
Chapter 2
Basics of Thermomechanics and Inelasticity

Rock salt can undergo large inelastic deformations over extended periods of
time. Many analyses, however, refer to time intervals and mechanical loads that
cause deformations for which the small-strain assumption remains valid. Here, we
restrict ourselves to such small-strain settings and postpone analyses under finite
deformations to a follow-up contribution (compare also Fig. 2.1).

OGS mainly offers the analysis types 3D, 2D plane strain and axisymmetric.
In the sequel, a general tensorial notation is chosen for the field equations while
finite element concepts are presented in a three-dimensional setting only. For special
considerations in the context of lower-dimensional or analyses relying on special
symmetries, we refer the reader to standard textbooks (Bathe 2014; Zienkiewicz
et al. 2005–2006), the benchmark book series (Kolditz et al. 2012, 2014, 2016) or
the source code documentation of OGS.1

OGS offers the possibility to couple mechanical analyses to thermal, hydraulic
and chemical processes using either sequential or monolithic schemes. Here, the
focus is on thermo-mechanical couplings.

2.1 Governing Equations

In a finite-strain setting, the material is mapped to different geometrical configura-
tions as it deforms and evolves over time. The two most relevant configurations are
the current and the reference configuration, cf. Fig. 2.1. The different configurations
lead to a multitude of stress and strain measures. In a small-strain setting, we
assume that the reference configuration (often taken as the undeformed state for
convenience) changes only very slightly. Thus, particles are assigned only their
reference coordinates, now designated by x, and field gradients are evaluated

1https://doxygen.opengeosys.org/.
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Fig. 2.1 Material points move from their reference placement X to their current placement x,
both of which are connected by the displacement vector u. Neighbouring material points define
material line elements represented by dX and dx in the reference and current configurations,
respectively. Curvilinear (XI , xi) and Cartesian (ZI , zi) coordinate lines define local basis systems
for the geometrical description of the motion problem. For further details, see Holzapfel (2000),
Haupt (2002), and Hutter and Jöhnk (2004)

exclusively with respect to those coordinates. The relevant strain measure is the
small-strain tensor � D sym grad u, the relevant stress measure the Cauchy stress
tensor � . The initial boundary value problem is thus defined on a (reference) domain
˝ as indicated in Fig. 2.2.

To perform a basic thermo-mechanical analysis in a quasistatic small-strain
setting we employ the local (PDE) forms of the equilibrium conditions (derived
from the balance of momentum) and the heat conduction equation (derived from the
balance of energy)

0 D div � C %b (2.1)

0 D %cp
@T

@t
C div q (2.2)
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Fig. 2.2 Domain ˝ with prescribed displacements Nu on the Dirichlet boundary @˝u and pre-
scribed tractions Nt on the Neumann boundary @˝t. Similar boundaries can be defined for the
thermal problem, where a given temperature NT is prescribed on the Dirichlet boundary @˝T and a
normal heat flux Nqn is prescribed on the Neumann boundary @˝q

together with the boundary and initial conditions

u D Nu 8x 2 @˝u (2.3)

� � n D Nt 8x 2 @˝t (2.4)

T D NT 8x 2 @˝T (2.5)

� q � n D Nqn 8x 2 @˝q (2.6)

u.t D 0/ D u0 8x 2 ˝ (2.7)

T.t D 0/ D T0 8x 2 ˝ (2.8)

where the boundary domains fulfill the conditions

@˝ D @˝u [ @˝t D @˝T [ @˝q

; D @˝u \ @˝t D @˝T \ @˝q

In preparation of a finite element implementation, Eqs. (2.1) and (2.2) are cast
into their weak forms. For that purpose we introduce the function ansatz and test
spaces

Va
u D fv 2 H1.˝/ W v D Nu 8x 2 @˝u g

Va
T D fv 2 H1.˝/ W vD NT 8x 2 @˝Tg

Vt
u D fv 2 H1.˝/ W v D 0 8x 2 @˝u g

Vt
T D fv 2 H1.˝/ W vD 0 8x 2 @˝Tg
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With u 2 Va
u, T 2 Va

T , vu 2 Vt
u and vT 2 Vt

T we find the weak forms

Z

˝

� W grad vu d˝ D
Z

@˝t

Nt � vu d� C
Z

˝

b � vu d˝ (2.9)

Z

˝

%cp
@T

@t
vT d˝ �

Z

˝

q � grad vT d˝ D
Z

@˝q

qnvT d˝ (2.10)

As will be outlined in Sect. 2.4, a uni-directional staggered coupling scheme will
be used to solve the coupled problem given by Eqs. (2.9) and (2.2). Non-linear
constitutive equations for the stresses (cf. Sect. 2.3) motivate an incremental-
iterative approach. Based on a known solution at time t, the solution in the next
time increment t C�t will be determined iteratively by a Newton–Raphson scheme.
For that purpose, a linearisation of Eq. (2.9) is performed around the current state
identified by the (global Newton) iteration counter i, leading to the linearized weak
form

Z

˝

grad vu W d�

d�

ˇ̌
ˇ̌
i

W��iC1 d˝

D
Z

@˝t

NttC�t � vu d� C
Z

˝

btC�t � vu d˝ �
Z

˝

� i W grad vu d˝

(2.11)

where

C D d�

d�
(2.12)

is the fourth-order constitutive stiffness tensor.
In the present coupling scheme and for the constitutive assumptions made here,

no such step is necessary for Eq. (2.10).

2.2 Finite Element Implementation and the Kelvin Mapping

The Kelvin Mapping of Tensorial Quantities

Commonly, the transition to a standard matrix–vector notation in the context of finite
element implementations is performed by replacing three-dimensional symmetric
second-order tensors by six-dimensional vectors (using engineering shear strains
�ij D 2�ij) and three-dimensional fourth-order tensors by 6 � 6 matrices. This Voigt
mapping leads to a different treatment of, e.g., stresses and strains and does not
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preserve tensor norms. Here, the Kelvin mapping will be preferred which introduces
a new 6D basis fEIg such that the tensor character of all quantities is preserved.

In terms of implementation, OGS-5 is set up using the Voigt mapping with only a
few material models integrated with an experimental Kelvin mapping scheme. The
integration relies on appropriate transformation routines for both mappings. OGS-
6 is entirely designed both in its core and in the implemented constitutive models
using the Kelvin mapping.

One possible way of arriving at the Kelvin mapping is to consider the eigenvalue
problem of fourth-order tensors in analogy to the more familiar version for second-
order tensors. Without going into details, which can be found in Nagel et al. (2016),
the super-symmetric fourth-order symmetry projection tensor Is with the property
Is W A D sym A can be written in a Cartesian basis feig and by using I D ei ˝ ei as

Is D IˇI D 1

2

�
ei ˝ ej ˝ ei ˝ ej C ei ˝ ej ˝ ej ˝ ei

�
(2.13)

and has the six eigentensors (Itskov 2009):

M1 D e1 ˝ e1 M4D 1p
2
.e1 ˝ e2 C e2 ˝ e1/

M2 D e2 ˝ e2 M5D 1p
2
.e2 ˝ e3 C e3 ˝ e2/ (2.14)

M3 D e3 ˝ e3 M6D 1p
2
.e1 ˝ e3 C e3 ˝ e1/

These eigentensors can be viewed as the basis of the Kelvin mapping. Instead
of simply reordering tensor coordinates as done in the Voigt mapping, the Kelvin
mapping proceeds from the introduction of a new 6D basis fEIg based on the
original 3D basis feig (compare Mehrabadi and Cowin 1990) by setting

EI D MI.Is/ 8I D 1; : : : ; 6 (2.15)

In other words, this basis is identical to the eigentensors of the symmetry
projection tensor Is, compare Eq. (2.14).

Thus, exemplary tensors with the necessary symmetries can equivalently be
written in the various bases

A D Aijei ˝ ej D AIEI with AI D A W EI (2.16)

A D Aijklei ˝ ej ˝ ek ˝ el D AIJEI ˝ EJ with AIJ D EI WA W EJ (2.17)

At this stage, we introduce the following short-hand for the vector of tensor
coordinates AI of a second-order tensor in the Kelvin basis: A. Similarly, the
matrix of tensor coordinates AIJ of a fourth-order tensor in the Kelvin basis will
be abbreviated by A.
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One can see that, similar to the Voigt mapping, the coordinates of second-
and fourth-order tensors can now be represented as six-dimensional vectors and
matrices. However, the tensor character of all quantities is still preserved. Note
further that the coordinates of the Kelvin-mapping of a fourth-order tensor A ˝ A
simply follow from the coordinate matrix of the dyadic product of the Kelvin
mapped vectors. Thus, the same notation can be employed in both cases.

For numerical implementation, the coordinates of the Kelvin-mapped stress and
strain tensors can now be used in a vector format

�ij ! � D
h
�11 �22 �33

p
2�12

p
2�23

p
2�13

iT
(2.18)

�ij ! � D
h
�11 �22 �33

p
2�12

p
2�23

p
2�13

iT
(2.19)

which have the same structure regardless of whether they are stresses or strains.
This has the important consequence that tensor norms are preserved when using the
Kelvin mapping. This further simplifies the implementation of constitutive models
as it makes any distinction of stress- or strain-type quantities entering mathematical
operations obsolete (Nagel et al. 2016).

Finite Element Implementation

The domain of interest is split into standard finite elements characterised by a set
of nodal shape functions Na.x/. The sought solution vector u (for a more uniform
notation we write u even though no Kelvin mapping is performed on the original
vector u) in a point is approximated by

u � Qu D
nnX
a

Na Oua D NOu (2.20)

where

Ou D �Ou11 � � � Ounn
1 Ou12 � � � Ounn

2 Ou13 � � � Ounn
3

�T
(2.21)

is the nodal displacement vector of the element containing the point at which u is
evaluated, N is the element matrix of shape functions and nn is the number of nodes
of said element. In the isoparametric concept employed here, the position vector x
and the test function v are approximated likewise. Similarly, the B-matrix containing
the gradients of the shape functions can be introduced to enable the calculation of
strain vectors from the nodal displacements (for details see, e.g., Zienkiewicz et al.
2005–2006):

� D sym grad u D BOu and sym grad v D B Ov (2.22)
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with the slightly modified B-matrix

B0 D

0
BBBBBBB@

N1
;1 : : : Nnn

;1 0 � � � 0 0 � � � 0
0 � � � 0 N1

;2 : : : Nnn
;2 0 � � � 0

0 � � � 0 0 � � � 0 N1
;3 : : : Nnn

;3�
N1
;2 : : : Nnn

;2

�
=
p
2
�
N1
;1 : : : Nnn

;1

�
=
p
2 0 � � � 0

0 � � � 0 �
N1
;3 : : : Nnn

;3

�
=
p
2
�
N1
;2 : : : Nnn

;2

�
=
p
2�

N1
;3 : : : Nnn

;3

�
=
p
2 0 � � � 0 �

N1
;1 : : : Nnn

;1

�
=
p
2

1
CCCCCCCA

(2.23)

Substitution of these relations into Eq. (2.11) allows the elimination of the arbitrary
nodal values Ov of the test functions and produces the equation system for each
elemental domain ˝e:

Z

˝e

B
T
C

i
B d˝ �OuiC1 D

Z

@˝e
t

N
TNttC�t d� C

Z

˝e

N
T%btC�t d˝ �

Z

˝e

B
T� i d˝

(2.24)

The integral on the left-hand side defines the stiffness matrix K, the right-hand side
defines the residual vector  such that the linearised system reads

K
i�OuiC1 D  i (2.25)

The contributions of all elements are assembled into the global problem which is
then solved for the vector of unknown displacement increments �OuiC1.

In summary, a constitutive equation for the stresses is required to correctly
calculate the residual vector  i on the right-hand side of Eq. (2.24) as well as
the usually solution dependent C

i-matrix containing the material moduli in an
algorithmically consistent manner (Simo and Hughes 1998).

For similar finite element schemes in a finite-strain setting, see, e.g., Görke et al.
(2010, 2012a), Zienkiewicz et al. (2005–2006), and Bathe (2014). For an extension
of the Kelvin mapping to the finite-strain context, refer to Nagel et al. (2016).

2.3 Integration of Inelastic Constitutive Models

General Aspects

In order to determine the stresses � i and the stiffness tensor Ci or, more accurately,
their coordinate matrices in Kelvin mapping � i and C

i from Eq. (2.24), constitutive
relations are required.

In the linear elastic case, stress follows directly—independent of loading path and
rate—from strain and the stiffness matrix has constant entries, rendering Eq. (2.24)
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linear. The tensorial relations for linear elasticity (using the Lamé constants)

� D � .� W I/I C 2�� (2.26)

C D �I ˝ I C 2�I ˇ I (2.27)

hold independent of the particular tensor basis (i.e., also for the Kelvin mapping)
and translate into the following Kelvin-mapped tensor coordinate matrices:

� D

0
BBBBBBB@

2��11 C �tr �

2��22 C �tr �

2��33 C �tr �

2�
p
2�12

2�
p
2�23

2�
p
2�13

1
CCCCCCCA

D �.� � I/I C 2�� (2.28)

C D

0
BBBBBBB@

2�C � � � 0 0 0

� 2�C � � 0 0 0

� � 2�C � 0 0 0

0 0 0 2� 0 0

0 0 0 0 2� 0

0 0 0 0 0 2�

1
CCCCCCCA

(2.29)

Considering general inelastic material models, these constitutive relationships
follow from a set of differential and algebraic equations (DAEs) of varying non-
linearity. In other words, stresses don’t follow in an explicit manner from total
strains and the stiffness matrix is no longer constant.

Integration Algorithm

In order to efficiently solve the non-linearities a local Newton–Raphson procedure
is introduced consistent with its global equivalent. Local in this context refers to
performing the stress integration in each integration point of the quadrature rule
employed to numerically approximate the integrals in Eq. (2.24) by sums. Global
refers to the entire equation system (2.25) assembled over all finite elements of the
domain. More details on the following can be found in Nagel et al. (2017) and the
references therein.

The differential-algebraic equation system necessary for the integration of the
stress increments is compactly written as

0 D r.z; �i/ (2.30)



2.3 Integration of Inelastic Constitutive Models 15

where r represents the residual vector describing the evolution equations for stresses
and internal variables, as well as constraints (e.g., the consistency condition in
elasto-plasticity). Note that in the local iterations to solve the above equation system,
�i from the global iteration is considered fixed. The state vector z contains the stress
vector as well as the constitutive model’s internal state variables (	k, 	k):

z D .�T; 	T
k ; 	k/

T (2.31)

The evolution equations most often involve rates in the form of first order time
derivatives. Considering the general ordinary differential equation

Py D f .y/ ; (2.32)

time discretisation of the rate quantities in the functionals is based here on a
generalised single step scheme. We write for a time step in the interval Œt; t C�t


ytC�t D yt C�t
�
˛ f tC�t C .1 � ˛/ f t

�
(2.33)

which includes the schemes

˛ D
8<
:
0 Euler forward (explicit)
0:5 Crank–Nicolson
1 Euler backward (implicit)

(2.34)

With this relationship, a rate of change at time t C �t can be approximated based
solely on known quantities and the unknown primary variable at time t C�t:

PytC�t D ytC�t

˛�t
� yt

˛�t
� 1 � ˛

˛
f t (2.35)

Note that for ˛ D 0, the above relationship cannot be used directly but the rate at
time t is used directly and exclusively. A Taylor series expansion of the differential-
algebraic system yields the iteration procedure for the local stress integration

� rj D @r

@z

ˇ̌
ˇ̌
j

�zjC1 (2.36)

It shall be mentioned here that the resulting solution update can be dampened by a
factor ˛LS determined from a line-search procedure

zjC1 D zj C ˛LS�zjC1 (2.37)

where ˛LS 2 .0; 1
 would be the most common but not the only choice. Line-
search algorithms are motivated by either the acceleration of convergence or the
achievement of convergence itself in regions where the standard Newton–Raphson
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algorithm would diverge. Numerous methods are available to determine the value
of ˛LS (Jeremic 2001; Seifert and Schmidt 2008; Zienkiewicz et al. 2005–2006).

Once the iteration has converged, we find the consistent tangent matrix for the
global iteration using the total differential of r and the fact that the first entry in z is
always � :

dr

d�tC�t
D @r

@�tC�t
C
 
@r

@z

ˇ̌
ˇ̌
tC�t

!
dz

d�tC�t
D 0 (2.38)

The first entry of the solution dz=d�tC�t to the resulting linear system

 
@r

@z

ˇ̌
ˇ̌
tC�t

!
dz

d�tC�t
D � @r

@�tC�t
(2.39)

is the sought tangent matrix C
i. Thus, the tangent modulus matrix can be com-

puted with very little extra effort based on the already known Jacobian from the
local stress-update procedure and is automatically consistent with the integration
algorithm chosen. The latter point is of importance for achieving the best possible
convergence of the global problem (Simo and Hughes 1998; Zienkiewicz et al.
2005–2006).

2.4 Thermo-Mechanical Coupling in OGS

When considering applications such as nuclear waste storage, CAES, etc., thermal
fields influence the material behaviour of the rock salt by lowering elastic moduli
and viscosity parameters or by increasing healing rates, as outlined in Nagel
et al. (2017). For a general thermo-mechanical coupling, a monolithic scheme is
conceivable where the coupling matrices result from the dependence of one PDE on
the primary variable of the other:

�
Kuu KuT

KTu KTT

��
�u
�T

�
D
 
 

u
 

T

!
(2.40)

A monolithic THM scheme is used, for example, to simulate freezing processes
in OGS-6. In general, mechanical work can be partially dissipated into heat and
thus lead to local temperature changes. However, for the strain rates and boundary
conditions relevant here, the coupling to temperature fields can be described as
uni-directional, i.e. the temperature distribution affects the mechanical problem
but not the other way around. Therefore, an efficient solution technique is to
couple the thermal and mechanical initial boundary value problems (IBVP) in a
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staggered/partitioned fashion. In other words, with %cp the volumetric isobaric heat
capacity and � the thermal conductivity tensor, the PDE-system

PDE 1: 0 D %cp
@T

@t
� div .� grad T/ (2.41)

PDE 2: 0 D div � .u;T/C %b D 0 (2.42)

is addressed by an algorithm which solves the PDE governing one of the primary
variables (temperature and displacement) while keeping the other fixed and iterating
until convergence. Choosing an FE residual formulation this may be illustrated by

KTT�T D  
T

� f .u/ at fixed u $ Kuu�u D  
u

� f .T/ at fixed T

where the residuals may be modified by source term-like contributions from the
other coupled processes. In case of the one way coupling considered here, i.e. KTu D
O, the thermal IBVP is solved first, followed by the solution of the mechanical IBVP
without any further iteration between both processes necessary. Details on weak
forms of coupled problems and possible implementations can be found in standard
references, e.g. Lewis and Schrefler (1998). For a detailed overview on coupling
strategies in numerical simulations, we refer the reader to Markert (2013).

The inclusion of temperature-dependent material parameters and thermal strains
will be an inherent part of the material models and algorithms used below.

2.5 Constitutive Models

Thermal Process

In addition to Ph D cp PT , only one other constitutive relation is required to close
Eq. (2.2) by connecting the temperature field with the heat flux vector. It is here
taken simply as the linear Fourier’s law:

q D �� grad T (2.43)

Mechanical Process

Linear elasticity is insufficient to describe the deformation behaviour of rock salt
under most practically relevant loading conditions. Viscoelastic and viscoplastic
material models represent the more appropriate choice. Various material models
are available in OGS for that purpose (Kolditz et al. 2012, 2014, 2016; Nagel et al.
2017), e.g. Norton and various BGR creep laws (Hunsche and Schulze 1994), the
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LUBBY2 (Heusermann et al. 1983, 2003) and a variant of the Minkley material
model (Minkley and Mühlbauer 2007; Minkley et al. 2001). These models follow
different concepts in calculating the creep strain rate as well as its temperature
dependence:

Norton P�cr D A

�
�eff

�0

�n
� D

�eff

BGRa P�cr D 3

2
A

�
�eff

�0

�n

exp

�
� Q

RT

�
� D

�eff

BGRb P�cr D 3

2

�
A1

�
�eff

�0

�n1

exp

�
� Q1

RT

�

+ A2

�
�eff

�0

�n2

exp

�
� Q2

RT

��
� D

�eff

LUBBY2 See Eqs. (2.44)–(2.51)

Minkley See Eqs. (2.52)–(2.61)

Here, we focus on the latter two which both capture stress- and temperature-
dependent transient and stationary creep phases as indicated by their rheological
analogues depicted in Fig. 2.3. Additionally, the Minkley model can describe plastic
effects which include strain hardening and softening as well as dilatancy (Minkley
and Mühlbauer 2007; Minkley et al. 2001).

LUBBY2

The following set of equations describes the temperature-dependent LUBBY2
model (compare Fig. 2.3a):

� D KM.e � 3˛T�T/I C 2GM
�
�D � �D

M � �D
K

�
(2.44)

P�D
K D 1

2�K
.� D � 2GK�D

K/ (2.45)

P�D
M D 1

2�M
� D (2.46)

Fig. 2.3 Rheological models of the (a) LUBBY2 and the (b) Minkley material models
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where the viscosities and (visco)elastic moduli are functions of both stress and strain
(Böttcher et al. 2017; Du et al. 2012)

�M D �M0 exp.m1�eff=�0/ expŒQ.Tref � T/=.RTTref/
 (2.47)

�K D �K0 exp.m2�eff=�0/ (2.48)

GK D GK0 exp.mG�eff=�0/ (2.49)

KM D KM0 C mKT.T � Tref/ (2.50)

GM D GM0 C mGT.T � Tref/ (2.51)

with �eff D
r
3

2
� D W � D

For more details on the implementation, see Nagel et al. (2017).

Minkley

The Minkley model as implemented in OGS and indicated in Fig. 2.3b is described
by the following set of equations:

� D KM.e � eP � 3˛T�T/I C 2GM
�
�D � �D

P � �D
K � �D

M

	
(2.52)

P�D
K D 1

2�K
.� D � 2GK�D

K/ (2.53)

P�D
M D 1

2�M
� D (2.54)

P�D
P D �

@GF

@�
WPD (2.55)

PeP D �
@GF

@�
WPS W I (2.56)

P�P eff D
r
2

3
P�D

p W P�D
p (2.57)

F D 0 (2.58)

Again, the model is characterised by stress and temperature dependencies of
viscosities and elastic moduli:

�M D �M0 expŒQ.Tref � T/=.RTTref/


sinh

�
m

�
�eff

�0

�n� (2.59)
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KM D KM0 C mKT.T � Tref/ (2.60)

GM D GM0 C mGT.T � Tref/ (2.61)

The yield function in Eq. (2.58) and the plastic potential required for Eqs. (2.55) and
(2.56) were taken as Mohr–Coulomb types with corner smoothing:

F D

8̂
ˆ̂<
ˆ̂̂:

I1
3

sin� C
p

J2

�
cos  � 1p

3
sin� sin 

�
� c cos� j j < T

I1
3

sin� C
p

J2 .A � B sin 3/ � c cos� j j � T

(2.62)

where c and � are the cohesion and friction angle, respectively, and

A D 1

3
cos T

�
3C tan T tan 3T C 1p

3
sign .tan 3T � 3 tan T/ sin�

�

(2.63)

B D 1

3

1

cos 3T

�
sign  sin T C 1p

3
sin� cos T

�
(2.64)

The plastic potential differs from the yield surface in order to more accurately
estimate dilatancy, but has an analogous structure:

GF D

8̂
ˆ̂<
ˆ̂̂:

I1
3

sin C
p

J2

�
cos  � 1p

3
sin sin 

�
j j < T

I1
3

sin C
p

J2
�
A0 � B0 sin 3

	 j j � T

(2.65)

where  is the dilatancy angle. A0 and B0 follow from Eqs. (2.63), (2.64) by
substituting the friction angle with the dilatancy angle. Hardening or softening
is here by a smoothly differentiable law which captures hardening, followed by
softening up to a defined residual cohesion (compare also Fig. 3.8):

c D cres C .c0 � cres/

�
1C A1 sin

�P eff

A2

��
1 � 1

1C exp Œ�B1.�P eff � B2/


�

(2.66)
For more details on the implementation, see Nagel et al. (2017). The implementation
of the LUBBY2 and Minkley models is verified against analytical solutions in
Kolditz et al. (2014, 2016) and Nagel et al. (2017).

Furthermore, a simple viscoplastic regularisation of the Perzyna type can be
employed (de Borst and Heeres 2002; Heeres et al. 2002; Wang et al. 1997): we
allow stress states with F > 0 by introducing a regularisation viscosity �reg and set
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(a) (b)

Fig. 2.4 Results of a simulated simple shear creep test for the (a) LUBBY2 model and the (b)
Minkley model. About half-way through the test, a temperature jump was imposed causing an
immediate change in the elastic response visible as a jump in the shear strain curve (red), a
significant hydrostatic pressure (blue) due to isochoric confinement of the sample, as well as an
increased creep rate. Details and parameters used can be found in Nagel et al. (2017)

P�P D h�.F/i
�reg

@GF

@�
(2.67)

A typical formulation for �.F/ is

�.F/ D
�

F

C

�n

(2.68)

where—to normalise F—a common choice for C is the initial yield stress. For the
sake of simplicity, n D 1 and C D GM were chosen here so that the consistency
condition in Eq. (2.58) is replaced by

��reg D h�.F/i D hFi
GM

(2.69)

Note that a rate-independent formulation is recovered for �reg D 0.
Viscoplastic regularisation works by a load-transfer mechanism: if deformation

starts to localise in a finite band of element-width, the increase of the deformation
rate in that band in conjunction with the viscous law causes a stiffening of the
band and thus a preferential deformation of adjacent element layers (Niazi et al.
2013). This mechanism prevents excessive localisation. Mathematically, this rate-
dependence yields a positive-definite tangent operator and hence a well-posed,
regularised problem (Forest et al. 2004).
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Coupling

In addition to the process coupling (compare also Sect. 2.4) via the effect of thermal
expansion2 included in Eqs. (2.44) and (2.52), the temperature field influences
the material behaviour by altering the elastic and creep properties through a
temperature-dependent parameterisation of the constitutive models, cf. Eqs. (2.47)–
(2.51) and (2.59)–(2.61).

In a stress-controlled simple shear test, for which an analytical solution can easily
be found, all effects can be illustrated, as shown in Fig. 2.4 for both the Minkley and
the LUBBY2 material models.

2Other such coupling effects like heat of dissipation, thermoelastic or entropic effects are neglected
here.
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