember that (see [12]), an (n, k)-code �, with column distances dj and
free distance dfree. has a maximum distance profile if

dj = (n − k)(j + 1) + 1 for j = 0, . . . , L =
⌊

δ

k

⌋

+
⌊

δ

n − k

⌋
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Maximum distance profile convolutional codes are characterized by the prop-
erty that two trajectories which start in the same state and proceed to a different
state will have the maximum possible distance from each other relative to any
other convolutional code of the same rate and degree.

Theorem 5 ([12]). The matrices (A,B,C,D) generate a (n, k)-code with of
maximum distance profile, (in terms of the input-state-output representation), if
and only if the matrix TL, verifies that any minor that is not trivially zero, is
non-zero.

Minor not trivially zero is understood in the following sense. We consider In
this definition, we think of the nonzero entries of the block Toeplitz matrix
TL as indeterminates of the polynomial ring R = Fq[x1,1, . . . ,x1,(L+1)k, . . . ,
x(L+1)p,1, . . . ,x(L+1)p,(L+1)k]. Specifically, if the entry (i, j) of the matrix is
nonzero, we set it equal to xi,j ; otherwise, we leave it zero. So, a minor of TL is
called trivially zero if it is zero viewed as an element of the ring R.

Example 4. In F4, the convolutional code (A,B,C,D) with

A =
(

α
1

)

, B =
(

1
1

)

, C =
(
α + 1 α

)
, D =

(
α + 1

)

where δ = 2, k = 1, p = 1 then L = 1 and

TL =
(

α + 1
1 α + 1

)

So, the convolutional code has maximum distance profile.

4 Families of Convolutional Codes over Finite Fields

We are interested in convolutional codes where the matrices (A,B,C,D) or one
of them, are not entirely defined having in certain positions parameters that can
take any value from the field. So we can consider this parametric code as a family
of convolutional codes.

These families of codes may be of interest when attempting to protect or
hide certain information.

Anyway, we can not place parameters anywhere if we want to maintain certain
properties of the code. In particular the structure of the matrix A, in this case
and taking into account that the equivalence relation given in Definition 12
preserves this structure of matrices, we can consider classes of systems, and as
representative of each class we find a system in which the matrix A is in some
reduced form.

Example 5. In F5, we consider the following family of systems (A(a), B(a), C(a),
D(a)) with

A(a) =

⎛

⎝
1 a 0
0 2 0
0 0 3

⎞

⎠ , B(a) =

⎛

⎝
1 2
1 1
1 0

⎞

⎠ , C(a) =
(

1 1 1
2 0 1

)

, D(a) =
(

1 2
2 0

)
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Taking the family of invertible matrices P =

⎛

⎝
1 a 0
0 1 0
0 0 1

⎞

⎠, this family is equiva-

lent to (A1(a), B1(a), C1(a),D1(a)) with

A1(a) =

⎛
⎝
1 0 0
0 2 0
0 0 3

⎞
⎠ , B1(a) =

⎛
⎝
1− a 2− a
1 1
1 0

⎞
⎠ , C1(a) =

(
1 a + 1 1
2 2a 1

)
, D1(a) =

(
1 2
2 0

)

So, for each a ∈ F5 we have a different system but all matrices A(a) have the
same structure. Obviously is not the same for the family (Ā(a), B̄(a), C̄(a), D̄(a))
with

Ā(a) =

⎛

⎝
1 + a 0 0

0 2 0
0 0 3

⎞

⎠ , B̄(a) =

⎛

⎝
1 2
1 1
1 0

⎞

⎠ , C̄(a) =
(

1 1 1
2 0 1

)

, D̄(a) =
(

1 2
2 0

)

where the matrix A in each member of the family has a different structure.

In Fq there are exactly qδ2 × qkδ × qpδ × qpk different systems. In particular,
if the matrix A is in such a way that in its reduced form is diagonal, we have

(δ + q − 1)!
δ!(q − 1)!

× qkδ × qpδ × qpk.

Taking into account that the cardinal of the set of invertible matrices
Gl(δ,Fq) is

∏δ−1
k=0(q

δ − qk), it is possible to count the number of elements of
each equivalent class and the number of classes.

For that, it suffices to define an action of the linear group over the set of
systems M = {(A,B,C,D)}:

ϕ : Gl(δ,Fq) × M −→ M
(P, (A,B,C,D)) −→ (P−1AP,P−1B,CP,D)

Then, after to compute the stabilizer S(A,B,C,D) of a fixed point (A,B,C,D) ∈
M defined as S(A,B,C,D) = {P ∈ Gl(δ,Fq) | α(P, (A,B,C,D)) = (A,B,C,D) =
{P ∈ Gl(δ,Fq) | AP − PA = 0, PB − B = 0, CP − C = 0}
and now, it is easy to prove that there is a bijection between the set of equivalent
systems to (A,B,C,D) and the quotient group Gl(δ,Fq)/S(A,B,C,D).

Given a convolutional code (A,B,C,D), we are interested in to perturb it
in order to improve their behaviour and control properties. That is, to find the
values of the parameters for which our code has the appropriate or expected
properties.

Example 6. In F4, let (A,B,C,D) be a convolutional code with

A =
(

α α + 1
α + 1 1

)

, B =
(

α + 1
α

)

, C =
(
α + 1 1

)
, D =

(
1
)
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This code is no controllable because of:

rank
(

z − α −(α + 1) α + 1
−(α + 1) z − 1 α

)

= 1 for z = α + 1

And not observable because of:

rank

⎛

⎝
z − α −(α + 1)

−(α + 1) z − 1
α + 1 1

⎞

⎠ = 1 for z = 0

Considering the family of convolutional codes (A(a), B(a), C(a),D(a)) be a
convolutional code with

A =
(

α + a α + 1
α + 1 1

)

, B =
(

α + 1
α

)

, C =
(
α + 1 1

)
, D =

(
1
)

The codes of the family are controllable and observable if and only if a �= 0.
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