
Preface

The first International Parallel Tools Workshop (IPTW) was held on July 9–10,
2007 at HLRS in Stuttgart. The idea was to bring industrial and academic High-
Performance Computing (HPC) user communities together with developers of tools
to discuss state-of-the-art parallel programming tools and supporting technologies.
The mission of the event was twofold: on the one hand increasing users’ awareness
and understanding of parallel programming tools, and on the other hand providing
tool developers with feedback on users’ needs and input from other tool developers.
The vision behind all of it: tools for parallel programming in High-Performance
Computing is the enabler for an important step forward towards application
correctness, performance, and efficiency of use of resources.

This book comprises the continuation of a successful series of publications that
started with the second International Parallel Tools Workshop in 2007. It contains
contributed papers presented at the International Parallel Tools Workshop 2016,1

held October 4–5, 2016, in Stuttgart, Germany. The workshop was jointly organised
by the High-Performance Computing Center Stuttgart (HLRS)2 and the Center for
Information Services and High Performance Computing of the Technical University
of Dresden (ZIH-TUD).3

With the IPTW 2016 held in Stuttgart, we celebrate the tenth anniversary
of this workshop series. The motto of this year’s event was the transition of
initially academic prototype-like helpers to stable production tools and further
on to commercial products. Indeed, in the last decade the HPC tools landscape
has changed dramatically: simple command-line scripts have developed into fully-
flagged automatic or automated analysis suites, have been provided with rich
graphical user interfaces where appropriate, and enriched with a broad set of docu-
mentation and training material. Close collaboration within the tools community has
led to wide-spread acceptance of terminology, and standardisation of techniques and

1http://toolsworkshop.hlrs.de/2016/.
2http://www.hlrs.de.
3http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/.

v

http://toolsworkshop.hlrs.de/2016/
http://www.hlrs.de
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/


vi Preface

data-formats. This allows for a tight integration and interoperability of commercial
and open-source tools alike, which increases the user’s productivity by shedding
light on the issue from different perspectives.

Although there are many open source tools from the researcher community today,
there are surprisingly only a few commercial products. Here, the keynote held by
Allen D. Malony with the title “The Value Proposition for Parallel Tools”, posed
the question what the value of these tools is, how they are funded and whether
monetizing tools is the right measure of success—and even whether parallel tools
have, in and of themselves, any value at all.

As has always been the case, HPC users are faced with ever increasing com-
plexity of hardware and software aspects. One of these aspects is the deep memory
hierarchy in today’s computing systems ranging from the introduction of a forth
cache level in the POWER8 processors to the introduction of new technologies such
as NVRAM at the opposite end of the hierarchy. Thus, all but the simplest “fit to
cache models” are difficult to handle by the programmer at the moment of writing
code. So tools are required to assist at this point to reach the best performance and
energy efficiency. Such issues are addressed by the tool Kernkraft as presented in
the first chapter of this book. Kernkraft combines memory models and simulators
with instruction analysis to transform loops automatically for best performance on
a given target architecture.

Another aspect introducing complexities is system size. While MPI programs
running on tens or hundredth of single core CPUs could be understood relatively
easy, today’s applications running on multi- or many-cores need to use hybrid
MPI+OpenMP models. Thus communication does not only include more processes
but also shows more complex patterns as more sophisticated algorithms use, e.g.
overlapping techniques, and may even require to take data-locality into account.
Detection and reasoning on communication pattern becomes increasingly important
to understand the application behaviour. The topic of the second chapter is the
detection of these communication patterns independently of the number of resources
used and relative to their process placement.

The shared-memory parallel programming model OpenMP has recently been
extended significantly to support data-dependencies between computation tasks
and off-loading of tasks onto heterogenous accelerators of various types. OpenMP
programmes thus become much more complex than the traditional fork-join model.
This has led to an effort of tool developers to define a standard OpenMP Tools
interface (OMPT), which is scheduled to be included in the next major version of
OpenMP. In the third chapter, the tool Extrae show-cases the potential for tracing
and sampling on heterogenous hardware of this new interface.

At the same time common functionalities in tools are standardised in a way, that
collaboratively maintained tools APIs are created. These APIs allow to focus on
new tool features without the need of re-inventing the infrastructure below. One
of them is the Score-P measurement infrastructure, which provides an extendable
plugin interface. In the fourth chapter, the potential of this interface is presented by
a variety of new ideas to support the development process of parallel applications.



Preface vii

Another important trend is one-sided communication to reduce communication
overheads. This is also reflected in the fact that the Message Passing Interface
(MPI) has undergone various updates in this area. Two chapters are related to
the fundamental issue of synchronisation in this programming model, where many
errors can be made by the user at the moment. One is related to the detection of
synchronisation errors and the other on lock contention.

Finally, the last chapter of this book gives a bit of an outlook on the path to future
of parallel programming: automatic program transformation. While a specialist may
provide a few simple transformation rules to increase the efficiency of a code on a
given hardware, the combination of a large set of such transformation rules leads to
such a number of combinations that only a tool is capable of evaluating them in an
effective way. Here an approach based on machine learning techniques is presented.

The topics covered in this book, clearly show the potential of giving parallel
programming tools a better, first-hand view on the internals of a parallel pro-
gramming model, as for instance by providing standard tool interfaces as OMPT,
thus allowing them to present to the user a fuller and semantically richer picture
of the application state. Also, the trend to re-use common tool infrastructure,
e.g. by providing standard APIs, data-formats, or plugin facilities, leads not only
to faster development of tools on a wider range of systems, but also to the
creation of new tools beyond the original scope of infrastructure. Finally, tools
are semi-automatically assisting developers with complex tasks such as analysis of
applications structure regarding communication or cache-access patterns, or code
transformations for various underlying hardware.

Stuttgart, Germany Christoph Niethammer
Stuttgart, Germany José Gracia
Dresden, Germany Tobias Hilbrich
Dresden, Germany Andreas Knüpfer
Stuttgart, Germany Michael M. Resch
Dresden, Germany Wolfgang E. Nagel
January 2017



http://www.springer.com/978-3-319-56701-3


	Preface

