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Abstract People affected by severe neuro-degenerative diseases (e.g., late-stage
amyotrophic lateral sclerosis (ALS) or locked-in syndrome) eventually lose all mus-
cular control and are no longer able to gesture or speak. For this population, an audi-
tory BCl is one of only a few remaining means of communication. All currently used
auditory BClIs require a relatively artificial mapping between a stimulus and a com-
munication output. This mapping is cumbersome to learn and use. Recent studies
suggest electrocorticographic (ECoG) signals in the gamma band (i.e., 70-170 Hz)
can be used to infer the identity of auditory speech stimuli, effectively removing the
need to learn such an artificial mapping. However, BCI systems that use this phys-
iological mechanism for communication purposes have not yet been described. In
this study, we explore this possibility by implementing a BCI2000-based real-time
system that uses ECoG signals to identify the attended speaker.

1 Introduction

People affected by severe neuro-degenerative diseases (e.g., late-stage amyotrophic
lateral sclerosis (ALS) or locked-in syndrome) eventually lose all muscular control
and are no longer able to gesture or speak. They also cannot use traditional assistive
communication devices that depend on muscle control, nor typical brain-computer-
interfaces (BCls) that depend on visual stimulation or feedback [1-3]. For this popu-
lation, auditory [4—8] and tactile BCIs [9, 10] are two of only a few remaining means
of communication (see [11] for review).

While visual BCIs typically preserve the identity between the stimulus (e.g., a
highlighted ‘A’) and the symbol the user wants to communicate (e.g., the letter
‘A’), all currently used auditory or tactile BCIs require a relatively artificial map-
ping between a stimulus (e.g., a particular but arbitrary sound) and a communication

P. Brunner - K. Dijkstra - W.G. Coon - J. Mellinger - A.L. Ritaccio - G. Schalk (&)
New York State Department of Health, Center for Adapt Neurotech,

Wadsworth Center, Albany, NY, USA

e-mail: gerwin.schalk @health.ny.gov

© The Author(s) 2017 7
C. Guger et al. (eds.), Brain-Computer Interface Research,

SpringerBriefs in Electrical and Computer Engineering,

DOI 10.1007/978-3-319-57132-4_2



8 P. Brunner et al.

output (e.g., a particular letter or word). This mapping is easy to learn when there are
only few possible outputs (e.g., a yes or no command). However, with an increasing
number of possible outputs, such as with a spelling device, this mapping becomes
arbitrary and complex. This makes most current auditory and tactile BCI systems
cumbersome to learn and use.

Two avenues are being investigated to overcome this limitation. The first avenue is
to directly decode expressive silent speech without requiring any external stimuli. In
this approach, linguistic elements at different levels (e.g., phonemes, syllables, words
and phrases) are first decoded from brain signals and then synthesized into speech.
While recent studies have demonstrated this possibility [12—16], even invasive brain
imaging techniques (e.g., ECoG, LFPs, single neuronal recordings) are currently
unable to capture the entire complexity of expressive speech. Consequently, silent
speech BCIs are limited in the vocabulary that can be decoded directly from the brain
signals. The second avenue is to replace unnatural stimuli that require an artificial
mapping with speech stimuli that do not. In such a system, the user would communi-
cate simply by directing attention to the speech stimulus that matches his/her intent.
Previous studies that explored this avenue required the speech stimuli to be designed
(e.g., altered and broken up [17]) such that they elicit a particular and discriminable
evoked response. Such evoked responses can be readily detected in scalp-recorded
electroencephalography (EEG) to identify the attended speech stimulus. However,
such altered speech stimuli are difficult to understand, which makes such a BCI sys-
tem difficult to use. More importantly, this approach does not scale well beyond two
simultaneously presented speech stimuli.

Recent studies suggest that the envelope of attended speech is directly tracked
by electrocorticographic (ECoG) signals in the gamma band (i.e., 70-170 Hz) [15,
18-21], effectively removing the need to ‘alter’ the speech stimuli. Further evidence
shows that this approach can identify auditory attention to one speaker in a mixture
of speakers, i.e., a ‘cocktail-party’ situation [22].

However, BCI systems that use this physiological mechanism for communication
purposes have not been described yet. In this study, we explore this possibility by
implementing a BCI2000-based real-time system that uses ECoG signals to identify
the attended speaker.

2 Methods

2.1 Human Subject

The subject in this study was a 49 year old left handed woman with intractable
epilepsy who underwent temporary placement of subdural electrode arrays (see
Fig. 1a) to localize seizure foci prior to surgical resection. A neuropsychological
evaluation [23] revealed normal cognitive function and hearing (full scale IQ = 97,
verbal IQ =91, performance 1Q = 99) and a pre-operative Wada test [24] determined
left hemispheric language dominance.
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Fig. 1 Implant. The subject had 72 subdural electrodes (1 grid and 3 strips in different configura-
tions) implanted over left frontal, parietal, and temporal regions. a Photograph of the craniotomy
and the implanted grids in this subject. b Cortical model of the subject’s brain, showing an 8§ X 8
grid over frontal/parietal cortex, and two strips

The subject had a total of 72 subdural electrode contacts (one 8 X 8 64-contact
grid with 3 contacts removed, two strips in 1 X 4 configuration, and one strip in
1 x 3 configuration). The grid and strips were placed over the left hemisphere in
frontal, parietal and temporal regions (see Fig. 1b for details). The implants consisted
of flat electrodes with an exposed diameter of 2.3 mm and an inter-electrode distance
of 1 cm, and were implanted for one week. Grid placement and duration of ECoG
monitoring were based solely on the requirements of the clinical evaluation, without
any consideration of this study. The subject provided informed consent, and the study
was approved by the Institutional Review Board of Albany Medical College.

We used post-operative radiographs (anterior-posterior and lateral) and computed
tomography (CT) scans to verify the cortical location of the electrodes. We then used
Curry software (Neuroscan Inc, El Paso, TX) to create subject-specific 3D cortical
brain models from high-resolution pre-operative magnetic resonance imaging (MRI)
scans. We co-registered the MRIs by means of the post-operative CT and extracted
the electrode coordinates according to the Talairach Atlas [25]. These electrode coor-
dinates are depicted on Talairach template brain in Fig. 1b.

2.2 Data Collection

We recorded ECoG from the implanted electrodes using a g.Hlamp amplifier/
digitizer system (g.tec, Graz, Austria) and the BCI software platform BCI2000
[26-28], which sampled the data at 1200 Hz. Simultaneous clinical monitoring was
implemented using a connector that split the cables coming from the patient into
one set that was connected to the clinical monitoring system and another set that
was connected to the g.HIamp devices. This ensured that clinical data collection was
not compromised at any time. Two electrocorticographically silent electrodes (i.e.,
locations that were not identified as eloquent cortex by electrocortical stimulation
mapping) served as electrical ground and reference, respectively.
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2.3 Stimuli and Task

The subject’s task was to selectively attend to one of two simultaneously presented
speakers in a cocktail party situation (see Fig. 2a). The two speakers were John F.
Kennedy and Barack Obama, each delivering his presidential inauguration address.
Both speeches were similar in their linguistic features, but were uncorrelated in
their sound intensities (r = —0.02,p = 0.9). To create a cocktail party situation,
we mixed the two (monaural) speeches into a binaural presentation in which the
stream presented to each ear contained 20% : 80% of the volume of one speaker
and 80% : 20% of the other, respectively. This allowed us to manipulate the aural
location of each speaker throughout the task. For the binaural presentation, we used
in-ear monitoring earphones (AKP IP2, 12-23500 Hz bandwidth) that isolated the
subject from any ambient noise in the room.

To create a trial structure, we broke these combined streams into segments of 15—
25 s in length, which resulted in a total of 10 segments of 187 s combined length.
In the course of the experiment, we presented each segment four times to counter-
balance the aural location (i.e., left and right) and the identity (i.e., JFK and Obama)
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of the attended speaker. Thus, over these four trials, the subjects had to attend to each
of the two speakers at each of the two aural locations. This resulted in a total of 40
trials (i.e., 10 segments, each presented 4 times).

Atthe beginning of each trial, an auditory cue indicated the aural location (i.e., left
or right) to which the subject should attend. Throughout the trial, a visual stimulus
complemented the initial auditory cue to indicate the identity of the aural location
(e.g., ‘JFK in LEFT ear’). Each trial consisted of a 4 s cue, a 15-25 s stimulus and a
5 s inter-stimulus period. The total length of these 40 trials was 12.5 min. The subject
performed these 40 trials in 5 blocks of 8 trials each, with a 3 min break between each
block.

2.4 Offline Analysis

In the offline analysis, we characterized the relationship between the neural response
(i.e., the ECoG signals) and the attended and unattended speech streams, as shown in
Fig. 2b. In particular, we were interested in two parameters of this neural response.
The first parameter was the delay between the audio stream and resulting cortical
processing, i.e., the time from presentation of the audio stream to the observation of
the cortical change. The second parameter was the cortical location that was most
selective to the attended speech stream. These two parameters are the only two para-
meters that were later needed to configure the online BCI system.

To determine these two parameters, we extracted the high gamma band envelope
at each cortical location and the envelopes of the covertly attended and unattended
speech (i.e., JFK and Obama). We then correlated the high gamma band envelope at
each cortical location, once with the attended and once with the unattended speech
envelope. This resulted in two Spearman’s r-values for each cortical location. An
example of this is shown in Fig. 2c. To determine the delay between the audio stream
and resulting cortical processing, we measured the neural tracking of the sound inten-
sity across different delays from 0 to 250 ms to identify the deal with the highest
r-value.

2.4.1 Signal Processing

We first pre-processed the ECoG signals from the 72 channels to remove external
noise. To do this, we high-pass filtered the signals at 0.5 Hz and re-referenced them
to acommon average reference that we composed from only those channels for which
the 60 Hz line noise was within 1.5 standard deviations of the average.

Next, we extracted the signal envelope in the high gamma band using these pre-
processed ECoG signals. For this, we applied an 18th order 70-170 Hz Butter-
worth filter and then extracted the envelope of the filtered signals using the Hilbert
transform. Finally, we low-pass filtered the resulting signal envelope at 6 Hz (anti-
aliasing) and downsampled the result to 120 Hz.
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For each attended and unattended auditory stream, we extracted the time course
of the sound intensity, i.e., the envelope of the signal waveform in the speech band.
To do this, we applied a 80—-6000 Hz Butterworth filter to each audio signal, and then
extracted the envelope of the filtered signals using the Hilbert transform. Finally, we
low-pass filtered the speech envelopes at 6 Hz and downsampled them to 120 Hz.

2.4.2 Feature Extraction

We extracted features that reflect the neural tracking of the attended and unattended
speech stream. We defined neural tracking of speech as the correlation between the
gamma envelope (of a given cortical location) and the speech envelope. We cal-
culated this correlation separately for the attended and unattended speech, thereby
obtaining two sets of r-values labeled ‘attended’ and ‘unattended,” respectively.

2.4.3 Selection of Cortical Delay and Location

We expected a delay between the audio presentation and resulting cortical process-
ing, i.e., the time from presentation of the audio stimuli to the observation of the
cortical change. To account for this delay, we measured the neural tracking of the
attended speech stream across different delays (0-250 ms, see Fig. 3) and across all
channels. Next, we determined the cortical location that was most selective of the
attended speech stream. For this, we selected the cortical location that showed the
largest difference between the ‘attended’ and ‘unattended’ r-values. Based on these
results, we selected a delay of 150 ms and a cortical location over superior temporal
gyrus (STG). We corrected for this delay by shifting the speech envelopes relative
to the ECoG envelopes prior to calculating the correlation values.

Fig. 3 Lag between speech — correlation
presentation and neural 0.6y
response. This figure shows
the correlation between
neural response and the
attended speech (green) for
the most selective cortical
location, across corrected
lags between 0 and 250 ms.
This correlation peaks at 150
ms

CORRELATION (r)

0 50 100 150 200 250
LAG CORRECTION (ms)



An ECoG-Based BCI Based on Auditory Attention to Natural Speech 13
2.4.4 Classification

In our approach, we assumed that the extracted features, i.e., the two r-values of the
selected cortical location, were directly predictive of the ‘attended’ conversation. In
other words, for the selected cortical location, if the ‘attended’ r-value was larger
than the ‘unattended’ r-value, the the trial was classified correctly. To determine the
performance as a function of the length of attention, we applied our feature extraction
and classification procedure to data segments from 0.1 to 15s in length.

2.5 Real-Time System Verification

In the real-time verification, we evaluated the system performance on the data
recorded during the first stage of this study. We configured this system with parame-
ters (i.e., cortical location and delay) determined in the previously detailed offline
analysis.

2.5.1 Real-Time System Architecture

We used the BCI software platform BCI2000 [26-28] to implement an auditory
attention based BCI. For this, we expanded BCI2000 with the capability to process
auditory signals in real time. In detail, we implemented a signal acquisition for audio
devices (e.g., amicrophone) or pre-recorded files that is synchronized with the acqui-
sition from the neural signals. Further, we implemented a signal correlation filter. For
our evaluation, the two (monaural) speeches served as the audio input to the auditory
attention based BCI (see Fig. 4).

In this system, BCI2000 filters the audio signals between 80 and 6000 Hz and the
ECoG signals between 70 and 170 Hz. Next, a BCI2000 filter extracts the envelopes,
decimates them to a common sampling rate of 200 Hz and adjusts their timing for
the cortical delay. A signal correlation filter then calculates the correlation values,
i.e., the correlation between the two (monaural) speeches and the selected neural
envelope, to determine to which speaker the user directs his/her attention. Finally,
the feedback augmentation filter increases the volume of the attended speaker and
decreases the volume of the unattended speaker to provide feedback to the subject.
This processing steps are updated every 50 ms to provide feedback in real-time.

3 Results

3.1 Neural Correlates of Attended and Unattended Speech

First, we were interested in visualizing the cortical areas that track the ‘attended’
and ‘unattended’ conversations. The results in Fig.5 show the neural tracking of
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Fig. 4 Real-time system design. The auditory attention BCI is based on BCI2000 and simulta-
neously acquires and processes audio and ECoG signals. The audio signals from multiple con-
versations are sampled at 48 kHz and acquired from a low-latency USB audio-amplifier (Tascam
US-122MKII). The ECoG signals from the surface of the brain are sampled at 1200 Hz and acquired
from a 256-channel bio-signal amplifier (g.Hlamp, g.tec Austria). In the next step, the signals are
band-pass filtered (80-6000 Hz for audio, 70-170 Hz for ECoG) and their envelope is extracted.
The resulting signal envelopes are decimated to a common sampling rate of 200 Hz and adjusted
for timing differences. One channel of the decimated ECoG signal envelope is then selected and
correlated with each of the decimated audio signal envelopes. As the human subject perceives the
mixture of conversations through ear-phones, the auditory attention BCI then can provide feedback
by modifying the volume of the presented mixture of conversations to enhance the volume of the
attended and attenuate the volume of the unattended conversation
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Fig.5 Neural tracking of attended (/eft) and unattended (right) speech. The tracking of the attended
speech is both stronger and more widely distributed than the tracking of the unattended speech. In
addition, there is only a marginal difference in spatial distribution between attended and unattended
stimuli
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Fig. 6 Accuracy for
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the ‘attended’ and ‘unattended’ speech in the form of an activation index. For
each cortical location, this activation index expresses the negative logarithm of the
p-value (—log(p)) of the correlation between the high gamma ECoG envelope and
the attended or unattended speech envelope. The neural tracking is focused predom-
inantly on areas on or around superior (STG) and middle temporal gyrus (MTG).

3.2 Relationship Between Segment Length and Classification
Accuracy

Next, we were interested in determining the duration of attention that is needed to
infer the ‘attended’ speech. For this, we examine the relationship between the seg-
ment length and classification accuracy. The results in Fig. 6 show the classifica-
tion accuracies for variable segment lengths (0.1-15 s). In this graph, the accuracy
improvements level off after 5s, at 80-90% accuracy.

3.3 Interface to the Investigator

Finally, we evaluated the real-time system performance that the determined para-
meters (i.e., the cortical location and delay) yield on the data recorded during the
first stage of this study. The screenshot in Fig. 7 shows interface to the investigator.
The interface presents the decimated and aligned ECoG and audio envelopes, their
correlation with each other, and the inferred attention. The content of this interface
is updated 20 times per second.
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Fig. 7 Interface design. The interface to the investigator presents multiple panels. The bottom
left panel presents the decimated and aligned ECoG and audio envelopes. The panels on the right
show the correlation between the ECoG and the attended (fop), ECoG and unattended (middle)
and the difference between the two correlation values (botfom). The panel on the top left shows
this correlation difference in form of an analogue instrument where the pointer (i.e., the needle)
indicates the direction of attention. In this experiment, the subject was cued to attend to a particular
speaker annotated by “Attended” in this panel

4 Discussion

We show the first real-time implementation of an auditory attention BCI that uses
ECoG signals and natural speech stimuli. The configuration of this system requires
only two parameters: the cortical location and the delay between the audio presenta-
tion and the cortical processing. Our results can guide the selection of these parame-
ters. For example, our results indicate that the underlying physiological mechanism
is primarily focused on the temporal lobe, specifically the STG and MTG areas. Fur-
ther, the neural tracking of attended speech is stronger and more widely distributed
than that of unattended speech. This confirms results from a previous ECoG study
that investigated auditory attention [22]. Further, our study shows that the cortical
delay between the audio presentation and the cortical processing is in the range of
~150 ms.
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The presented results indicate that such system could support BCI communica-
tion. While being invasive, it may be justified for those affected by severe neuro-
degenerative diseases (e.g., late-stage ALS, locked-in syndrome) who have lost all
muscular control and therefore cannot use conventional assistive devices or BCIs
that depend on visual stimulation or feedback. Most importantly, the results suggest
that sufficient communication performance (>70%, [29]) could be achieved with a
single electrode placed over STG or MTG. This finding is important, because place-
ment of ECoG grids as used in this study requires a large craniotomy. In contrast,
a single electrode could be placed through a burr hole [30]. Furthermore, the elec-
trodes in this study were placed subdurally (i.e., the electrodes are placed underneath
the dura). Penetration of the dura increases the risk of bacterial infection [31-35].
Epidural electrodes (i.e., electrodes placed on top of the dura) provide signals of
approximately comparable fidelity [36, 37]. A single electrode placed epidurally
could reduce risk, which should make this approach more clinically practical.

In this study, we focused on demonstrating that one cortical location is sufficient
for providing BCI communication. However, it is likely that combining the informa-
tion from multiple cortical locations could substantially improve the communication
performance. Thus, recent advances in clinically practical recordings of ECoG sig-
nals from multiple cortical locations [38, 39] could improve the clinical efficacy of
the presented approach.

In comparison to many other auditory BCls, the present approach has the unique
advantage of using natural speech without any alteration. This aspect may be partic-
ularly relevant for those who are already at a stage where learning how to use a BCI
has become difficult.

5 Conclusion

In summary, our study demonstrates the function of an auditory attention BCI that
uses ECoG signals and natural speech stimuli. The implementation of this system
within BCI2000 lays the groundwork for future studies that investigate the clinical
efficacy of this system. Once clinically evaluated, such a system could provide com-
munication without depending on other sensory modalities or a mapping between
the stimulus and the communication intent. In the near future, this could substan-
tially benefit people affected by severe motor disabilities that cannot use conven-
tional assistive devices or BCIs that require some residual motor control, including
eye movement.
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