
What Influences the Speed of Prototyping? An Empirical
Investigation of Twenty Software Startups

Anh Nguyen-Duc1(✉), Xiaofeng Wang2, and Pekka Abrahamsson1

1 Department of Computer and Information Science (IDI), NTNU, 7491 Trondheim, Norway
{anhn,pekkaa}@ntnu.no

2 Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
xiaofeng.wang@unibz.it

Abstract. It is essential for startups to quickly experiment business ideas by
building tangible prototypes and collecting user feedback on them. As proto‐
typing is an inevitable part of learning for early stage software startups, how fast
startups can learn depends on how fast they can prototype. Despite of the impor‐
tance, there is a lack of research about prototyping in software startups. In this
study, we aimed at understanding what are factors influencing different types of
prototyping activities. We conducted a multiple case study on twenty European
software startups. The results are two folds; firstly we propose a prototype-centric
learning model in early stage software startups. Secondly, we identify factors
occur as barriers but also facilitators for prototyping in early stage software
startups. The factors are grouped into (1) artifacts, (2) team competence, (3)
collaboration, (4) customer and (5) process dimensions. To speed up a startup’s
progress at the early stage, it is important to incorporate the learning objective
into a well-defined collaborative approach of prototyping.

Keywords: Prototype · MVP · Prototyping-learning loop · Validated learning ·
Speed · Software startups

1 Introduction

With the startup movement, software industry is witnessing a paradigm shift from
serving customer requirements to creating customer value. The challenge for software
companies is no longer primarily on implementing customer requirements, but rather
on finding customer demands and providing a solution that delivers customer value [2].
Addressing uncertainty in both solution and problem domains has often been ad-hoc
and based on guesswork, which becomes one of the main reasons for failing startup
companies [3]. A demand on systematic approaches to manage the uncertainty has led
to an increased research interest on Lean Startup [4], New Product Development (NPD)
[5], software startups [6] and continuous experimentation [7].

In a competitive environment such as software industry, time-to-market is becoming
more and more critical as a success factor for startup companies. Business ideas under
development once revealed can be easily threatened by high speed copycats [9]. More‐
over, competitors can also follow an on-going journey of validating product-market fit

© The Author(s) 2017
H. Baumeister et al. (Eds.): XP 2017, LNBIP 283, pp. 20–36, 2017.
DOI: 10.1007/978-3-319-57633-6_2

and arrive faster in the destination. Regardless of company sizes and application
domains, the knowledge of influencing factors for a quick learning loop is important for
software startups to form best-fit strategy in developing business experimentation [10].

A ‘Build-Measure-Learn’ loop, as a central concept of the Lean Startup method‐
ology, aims at speeding up the new product development cycle [4]. The central part of
the loop is to build a representation of the business, a so-called Minimum viable product
(MVP), to collect feedback from customers and to learn from that. Steve Blank empha‐
sizes the goal of MVPs is “to maximize learning through incremental and iterative
engineering” [2]. In the startup context, developers quickly and iteratively develop a
software application to validate business ideas [12]. As such, the study of validated
learning can be beneficial from Software Engineering (SE) concepts and practices, such
as rapid prototypes and evolutionary prototypes [13–15]. Consequently, the time-to-
release of prototypes is essential to determine the total time in the validated learning
loop.

Software startup research is increasingly recognized by researcher’s community,
with many practical aspects, such as User Experience, Software practices, competences
and startup ecosystem [6]. Despite of the importance, there is a lack of research about
prototyping in software startups. In a multi-influenced context with funding, human
resource and market concerns, it is crucial to understand how the speed of learning can
be supported by prototyping activities and what are the influencing factors. In a previous
study, we investigated how a prototype is built in software startups [12]. We found that
prototyping activities as a core value of startup experimentation needed to be seen as a
multifaceted phenomenon [12]. In this work, we are particularly interested in the factors
that slow down the learning process and those that speed it up. The research question
(RQ) is:

What factors influence the speed of prototyping in software startups?

The paper is organized as follows. Firstly, we present the background about business-
driven experimentation in software projects, software prototype and a proposal of an
analytical model of startup prototyping (Sect. 2). Then, we describe our research
approach and the cases studied (Sect. 3). After that, the qualitative findings are presented
(Sect. 4). Finally, we reflect on the findings, the threats to validity (Sect. 5), and draw
the conclusion and future work (Sect. 6).

2 Background

2.1 Business Driven Experimentation

From SE perspective, validated learning means the focus on integrating business value
in defining software development processes and practices. Even though experiment
systems are recognized as beneficial to software projects, there are barriers in adopting
them, such as integration of customer feedback, synchronizing vendors in short cycles
and lack of reasoning about customer requirements [16, 17]. Bosch et al. [18] advocate
for adjusting the Lean startup methodology to accommodate the development of

What Influences the Speed of Prototyping? 21

multiple ideas and to integrate them when time for their testing and validation is too
long. Bosch suggested using 2-to-4-week experimentation iterations followed by
exposing the product to customers in order to collect feedbacks. Fagerholm et al. present
a model for continuous experimentation for start up companies [7], in which a key
element is the ability to release a prototype with suitable instrumentation, to manage
experiment plans, link experiment results with a product roadmap, and to manage a
flexible business strategy. Olsson et al. present a Hypothesis Experiment Data-Driven
Development model that integrates feature experiments with customer feedback in Agile
projects [19]. While these work characterize a process-like approach in developing
startups’ software products, Paternoster et al. grounded a model from 13 software
startups which describes a pattern that software startups often build evolutionary proto‐
types [20]. This study focuses on how startups are prototyping in reality and the influ‐
encing factors of the speed of learning by prototyping.

2.2 Prototype and Prototyping Activities

Brook mentioned “In software engineering, at least, the concept of rapid prototyping
has a name and a recognized value, whereas it does not always have the same status in
computer design and in building architecture” [21]. Prototyping implies a quick and
economic approach that serves to achieve understanding of what final products should
be [15]. From a technical perspective, prototypes can be differentiated according to its
relation to later product development. Throwaway prototypes are used mainly for spec‐
ification purposes; and they are not used as actual building blocks [15]. They are mostly
used in exploratory and experimental prototyping. Evolutionary prototypes provide a
basis for a real system, which is evolved out of the prototypes; they are used in evolu‐
tionary prototyping but can also be found in experimental prototyping (if it shows that
they provide a good basis for a system) [15].

From a business perspective, startups can create a representation of product ideas, a
so-called MVP, without actual product implementation. Eric Ries describes a classifi‐
cation of different types of MVPs [4], which are commonly used in the startup commun‐
ities. For instance, a MVP can be a short animation that explains what a product does
and why users should buy it. It can also be a user interface that looks like a real working
product, but the actual business process is manually carried out (Wizard of Oz MVP).
A concierge MVP is a manual service that consists of exactly the same steps users would
go through with the product.

A few research paid attention on improving prototyping activities, such as the speed
and effectiveness [28, 29]. Janssen et al. suggested code reuse to speed up writing code
to prototype [28]. Grevet et al. described a 6-stage prototyping approach to speed up
throw-away prototyping for new social computing systems using existing online systems
[29]. In our work, we address the speed of prototyping from a socio-technical perspec‐
tive, considering prototyping activities under human, market, finance and team factors.

22 A. Nguyen-Duc et al.

2.3 A Prototype-Centric Learning Model in Software Startups

The Build-Measure-Learn loop is a key concept in Lean Startup [4]. The loop is used
to manage and to operate software startups in finding a sustainable business model. A
key idea is to minimize waste and to focus only on the elements, which will be tested.
Lynn et al. describe another cycle, Probe and Learn, that is applicable to manage uncer‐
tainties about market, technology and time-to-market [25]. The authors suggest that
startups should go to customers with an early version of a product to learn about the
market, different applications and segments. Nguyen-Duc et al. propose a hunter-gather
double loop to capture the evolution of startup activities from idea to achieving a product
market fit [26]. The model visualizes the portion of product development vs. customer
development activities across the startup stages. While these studies provide an emphasis
on organization and evolution, they are well landed in an abstract space, not straight‐
forward to apply from the SE perspective.

In the SE literature, Gordon et al. propose a rapid prototyping system approach to
understand the prototype development of a system [27]. In the model, both low-fidelity
and high-fidelity prototypes are essential parts of developing a system [27]. Preliminary
product design activities create a throwaway prototype from the problem domain. A
series of throwaway low-fidelity prototypes can be created to capture the ideas of what
to built. Similarly, high-fidelity prototypes can also be evolved several times before
reaching the product launch.

A literature survey of software development shows that startups often build a proto‐
type in an evolutionary fashion and quickly learn from users’ feedback [20]. We argue
that both throwaway prototypes and evolutionary prototypes are important parts of
startups’ journey to a launched product. From the Lean startup perspective [4], learning
is an input and also an outcome for a prototype. We tailored the double loop model in
the previous work [26] by adapting Gordon’s system prototyping elements [27] to
capture the prototyping processes in the startup context, as shown in Fig. 1. The model
focus on prototyping as the core concept and compose four loops:

• Idea-prototype loop: iterations of refining business idea through throwaway proto‐
typing

• Throwaway prototype loop: iterations of constructing and learning from throwaway
prototypes

• Evolutionary prototype loop: iteration of constructing and learning from evolutionary
prototypes

• Pivot loop: starting a new cycle from the current product to a pivoted idea

Considering the model as a state-based system, it is possible to travel from a state to
any other one. However, the typical flow would happen within two loops. It can also
happen that a startup starts the loop from any state, for example, by doing a throwaway
prototype before getting to a stated problem. In the scope of this work, we did not go
in-depth about how these loops happen in our cases. The work will explore factors that
occur during the startup progress and influence throw-away and evolutionary proto‐
typing.

What Influences the Speed of Prototyping? 23

3 Research Approach

3.1 Multiple Case Study Design

This study is one part of a larger research activity that investigates the role of engineering
activities in software startups. The objective is to explore commonalities, challenges and
engineering patterns in software startups, from the business idea to a launched product.
This study reports the findings from empirical data regarding prototyping activities. We
conducted multiple case studies for a robust result in typical software startup population
[11]. The unit of analysis is a startup company. We aimed at collecting as many startups
as possible for a variety of the sample. As the aim is to reflect the state-of-practice rather
than finding a secret recipe of success, we included startups in different stages and with
different revenue statuses.

There is often a difficulty in identifying a real startup case among other similar
phenomenon, such as freelancers, SMEs or part-time startups. We defined five criteria
for our case selection: (1) a startup that operates for at least six months, so their expe‐
rience can be relevant, (2) a startup that has at least a first running prototype, (3) a startup
that has at least an initial customer set, i.e. first customer payments or a group of users,
(4) a startup that has an intention to scale their business model, (5) a startup that has
software as a main part of business core value.

The process of identifying and collecting data was done in 11 months, from March
2015 to February 2016. Cases were searched from four channels, (1) startups within the
professional networks of the authors, (2) startups in the same town with the authors, (3)
startups listed in Startup Norway and (4) Crunchbase database. The contact list includes
219 startups from Norway, Finland, Italy, Germany, Netherlands, Singapore, India,
China, Pakistan and Vietnam. After sending out invitation emails, we received 41 feed‐
backs, approximately 18.7% response rate. Excluding startups that are not interested in
the research, or startups that do not pass our selection criteria, the final set of cases are
20 startups, aliased as S1 to S20.

Fig. 1. A prototype-centric learning model in software startups

24 A. Nguyen-Duc et al.

3.2 Data Collection and Analysis

Semi-structured individual interviews were used to collect data, since they enable the
focus on pre-defined research topics and flexible structures to discover unforeseen infor‐
mation [28]. Methodological triangulation in data collection is also implemented by
using evidence from documents and observations (in S01-S05, S09). Business docu‐
ments, such as business model canvases and business plans were exposed to the research
team as a preliminary step prepared for interviews. Observations were useful to under‐
stand how prototypes were implemented and used in the working environment.

The interviewees were asked questions about (1) business background (2) idea visu‐
alization and prototyping (3) product development (4) challenges and lessons learnt.
The stories about startup ideas, prototypes and product development is organized into
the schema as described in Fig. 1. Most of the interviews were conducted by the first
author, with the attendance of a second researcher (the third author or sometimes external
researchers in our network). This researcher has a long experience conducting interviews
in software companies. Each interview lasted from 55 min to 70 min and the interviewees
were informed about the audio recording and its importance to the study.

We used a thematic analysis – a technique for identifying, analyzing, and reporting
standards (or themes) found in qualitative data [22]. We started by reading all interview
transcripts and relevant documents, and coded them according to open coding [22]. A
set of pre-determined categories were used to guide the coding process, as we have some
interests in topics of (1) business original, (2) prototyping practices (3) pivoting (4)
testing (5) challenges and (6) key performance indicators (KPIs). We attempted to label
all meaningful text segments with appropriate codes. To feed data to this study, we
filtered the codes that are related to prototyping, technical implementation, and testing
activities prior to product launching. According to Sect. 2.2, throwaway prototypes were
low-fidelity artifacts, such as mockup, wireframe, or simple code. Evolutionary proto‐
types were perceived as product building blocks, such as heavy code activities, i.e.
feasibility testing of functionality, building new feature, etc. The relationship of the
factors to the speed of prototyping or production was identified via text about challenges,
or text specifying consequence on time-to-market or time to collect user feedback. We
noted and reported evidence on prototyping as follows (1) factors that relate to proto‐
typing activities in generals, (2) factors that slow down the prototyping activities and
(3) factors that speed up the prototyping activities.

3.3 Case Description

The characteristics of our cases are given in Table 1. It is noticeable that a large number of
the studied cases deliver peer-to-peer services as marketplaces or platforms (S01, S02, S03,
S07, S08, S11, S13, S16, S20). There are also cases that deliver value in Business-to-Busi‐
ness model (B2B) (S04, S06, S10, S12, S15, S17). The cases are dominantly characterized
by web-based and mobile-based software product with client-server architecture. We also
identified the product focuses in early and later phases of the software startups [23]. Among
them, there are some startups with annual revenue of one million euro or more (S06, S09).

What Influences the Speed of Prototyping? 25

Regarding the development strategy, interestingly, there are seven cases (35%) that have
(parts of) product developed outside company boundary.

Table 1. Startup cases characteristics

Code Product type Early focus Later focus Dev. strategy No. of prot. Dev. method.
S01 Photo

marketplace
Feature Insource 2 Agile

S02 News generator UX New feature Outsource 4 Agile
S03 Homemade food

market
UX Insource 2 Adhoc

S04 Construction
management

Simple feature New feature Outsource 5 Distributed agile

S05 Underwater
camera

Feasible
technology

Outsourcing,
subcontracting

7 Informal agile

S06 Sale visualization
tool

UX Flexible, scalable Insource 3 Informal scrum

S07 Location
recommendation

Feature, UX Insource 3 Informal agile

S08 Ticket platform Intuitiveness,
friendliness

Scalable and new
features

Outsource 2 Agile

S09 Educational quiz
system

User
friendliness

Scalable, Stable Insource 5 From adhoc to
distributed agile

S10 IoT OS platform Ecosystem Functionality Insource 4 NO INFO.
S11 Ticket platform User friendly,

simple
More features,
complexity

Insource 2 Adhoc

S12 Elearning
platform

Feature Insource 3 Agile

S13 Shipping services NO INFO. NO INFO. Outsource 3 NO INFO.
S14 News services Feature

provider
Platform as a
service

Insource 2+ Continuous
development

S15 Smart grid
application

NO INFO. NO INFO. Insource NO INFO. NO INFO.

S16 Secondhand
marketplace

innovative
feature

Product line Insource 3 NO INFO.

S17 Simulation based
training

UX, feature Flexibility,
Scalability

Insource 2 + NO INFO.

S18 Open source
messenger

Community Feature Open source 4 Adhoc

S19 Location based
alert system

UX Feature and
enhanced UX

Insource 5 Agile

S20 Elearning system User
friendliness

Standardization Insource 2 Agile

*Notation: NO INFO. means missing information

The major reported development methodology is Agile, with iterative deliveries and
frequent customer feedback: “… Scrum based development, sprints of two weeks,
standup, wrap-up meeting, we like to work in this way.” (S06). In some cases, the
company reports a type of informal Agile process: “… fully informal but truly agile
process with working release maintained, … iterative development of functionality and
refactoring” (S05)

26 A. Nguyen-Duc et al.

One specific question asked to interviewees is how many prototypes have been made
before product launching. The answers vary from two to seven prototypes, either throw‐
away or evolutionary ones, before a launch. In many cases, we considered prototypes
as a tangible artifact that is experimented with (potential) users, customers and internal/
external stakeholders.

4 Result

Figure 2 describes the influencing elements on throw-away prototyping (detail on
Sect. 4.1) and evolutionary prototyping (detail on Sect. 4.2). It should be noticed that
the direction of impact is not given. Some elements specifically show the positive/nega‐
tive influences while other elements remain as general observations.

Fig. 2. Factors influencing the prototype-centric learning loops

4.1 Elements Influencing Throwaway Prototyping

4.1.1 Adoption of Collaborative Mock-up Tools
By adopting various tools, i.e. paper sketch, GUI mockups and wireframe tools, startups
achieve a fast and an economic prototype without any technical expertise, as described
in (S02, S09, S11, S13). In these cases, startups conducted very short iterations, from a
few days (S02, S11, S13) to a few weeks (S09), from a product or a service idea to
having the first user feedback. In S04, printing GUI layout in papers is reported as a
good practice for teamwork, especially improving the customer involvement: “normally
we draw in the piece of paper first and then we make mock-ups… and then the customer
joins us on that journey, then we click on the paper, we go to another one …” (S04). It
is also common that startups build mockups by using cloud-based software services. For
such an online tool, the teamwork mode is reported as an important feature that facilitates
collaborative design efforts among distributed team members (S02).

What Influences the Speed of Prototyping? 27

4.1.2 UX Designer Onboard
Business side of a startup (often CEOs) is always in a need of expressing and visualizing
their ideas into more tangible artifacts. By doing that, sitting next to a designer is highly
desirable for CEOs in early stages. In S02, the CEO expresses the need for a close collab‐
oration with a designer in team: “In this case, I would really like a designer that sits here
together with us …” (S2). The role of a design in mobile application is highlighted in
another discussion with S2: “You might think of user interface as a make-up for a person.
But I think UI is the capacity that an app needs to interact with people.” It happens simi‐
larly in S12, when the CEO mentions about the process of designing the graphical part of
their prototypes: “The alternative is to create a specification … and just developing that
document and all the process around it is typically very resource intensive. We talk about
a future, … we make a prototype at a first phase implementation and then we adjust from
there based on dialogues in between us.” (S12). For frontend-rich applications, a designer
is a champion of the user experience, considering the viewpoint of users and keeping
consistency among graphical elements across different platforms.

4.1.3 Choices of Faking or Building
There are often many uncertainties about customers and their expectations in the early
stages of startups. Starting with a single-feature prototypes, or other approaches with
implementation come always with a risk of wasting effort. It is considered time-saving
to start with a clear mind about the throw-away strategy, by focusing on demonstrating
business value rather than reusing the technical components (S02). Uncertainty about
what to build and how to build often come with quick and dirty experiments without
proper architectural designs, appropriate coding practices and documents. In this
manner, frequent change of requirements or feature requests could lead to the increase
of technical debts in later phase. Experimenting by the development of a runnable
prototype was a costly and time-consuming experience in S09. In this way, the value of
a prototype should exceed its cost. In S03, the development team has a clear plan for
experimenting without “making the product” until they get the right product design. S11
applies the concept of “fake it until you make it”, to simulate a final product without
primary quality, both with functionalities and user experience. However, the focus on
the speed has also led to the minimum part of viability. In S11, customer demonstration
was done in a wizard of oz manner [4], customer interacting with an actual user interface,
but business logics and backend functionality were done by manual work. Even though
it is inefficient, the approach is easy and fast to build.

4.1.4 Collaboration Across Diverged Mindsets
We observed that in most of the cases, the ideas came from the CEOs, who are often
business people or serial entrepreneurs. While the decisions about what the products
should do come from a business mindset, they are implemented by developers with a
technical mindset. In some cases (S01, S04, S05), there are challenges in communicating
the product ideas and convincing the developers about the product value. In S04, it took
as much time to discuss on the value proposition as to sketch a mockup. Vice versa, the
communication of technical difficulties is also a time-consuming task, as mentioned by

28 A. Nguyen-Duc et al.

a developer in S05: “She [the CEO] is very sharp about business and finance stuffs, but
it takes a long discussion to explain her about the importance of having flexible product
design …” (S05). The communication challenge might also happen between startups
and customers, when no concrete prototypes are provided: “We work with a customer
organization, learn how they have worked with the current solutions and describe our
proposal via the prototype. It is hard for them to realize the benefit without concrete
examples…” (S04). It also appears that a prototype is late released due to the wrong
estimation of the CEO, who has no technical background. For example, in S1, the CEO
insisted on a customer feedback having a new field in a frontend form, which caused
the change of both business logic layer and data table structure.

4.1.5 Identification of a Right Set of Feedbacks
Steve Blank emphasizes the importance of early involvement of end users in product
development [2]. Particularly, in startups developing products for mass market (or B2C
business model), the feedback from the representative users of a market segment is
essential. Nevertheless, not all users’ input is equally valuable to product development.
It was difficult to find the customer feedback that is useful for validating hypotheses in
S02: “I have attended a various types of events like that. To be honest, there are not so
many interesting things there …” (S02). The CEO wandered in town and talked to
different people about the product idea. However, the approach is quickly found ineffi‐
cient, as the users’ feedbacks are often shallow. After that, the CEO targeted a group of
innovative users from startups and research community and documented many inter‐
esting ideas for the product features. The integration of such lead users, “whose strong
needs will become general in a market-place months or years in the future” [24], appears
to be an important factor to accelerate the speed of startup learning. Lead users are also
able to contribute via suggestions, testing and feedback, or even participate in the devel‐
opment and co-creation of new products or services, as observed in S14: “We always
do that in a close relation to our actual client stakeholders. Once we decide to narrow
it on a new product area, the first thing we do is to get a partnership with a customer
so that we can work together on a daily basis as stakeholders and product devel‐
opers…” (S14).

4.1.6 Fostering Customer Knowledge and Embedding into Prototypes
Prototypes can be seen from three different perspectives, function, look-and-feel and
role, in which role is the representation of usability of the prototype [2]. In order to
maximize lessons learned from a prototype, the vision on how end-users adopt a final
product need to be visualized and captured in the prototype. As the actual end users
are often not well known in the early phases, the integration of the user’s role into the
prototype design is a fuzzy task. The time pressure on prototyping makes startups
skip a detailed analysis of users’ behaviors. It seems that the adoption of customer/
market analysis tools are not so common in our startup sample. In S02, the CEO
emphasized the role of mapping tools, such as a customer journey map to describe the
customer’s experience: “I have been told by my friends about the tool [a customer

What Influences the Speed of Prototyping? 29

journey map]. We used it to describe how customer interact with the system and
where could be the gap” (S02).

4.2 Elements Influencing Evolutionary Prototyping

4.2.1 Utilizing Plug-and-Play Components in Prototype
Utilizing ready-made components, such as Open source software (OSS) libraries and
frameworks unlocks the capacity of experimenting functional as well as non-functional
features. The adoption of OSS components was mentioned in all of the cases, from using
tools (S19), integration of OSS code (S02, S03, S05, S20), to participation in OSS
community (S18). The main benefits include reduced development cost and faster time-
to-release, which were mentioned by the CTOs of (S19) and (S20): “…we might not
even come to the idea of making it happen if we do not have OSS as an experiment.
Without OSS it would take a lot of time and very costly” (S19). It is an even more obvious
choice in open source type of platforms: “It is very hard nowadays not to use OSS
artifacts, especially when with Android development …” (S20). It also appears that many
advanced technologies were adopted via using OSS: “A core part of our product includes
a machine learning algorithm. We are lucky enough to find ml library in C++, entirely
OSS, super cool” (S02). By taking ready-made components, startups also reduce proto‐
typing time by simplifying architectural aspects to some existing patterns.

4.2.2 Synchronizing Customer Feedback in Loops
Communication among team members or between a startup company and its external
stakeholders is found as a significant factor delaying an iteration release. Insufficient
communication due to misunderstanding, cultural difference, language barrier, lack of
supporting tools happens often in outsourcing and remote partnership scenarios (S01,
S09): “Basically, we found some limitations that made it difficult to be efficient in the
way to communicate. And since we’re teams in different places it’s really important that
information flow works and also to make sure that all people—don’t have to be involved
in everything, and be able to group efficiently and create like projects, and store docu‐
ments, and all these things, and have video-share links, and articles, and all these
things.” (S09). The misunderstanding and reworking also happens when customers are
distant to developers and the customer feedbacks are not fully perceived. In S13, the
CEO and sales people interacted with customers and collected insightful feedback from
them. However, the feedback is not communicated efficiently to the development team
in other locations. This leads to unnecessary re-work with communication and imple‐
mentation effort and hence slows down the time to release.

4.2.3 Conflicting Feature Requests
It is a typical situation that evolutionary prototypes are built based on feature requests
from the first customers. Gradually, when having more customers, new feature requests
might vary from the business direction or even conflict with the previous functionalities.
S14 describes how they handled such situation: “either we solve them by providing them
different products or we do ignore parts of the market… We make a very clear statement

30 A. Nguyen-Duc et al.

to what we think the future of journalism is, then we pursue that and the cost of that is
neglecting parts of our market” (S14). Similarly, S15 expresses how their product
evolved through different iterations: “There will always be requirements arriving…
Sometimes the new requirements disrupt the old requirements. At the moment, we are
working to disrupt the old products” (S15). Considering what to develop and which
features to include adds complexity to future releases. Additionally, requests coming in
the middle of the development sprint from large customers might influence the feature
priority and delay the release further: “We’re in that situation all the time, it’s very
difficult to say no because giant customers telling you we need that functionality. If
you’re going to have us as customers you’re going to have to make it, we need it in the
contract that you have to make it. We also build it, we built it bigger and bigger” (S11).

4.2.4 Feature Creeps
Many startups add new features to fit the prototype to a changing group of early
customers. This leads to two possible challenges of satisfying customer demands, so-
called (1) feature creep and (2) product portfolio. Feature creep refers to the addition of
features to a product in a continuous manner: “We are adding features all the time. This
is not a product that will ever stop evolving. We will always have a strong engineering
team to develop the product forward. We are not talking about maintenance here. We
are talking about this being the core of the company’s competence” (S13). Startups
rarely have a requirement management process to manage product complexity. Conse‐
quently, feature creeps are considered harmful to the production and enhancement of
core features.

Moreover, this can be an unwanted expansion that requires changes also in the
product architecture and even in the strategic direction. In S04, after the first two releases
addressing a construction manager’s requirements, the third release was developed for
a construction operator’s demands. Consequently, S04’s product scope has grown from
a single feature MVP to a supply-chain management system: “So then we had a small
one just for easy communication between users of the building and the maintenance
guys… So the second feature was to manage document flow. And the third was to have
a 3D model of the building. And all these things here we spent a lot of time and we were
building in parallel with different prospects” (S04).

In a larger scale, the expansion could lead to deriving a product portfolio. Startups
face with challenges of keeping both the focus to increase the quality of core delivered
values and satisfaction of important customers. While not all good ideas can be turned
into features, some ideas are selected to develop further and might become the core value
providers for startups.

4.2.5 Solid Technical Competence Onboard
In several cases (S09, S01, S03, S06) the technical competence determines the speed of
feature releasing. Startups’ technical members are required to possess good technical
skills and they also need to be productive in an ambiguous development environment:
“We don’t hire people basically for them being cheap because we don’t have time. Our
challenge is time and to be more productive other kind of competing companies … it’s

What Influences the Speed of Prototyping? 31

much better to have people that can—within a short time, could produce good code”
(S09). It is also important to write code in a clean and structured manner, to be quality-
aware in the early phases: “The back end was pretty good because he had hired my boss
at my current company … there was some friction there in how to develop systems
between the professional programmer, my boss, and the copy paste programmers. I
think that also contributed to it not working.” (S11). The combination of technical
competence and customer understanding is emphasized in another case: “… It is very
hard to find people both good at technology and have a good sense of commercial
edge…” (S08).

4.2.6 Dependence on Fast Changing Technologies
Startups often struggle with thriving in a technical uncertainty, whether under market
pull or technology push impacts [20]. Due to different reasons, e.g., specific devices,
platforms or protocols becoming popular in market, or new technology gaining
momentum, there are needs for changing the current product’s features to accommodate
new technology (S01, S09, S11). In a small scale, for instance, the adoption of new
animation effects, a different type of map, etc. leads to an extension of the current or
coming iterations. In S02, the development of an IOS application is delayed after the
codebase and all dependent libraries were forced to be upgraded to a newer version of
Swift. The team took time to resolve all the changes so the next release can be done in
Swift 3.0. The technology uncertainty is expected with mobile applications, as stated by
the CEO of S11: “…at the moment we are changing the technology platform. This
perhaps has been the biggest challenge we have decided where to stand and make a new
platform on development technology… So next generation which will be out in the
market place around summer next year will be quite heavily rearranged.” (S11). In a
large scale, the technical change can lead to a change of business directions.

5 Discussion

5.1 Reflections on the Results

We captured what happened during the early phases of the studied twenty software
startups. We identified the factors that are found to influence the speed of prototyping
across different types of prototypes. They can be grouped into (1) Artifacts, (2) Team
competence, (3) Collaboration, (4) Customer and (5) Process dimensions. Artifacts
include collaborative tools and reusable components. The practices of adopting artifacts
are important for saving time of prototyping user interfaces and functionalities. The issue
here is to select the suitable tools and components to match the prototyping’s purposes.
The requirement of team competence might vary due to the type of prototyping and the
type of products. For instance, UI-rich application would require a designer onboard at
the early stage while a good developer in the later stage. Collaboration, including
efficient communication of visions and tasks among startup teams and interaction with
external stakeholders, is important for shorten the learning loops. Besides, how
customers are involved in the prototyping loops has an impact on the duration of the

32 A. Nguyen-Duc et al.

prototyping. While inappropriate customer feedback delays the learning and creates
more prototyping loops, too many requests from customers delay the time-to-release
and introduce complexity to product management. Last but not least, prototyping is
performed under many uncertainty and dependencies. Defining practices and processes
to support decision-making under uncertainties would help in prototyping.

5.2 Threats to Validity

There are several threats to validity worth discussing [1]. One internal threat to validity
is the bias in the data collection, as the data might not represent the comprehensive case.
This is worth discussing as most of the cases are represented by one interview. In order
to mitigate this threat, we selected CTO and CEO as interviewees, who have the best
understanding about their startups. We also use other types of data sources, such as
documents and observations to increase our understanding about the cases (S01 – S05,
S09). The participative observations in S01 and S02 enabled deeper insights that go
beyond cross-sectional interviews. A construct validity threat is the possible inadequate
descriptions of constructs. We tried at our best to collect contextual information about
the startups, from social media and personal contacts. When analyzing data, the coding
process of interview transcripts was assisted by the authors’ prior knowledge about
prototyping and validated learning. This helped to focus on the investigated phenomenon
without losing relevant details.

The external validity is normally not addressed by case study research. Our result is
grounded on twenty cases, with diversity in company size, application domain, financial
model, and growth stage and organization structure, which adds the robustness to our
findings. Many themes, such as Sect. 4.1.1, Sect. 4.2.1, Sect. 4.2.5, Sect. 4.2.6 are
observed in more than half of the cases. Our sample is characterized by Norwegian
software startups, with a small team and bootstrap financing model. We do not consider
other types of startups, for example, internal cooperate startups, venture capital invested
startups, and American startups. Hence, the results cannot be directly applied to other
contexts, though analytical generalization may be possible in similar contexts.

6 Conclusions

To the best of our knowledge, this is the largest multiple case study research about
software startups. Grounded on twenty European startups, we adopted an analytical
framework to reveal different factors that influence the prototyping activities in early
stages of software startups. We found that both throw-away and evolutionary prototypes
were influenced by artifacts adoption approach, available team competence, collabora‐
tion and customer involvement. Even though there is certain limitation in our case
sample, there are still valuable lessons learnt for practitioners. For startups that follow
the Lean Startup approach, it is important to align the learning objective with a collab‐
orative and well-defined approach of prototyping. Moreover, startups need to find a
systematic approach to integrate relevant external feedback in all phases of prototyping.

What Influences the Speed of Prototyping? 33

This work does not address the evolution of startups according to the learning loops,
i.e. what are lessons from idea to throw-away prototype, what are lessons from switching
from throw-away prototypes to evolutionary ones. Besides, future work can investigate
different types of learning brought by different types of prototypes. This work addressed
validated learning through an important angle, which is the speed of prototyping loops.
In the future work, we will explore another equally important aspect, which is the quality
of learning. Further studies might also identify the effective prototyping and develop‐
ment patterns among software startups.

References

1. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in software
engineering. Empirical Softw. Eng. 14(2), 131–164 (2009)

2. Blank, S.: The Four Steps to the Epiphany: Successful Strategies for Products that Win, 2nd
edn. K & S Ranch Press (2013)

3. Giardino, C., Wang, X., Abrahamsson, P.: Why early-stage software startups fail: a behavioral
framework. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014. LNBIP, vol. 182, pp. 27–
41. Springer, Cham (2014). doi:10.1007/978-3-319-08738-2_3

4. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create
Radically Successful Businesses. Crown Business, New York (2011)

5. Cooper, R.G.: Stage-gate systems: a new tool for managing new products. Bus. Horiz. 33(3),
44–54 (1990)

6. Unterkalmsteiner, M., Abrahamsson, P., Wang, X., Nguyen-Duc, A., Shah, S., Bajwa, S.S.,
Yagüe, A.: Software startups: a research agenda. e-informatica. Softw. Eng. J. 10(1), 89–123
(2016)

7. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: The RIGHT model for continuous
experimentation. J. Syst. Softw. (2016)

8. Houde, S., Hill, C.: What do prototypes prototype. In: Helander, M., Landauer, T., Prabhu,
P. (eds.) Handbook of Human-Computer Interaction, 2nd edn. Elsevier Science (1997)

9. Accessed 1 Dec 2016. http://qz.com/771727/chinas-factories-in-shenzhen-can-copy-
products-at-breakneck-speed-and-its-time-for-the-rest-of-the-world-to-get-over-it/

10. Cohen, M.A., Eliasberg, J., Ho, T.H.: New product development: the performance and time-
to-market tradeoff. Manage. Sci. 42, 173–186 (1996)

11. Yin, R.K.: Case Study Research: Design and Methods, 4th edn. Sage Publications Inc,
Thousand Oaks (2008)

12. Duc, A.N., Abrahamsson, P.: Minimum viable product or multiple facet product? The role of
MVP in software startups. In: Sharp, H., Hall, T. (eds.) XP 2016. LNBIP, vol. 251, pp. 118–
130. Springer, Cham (2016). doi:10.1007/978-3-319-33515-5_10

13. Lichter, H., Schneider-Hufschmidt, M., Züllighoven, H.: Prototyping in industrial software
projects-bridging the gap between theory and practice. IEEE Trans. Softw. Eng. 20(11), 825–
832 (1994)

14. Floyd, C.: A systematic look at prototyping. In: Budde, R., Kuhlenkamp, K., Mathiassen, L.,
Zullighoven, H. (eds.) Approaches to Prototyping, pp. 1–18 (1984)

15. Beaudouin-Lafon, M., Mackay, W.E.: Prototyping development and tools. In: Jacko, J.A.,
Sears, A. (eds.) Handbook of Human-Computer Interaction, Revisited edn, pp. 1006–1031.
Lawrence Erlbaum Associates, New York (2007)

34 A. Nguyen-Duc et al.

http://dx.doi.org/10.1007/978-3-319-08738-2_3
http://qz.com/771727/chinas-factories-in-shenzhen-can-copy-products-at-breakneck-speed-and-its-time-for-the-rest-of-the-world-to-get-over-it/
http://qz.com/771727/chinas-factories-in-shenzhen-can-copy-products-at-breakneck-speed-and-its-time-for-the-rest-of-the-world-to-get-over-it/
http://dx.doi.org/10.1007/978-3-319-33515-5_10

16. Karvonen, T., Lwakatare, L.E., Sauvola, T., Bosch, J., Olsson, H.H., Kuvaja, P., Oivo, M.:
Hitting the target: practices for moving toward innovation experiment systems. In: Fernandes,
J.M., Machado, R.J., Wnuk, K. (eds.) ICSOB 2015. LNBIP, vol. 210, pp. 117–131. Springer,
Cham (2015). doi:10.1007/978-3-319-19593-3_10

17. Sauvola, T., Lwakatare, L.E., Karvonen, T., Kuvaja, P., Olsson, H.H., Bosch, J., Oivo, M.:
Towards customer-centric software development: a multiple-case study. In: 41st Euromicro
Conference on Software Engineering and Advanced Applications (2015)

18. Bosch, J., Holmström Olsson, H., Björk, J., Ljungblad, J.: The early stage software startup
development model: a framework for operationalizing lean principles in software startups. In:
Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol, K.-J. (eds.) LESS 2013.
LNBIP, vol. 167, pp. 1–15. Springer, Heidelberg (2013). doi:10.1007/978-3-642-44930-7_1

19. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “stairway to heaven”: a multiple-case
study exploring barriers in the transition from agile development towards continuous
deployment of software. In: 38th Euromicro Conference on Software Engineering and
Advanced Applications (2012)

20. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.: Software
development in startup companies: a systematic mapping study. Inf. Softw. Technol. 56(10),
1200–1218 (2014)

21. Brooks, F.P.: The Design of Design: Essays From a Computer Scientist. Addison-Wesley
Professional, Boston (2010)

22. Boyatzis, R.E.: Transforming Qualitative Information: Thematic Analysis and Code
Development. Sage Publications, Thousand Oaks (1998)

23. Nguyen-Duc, A., Shah, S., Abrahamsson, P.: Towards an early stage software startups
evolution model. In: 42nd Euromicro Conference on Software Engineering and Advanced
Applications (2016)

24. Von Hippel, E.: Lead users: a source of novel product concepts. Manage. Sci. 32(7), 791–805
(1986)

25. Lynn, G.S., Morone, J.G.: Marketing and discontinuous: the probe and learn process. Calif.
Manage. Rev. 38(3) (1996)

26. Nguyen-Duc, A., Seppnen, P., Abrahamsson, P.: Hunter-gatherer cycle: a conceptual model
of the evolution of startup innovation and engineering. In: 1st Workshop on Open Innovation
on Software Engineering, ICSSP (2015)

27. Luqi, F.K.: An introduction to rapid system prototyping. IEEE Trans. Softw. Eng. 28(9), 817–
821 (2002)

28. Jansen, S., Brinkkemper, S., Hunink, I., Demir, C.: Pragmatic and opportunistic reuse in
innovative start-up companies. IEEE Softw. 25(6), 42–49 (2008)

29. Grevet, C., Gilbert, E.: Piggyback prototyping: using existing, large-scale social computing
systems to prototype new ones. In: 33rd Annual ACM Conference on Human Factors in
Computing Systems; Seoul, Republic of Korea, pp. 4047–4056 (2015)

What Influences the Speed of Prototyping? 35

http://dx.doi.org/10.1007/978-3-319-19593-3_10
http://dx.doi.org/10.1007/978-3-642-44930-7_1

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

36 A. Nguyen-Duc et al.

http://creativecommons.org/licenses/by/4.0/

http://www.springer.com/978-3-319-57632-9

	What Influences the Speed of Prototyping? An Empirical Investigation of Twenty Software Startups
	Abstract
	1 Introduction
	2 Background
	2.1 Business Driven Experimentation
	2.2 Prototype and Prototyping Activities
	2.3 A Prototype-Centric Learning Model in Software Startups

	3 Research Approach
	3.1 Multiple Case Study Design
	3.2 Data Collection and Analysis
	3.3 Case Description

	4 Result
	4.1 Elements Influencing Throwaway Prototyping
	4.1.1 Adoption of Collaborative Mock-up Tools
	4.1.2 UX Designer Onboard
	4.1.3 Choices of Faking or Building
	4.1.4 Collaboration Across Diverged Mindsets
	4.1.5 Identification of a Right Set of Feedbacks
	4.1.6 Fostering Customer Knowledge and Embedding into Prototypes

	4.2 Elements Influencing Evolutionary Prototyping
	4.2.1 Utilizing Plug-and-Play Components in Prototype
	4.2.2 Synchronizing Customer Feedback in Loops
	4.2.3 Conflicting Feature Requests
	4.2.4 Feature Creeps
	4.2.5 Solid Technical Competence Onboard
	4.2.6 Dependence on Fast Changing Technologies

	5 Discussion
	5.1 Reflections on the Results
	5.2 Threats to Validity

	6 Conclusions
	References

