
2
Mathematical Fundamentals

In this chapter, we present the essential mathematical tools needed in the mod-
elling of portfolio credit derivative products. This includes: doubly-stochastic
Poisson processes, also known as Cox processes; point processes and their in-
tensities, on some given filtration; and copula functions.

2.1 Credit Pricing Building Blocks

The key building blocks needed for pricing single-name credit products are:
expectations of risky cash-flows, at fixed time horizons, conditional on survival;
and expectations of recovery payments at the time of default. Those were
derived by Lando (1998) in a doubly-stochastic Poisson process (also known
as a Cox process) framework.

2.1.1 Cox Process

An inhomogeneous Poisson process N , with non-negative intensity function
h (.) is defined as a process with independent increments such that

P (Nt − Ns = k) =
(∫ t

s h (u) du
)k

k! exp

(
−
∫ t

s
h (u) du

)
, for k = 0, 1, . . .
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Define τ as the first jump time of the Poisson process N . The probability of
survival after time T , which is equivalent to NT = 0, is

P (τ > T ) = P (Nt = 0) = exp

(
−
∫ T

0
h (u) du

)
.

This gives an operational recipe for simulating the first jump time of a Poisson
process: let E1 be a unit exponential randomvariable, then τ can be determined
by setting

τ = inf

{
t :
∫ t

0
h (u) du ≥ E1

}
.

A Cox process is a generalized Poisson process where the intensity itself is
stochastic: so, instead of having a time-dependent intensity function h (.), the
intensity is a stochastic processh (., ω). Conditional on each realizationω ∈ �,
of the intensity process h (., ω), the counting process N is an inhomogeneous
Poisson process with intensity h (t, ω).

Furthermore, we assume that the stochastic intensity can be written as the
functional form

h (t, ω) = λ (Xt ) ,

where X is anR
d -valued Ito process representing the background state variables

in the economy, and λ (.) : R
d → [0,∞) is a non-negative, continuous

function.The economic state variables would include: (risk-free) interest rates,
equity prices, credit ratings and other macroeconomic variables, which would
drive the likelihood of default; but they would exclude the actual default events
of the obligor in question and other obligors in the economy. The stochastic
intensity λ (Xt ) can be thought of as a (conditional) instantaneous default
probability; in other words, conditional on the firm having survived up to
time t , and for a given observed path of the state variables X up to time t , the
probability of defaulting in the next instant, between t and t + dt , is equal to
λ (Xt ) dt + o (dt).

More formally, if we work on a probability space (�,G, P), where we have
an anR

d -valued Ito process X , and a unit exponential variable E1, independent
from X , we define the default time τ as

τ = inf

{
t :
∫ t

0
λ (Xu) du ≥ E1

}
.

This is the exact analogue to the Poisson construction algorithm, but here we
are using a random intensity instead.
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Having modeled the default time as the first jump time of a Cox process,
we can now write the survival probability, conditional on X , as

P
(
τ > T

∣∣(Xt )0≤t≤T
) = exp

(
−
∫ T

0
λ (Xu) du

)
,

which yields the expression of the survival probability by taking the expectation
on both sides

P (τ > T ) = E

[
exp

(
−
∫ T

0
λ (Xu) du

)]
.

Next, we evaluate the basic three pricing building blocks that we need.

2.1.2 Three Building Blocks

First, we need tomake precise the various filtrations that we work with. As with
all creditmodelling problems, wewill have three filtrations: (1) the background
filtration containing information about the state variables in the economy; (2)
the default filtration, which tracks the obligor default events history; (3) the
enlarged filtration, which combines both the economic state variables and the
default events information; the three filtrations are defined as

Ft = σ {Xs : 0 ≤ s ≤ t} ;
Ht = σ

{
1{τ≤t} : 0 ≤ s ≤ t

}
;

Gt = Ft ∨ Ht .

The conditional survival probability is given by the following lemma.

Lemma 5 (Conditional Survival Probability) The survival probability condi-
tional on (the whole path) F∞ and (the default state)Ht is given by

P (τ > T |F∞ ∨ Ht ) = 1{τ>t} exp
(

−
∫ T

t
λsds

)
.
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Proof It suffices to observe that the conditional expectation
E
[
1{τ>t} |F∞ ∨ Ht

]
is 0 on the set {τ ≤ t} and that {τ > t} ∈ Ht ; then,

using Bayes’ rule, we obtain

P (τ > T |F∞ ∨ Ht ) = 1{τ>t}P (τ > T |F∞ ∨ Ht )

= 1{τ>t}
P ({τ > T } ∩ {τ > t} |F∞ )

P (τ > t |F∞ )

= 1{τ>t}
P (τ > T |F∞ )

P (τ > t |F∞ )

= 1{τ>t}
exp
(
− ∫ T0 λsds

)

exp
(
− ∫ t0 λsds

) = 1{τ>t} exp
(

−
∫ T

t
λsds

)
.

�
To price any credit risky (defaultable) contingent claim, we have to compute

expectations of its discounted cash-flows, which can be one of three types:

1. Payment at Maturity –XT 1{τ>T }: a cash-flow payment XT , which is an
FT -measurable variable, at a fixed time horizon T , if default has not oc-
curred before time T ;

2. Coupon Payments –1{τ>s}Ysds: a stream of (continuous) payments speci-
fied by an Ft -adapted process Y , which terminates when the default event
happens;

3. Payment at Default –Zτ : A recovery rate payment, at the time of default
τ , where Z is an Ft -adapted process; the payment at default is the random
variable Zτ = Zτ(ω) (ω).

The key formulas are summarized in the next proposition.

Proposition 6 (Three Building Blocks)We have the following conditional ex-
pectations for the three cash-flow types above.

1. Payment at Maturity:

E

[
e

(
− ∫ Tt rsds

)
XT 1{τ>T } |Gt

]
= 1{τ>t}E

[
e

(
− ∫ Tt (rs+λs)ds

)
XT |Ft

]
.

2. Coupon Payments:

E

[∫ T

t
e
(− ∫ st rudu

)
Ys1{τ>s}ds |Gt

]
= 1{τ>t}E

[∫ T

t
e
(− ∫ st (ru+λu)du

)
Ysds |Ft

]
.
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3. Payment at Default:

E

[
e(−

∫ τ
t rudu)Zτ |Gt

]
= 1{τ>t}E

[∫ T

t
λse(

− ∫ st (ru+λu)du)Zsds |Ft

]
.

Note that the expectations for payments types 1 and 2, i.e., the payment
at maturity and the coupon payments, are not dissimilar. In fact, the coupon
payments integral is just a linear sum of multiple Fs -measurable payments
conditional on survival after time s.

Proof First, we start with expectations conditional on survival at a fixed time
horizon.

1. Using the law of iterated expectations and the conditional survival proba-
bility from the previous lemma, we have

E

[
e

(
− ∫ Tt rsds

)
XT 1{τ>T } |Gt

]
= E

[
E

[
e

(
− ∫ Tt rsds

)
XT 1{τ>T } |F∞ ∨ Ht

]
|Gt
]

= E

[
e

(
− ∫ Tt rsds

)
XT E

[
1{τ>T } |F∞ ∨ Ht

] |Gt
]

= 1{τ>t}E
[
e

(
− ∫ Tt (rs+λs )ds

)
XT |Gt

]

The last step that we need is to switch the conditioning on the enlarged
filtration Gt to the conditioning on the background filtration Ft . Notice
the following sigma fields’ inclusions

Ft ⊂ Ft ∨ Ht ⊂ Ft ∨ σ (E1) ;

and recall from the Cox process construction the independence between the
(threshold) exponential random variable E1 and the sigma filed σ

(
X̃T
) ∨

Ft , where X̃T = e

(
− ∫ Tt (rs+λs)ds

)
XT , so that we can write

E

[
e

(
− ∫ Tt (rs+λs)ds

)
XT |Ft ∨ σ (E1)

]
= E

[
e

(
− ∫ Tt (rs+λs)ds

)
XT |Ft

]
,

which gives the final result.
2. The proof for expectations of coupon payment streams is exactly identical

to the proof for cash-flow payments at a fixed time horizon T .
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3. For recovery payments, we use the expression of the default time density
conditional on F∞: for all s > t ,

P (τ ∈ ds |τ > t,F∞ ) = ∂

∂s
P (τ ≤ s |τ > t,F∞ ) = λs exp

(
−
∫ s

t
λudu

)
.

Thus, we can write the recovery expectation in terms of the conditional
default density as

E

[
e
(− ∫ τ

t rudu
)
Zτ |Gt

]
= E

[
E

[
e
(− ∫ τ

t rudu
)
Zτ |F∞ ∨ Ht

]
|Gt
]

= 1{τ>t}E
[∫ T

t
λse

(− ∫ st λudu
) [

e
(− ∫ st rudu

)
Zs
]
ds |Gt

]

= 1{τ>t}E
[∫ T

t
λse

(− ∫ st (ru+λu)du
)
Zsds |Ft

]
;

in the last line, we have replaced the conditioning on Gt with the conditioning
on Ft following the same argument as before.

�
Next, we give a brief overview of the theory of point processes and the

general definition of intensity processes with respect to a given filtration. This
is a generalization of the results obtained in the Cox process framework. The
choice of filtration (and its corresponding intensity process) is of critical im-
portance when we work in a credit portfolio set-up withmultiple default times.
Single-name default intensities (on the enlarged filtration) can be distorted as
(portfolio) default events occur, which creates some interesting default cluster-
ing patterns.

2.2 Point Processes, Filtrations and Intensities

Wehave seen in the previous section a definition of the default event (stopping)
time based on a Cox process approach. The default time is constructed, from
first principles, as the first jump time of Poisson process whose intensity is
stochastic and driven by some economic state variables (Ito) process. It turns
out that we can go one step further and model the default event, in a more
general framework, as a stopping time with respect to a given filtration. But as
soon as we do that, extra care and attention need to be given to the choice of
(working) filtration and the exact definition of the intensity process (associated
with this default time). Intuitively, when we have a general point process Nt ,
on some filtration Ft , the heuristic definition of an (Ft -) intensity is simply
the conditional instantaneous jump probability:
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P (dNt = 1 |Ft ) = λt dt + o (dt) .

This concept has been formalized in a mathematically rigorous manner by
Brémaud (1980). This is the definitive mathematical bible on point processes
(and market point processes) that any credit modeler (keen on mathematical
rigour) needs to refer it continuously.

Here we follow the pedagogical presentation in Brémaud (1980) and we
summarize some of the key results, which we will need later in the sequel.

2.2.1 Counting Process

A point process on the half line [0,∞) can be represented in one of three
ways: (a) as a sequence of non-negative random times; (b) as a discrete random
measure; (c) or as the associated counting process. Here we shall use the point
process terminology to refer to both the sequence of random times and their
counting process interchangeably.

Definition 7 (Point Process) A point process on can be described by a sequence
of non-negative random times, on some probability space (�,F , P), such that

T0 = 0,

Tn < ∞ =⇒ Tn < Tn+1.

A realization of the point process is said to be non-explosive if T∞ = lim
n↑∞

Tn = +∞. For each realization Tn corresponds a counting function N , de-
fined as

Nt =
{
n if t ∈ [Tn, Tn+1) , n ≥ 0,
+∞ if t ≥ T∞.

The sequence Tn is called a point process; but sometimes the associated count-
ing process N is also called a point process by abuse of notation. We say that it
is non-explosive if Nt < ∞ a.s., for t ≥ 0. And we say that the point process
Nt is integrable if E [Nt ] < ∞, for t ≥ 0.
We can also have a multivariate point process. The definition is given below.

Definition 8 (Multivariate Point Process) Let Tn be a point process, and let Zn
be a sequence of random variables in {1, 2, . . . , k}. Define for all 1 ≤ i ≤ k,

Nt (i) =
∑
n≥1

1 {Tn ≤ t} 1 {Zn = i} , for t ≥ 0.
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The k-dimensional vector process (Nt (1) , . . . , Nt (k)) and the double se-
quence (Tn, Zn, n ≥ 1) are called k-variate point processes. The processes
Nt (i) have no common jumps, i.e., for i �= j , we have�Nt (i) �Nt ( j) = 0
a.s., for t ≥ 0.

2.2.2 Doubly Stochastic Poisson Process

Broadly speaking, a doubly stochastic Poisson process is generated with a two-
step procedure: first, we simulate a full path of the intensity-driving background
process X ; then, given this realized path, we generate a Poisson process with
intensity λt = h (Xt ). This is the Cox process construction that we have
discussed in Sect. 2.1.1.
This definition can be generalized and extended formally to a larger class of

intensity processes.

Definition 9 (Doubly Stochastic Poisson Processes) Let Nt be a point process
adapted to some filtrationFt , and let λt be a non-negative measurable process.
Suppose that

λt is F0-measurable, for t ≥ 0,

and that ∫ t

0
λsds < ∞ a.s., for t ≥ 0.

If we have, for all 0 ≤ s ≤ t and all u ∈ R,

E

[
eiu(Nt−Ns) |Fs

]
= exp

((
eiu − 1

) ∫ t

s
λvdv

)
,

then the process Nt is called a (P,Ft )-doubly stochastic Poisson process with
(stochastic) Ft -intensity.

If the intensity λt is deterministic (and, therefore, is a time-dependent func-
tion λ (t)) then Nt is called an (P,Ft)-Poisson process.

If the filtration is restricted to its natural filtration Ft = F N
t , then we say

that Nt is a Poisson process with intensity λ (t).
If the intensity is equal to one, λ (t) = 1, then Nt is a standard Poisson

process.
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Remark 10 From the definition above, it follows that:

• the Poisson process increments Nt − Ns are independent from Fs con-
ditionally on (the path) F0. Indeed, since λt is F0-measurable, we can
write

E

[
eiu(Nt−Ns ) |Fs ∨ F0

]
= E

[
exp

((
eiu − 1

) ∫ t

s
λvdv

)
|F0

]
= E

[
eiu(Nt−Ns ) |F0

]
;

• for all 0 ≤ s ≤ t , the probability distribution of the increment Nt − Ns
conditional on Fs , is given by

P (Nt − Ns = k |Fs ) =
(∫ t

s λvdv
)k

k! e− ∫ ts λvdv, for k ≥ 0.

An alternative definition of a doubly stochastic process is based on a result
due to Watanabe (1964): it offers a more general characterization, which can
be extended to define the (stochastic) intensity for any general point process
(which is not necessarily Poisson or doubly stochastic Poisson).

2.2.3 Watanabe’s Characterization

Let Nt be a doubly stochastic Poisson process with an Ft -intensity λt . Using
theFs-conditional probability distribution of the increment Nt − Ns , we can
write

E
[
Nt − Ns |Fs

] = E

[∫ t

s
λudu |Fs

]
.

Suppose that the cumulative intensity is integrable, i.e., E

[∫ t
0 λudu

]
< ∞,

for all t ≥ 0, then from the equation above the process Nt is also integrable
E [Nt ] < ∞; hence, the process Mt defined as

Mt = Nt −
∫ t

0
λudu

is anFt -martingale. Furthermore, for all non-negativeFt -predictable processes
Ct , we have

E

[∫ ∞

0
CsdNs

]
= E

[∫ ∞

0
Csλsds

]
.
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This characterization can be used as a definition for the intensity of a doubly
stochastic Poisson process.

Theorem 11 (Characterization of Doubly Stochastic Poisson Processes) Let
Nt be a point process adapted to some filtration Ft , and let λt be a non-negative
measurable process such that: for all t ≥ 0, λt is -measurable, and

∫ t
0 λsds < ∞

a.s.
If the equality

E

[∫ ∞

0
CsdNs

]
= E

[∫ ∞

0
Csλsds

]

holds for all non-negativeFt -predictable processesCt , then Nt is a doubly stochastic
process with Ft -intensity λt .

Watanabe in 1964 came up with the first important characterization prop-
erty, which links point processes and martingales. His characterization result
relates to Poisson processes.

Theorem 12 (Watanabe 1964) Let Nt be a point process adapted to some filtra-
tion Ft , and let λ (t) be a locally integrable non-negative measurable function.
Suppose that Mt = Nt − ∫ t0 λ (s) ds is an Ft -martingale. Then, Nt is an Ft -
Poisson process with intensity λ (t), i.e., for all 0 ≤ s ≤ t , the increment Nt − Ns

is a Poisson random variable with parameter
∫ t
s λ (u) du, which is independent

from Fs .

2.2.4 Stochastic Intensity

In the general case, to define the Ft -intensity for any point process (adapted
to the filtrationFt ), we can use the previous doubly stochastic Poisson process
characterization theorem.

Definition 13 (Stochastic Intensity) Let Nt be a point process adapted to some
filtration Ft , and let λt be a non-negative Ft -progressive process such that∫ t
0 λsds < ∞ a.s, for all t ≥ 0. If for all non-negativeFt -predictable processes
Ct , the equality

E

[∫ ∞

0
CsdNs

]
= E

[∫ ∞

0
Csλsds

]

holds, then we say that the process Nt admits a (P,Ft)-intensity (or Ft -
intensity) λt .
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Using this definition, we have the following integration theorem.

Theorem 14 (Integration Theorem) If Nt admits an Ft -intensity λt (where∫ t
0 λsds < ∞ a.s, for all t ≥ 0), then Nt is non-explosive and

• Mt = Nt − ∫ t0 λsds is an Ft -local martingale;

• if Xt is an Ft -predictable process such that E

[∫ t
0 |Xs | λsds

]
< ∞, t ≥ 0,

then
∫ t
0 XsdMs is an Ft -martingale;

• if Xt is an Ft -predictable process such that
∫ t
0 |Xs | λsds < ∞, t ≥ 0, then∫ t

0 XsdMs is an Ft -local martingale.

The next martingale characterization theorem is the main result that we
shall use to define the intensity for default (stopping) times.

Theorem 15 (Martingale Characterization of Intensity) Let Nt be a non-
explosive point process adapted to the filtration Ft . Suppose that for some non-
negative Ft -progressive process λt and for all n ≥ 1,

Mt∧Tn = Nt∧Tn −
∫ t∧Tn

0
λsds, is an (P,Ft) -martingale.

Then, λt is the Ft -intensity of point process Nt .
One can observe that, using this intensity martingale characterization prop-

erty, the following equality holds:

E
[
Nt∧Tn − Ns∧Tn |Fs

] = E

[∫ t∧Tn

s∧Tn
λudu |Fs

]
,

which, by letting n ↑ ∞, becomes

E
[
Nt − Ns |Fs

] = E

[∫ t

s
λudu |Fs

]
.

This is reminiscent of one of the classical definitions of intensity. In particular,
if we assume that λt is right-continuous and bounded, then by applying suc-
cessively the Lebesgue averaging theorem and the Lebesgue dominated conver-
gence theorem, we can see that theFt -conditional probability of instantaneous
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jumps (in the point process) is equal to the Ft -intensity

lim
t↓s

1

t − s
E
[
Nt − Ns |Fs

] = λs , a.s.

2.2.5 Predictable Intensities

So far, we have given a characterization of an Ft -intensity process for a point
process Nt , but we have not said anything about its uniqueness. In general,
theFt -intensity, as defined previously, is not unique. But we can always find a
predictable version of the intensity, which is made unique by the predictability
constraint.
The formal results regarding uniqueness and existence of predictable versions

are given in the next two theorems.

Theorem 16 (Uniqueness of Predictable Intensities) Let Nt be a point process
adapted to the filtrationFt . Let λt and λ̃t be twoFt -intensities of the point process
Nt , which are Ft -predictable, then

λt (ω) = λ̃t (ω) , P (dω) dNt (ω) -a.e.

In particular, for n ≥ 1, we have

λTn = λ̃Tn , on {Tn < ∞} ,
λt (ω) = λ̃t (ω) , λt (ω) dt and λ̃t (ω) dt-a.e.

Theorem 17 (Existence of Predictable Versions of Intensities) Let Nt be a
point process with an Ft -intensity λt . Then, one can find an Ft -intensity λ̃t that
it predictable.

Nowwhenwe talk about theFt -intensity of the point process Nt (as opposed
to an Ft -intensity), we are referring to the (unique) predictable version.

2.2.6 Change of Filtration

A very important result, which forms the foundation of everything that one
does when working on enlarged (credit) filtrations –generated by the default
events of a credit portfolio– is the change of filtration theorem. As one switches
between the enlarged portfolio filtration and the individual single-name fil-
trations (or other sub-basket filtrations), one needs to pay special attention
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to the intensities that are used as they have a fundamental impact on all the
conditional expectation calculations that one performs.

We state the change of filtration theorem next.

Theorem 18 (Change of Filtration for Intensities) Let Nt be a point process
with the Ft -intensity λt . Let Gt be a sub-filtration of Nt smaller than Ft , i.e.,

F N
t ⊂ Gt ⊂ Ft , t ≥ 0.

Then, the process Nt admits a Gt -intensity μt defined by

μt (ω) =
(

λudPdu

dPdu

)
(t, ω) , on P (Gt) .

Loosely speaking, this can be re-stated as: if Nt is a point process with the
Ft -intensity λt , and if Gt is a sub-filtration of Nt , which is smaller than Ft ,
then μt = E

[
λt |Gt

]
is the Gt -intensity of Nt .

Now, looking more closely at a multivariate point process, we can describe
the (discrete) conditional probability density of the embedded mark process
(Zn, n ≥ 0) in terms of the point process intensities. In practice, this is a useful
property that usually comes in handy when we wish to implement efficient
Monte-Carlo simulation algorithms for multi-name baskets.

Theorem 19 Let (Tn, Zn, n ≥ 0) be an m-variate point process, and let Nt (i),
for 1 ≤ i ≤ m, be its associated counting processes. Let Ft be a filtration of the
form

Ft = F0 ∨
(

m∨
i=1

F N (i)
t

)
,

where is F N (i)
t the filtration of the process Nt (i). Suppose that, for each 1 ≤ i ≤

m, Nt (i) admits the Ft -intensity λt (i). Then, for all n ≥ 1,

λTn (i)

λTn
= P

(
Zn = i

∣∣∣FT−
n

)
, on {Tn < ∞} ,

where λt =∑m
i=1 λt (i) is the -intensity of the process Nt =∑m

i=1 Nt (i).
Broadly speaking, the ratio λt (i)∑m

i=1 λt (i)
is the probability of having a jump of

type i , at time t , conditional onFt− , and knowing that we have a jump in one
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of the m point processes Nt ( j) at time t . We could write it heuristically as

P (dNt (i) = 1 |Ft−, dNt = 1) = P (dNt (i) = 1, dNt = 1 |Ft− )

P (dNt = 1 |Ft− )

= P (dNt (i) = 1 |Ft− )

P (dNt = 1 |Ft− )

= λt (i)

λt
.

2.2.7 Random Time Change

In the same way that any continuous local martingale can be represented as a
(continuous) time-changed Brownian motion, there is a similar property for
point processes, which can be re-casted as time-changed Poisson processes.
The basic result is given in the next theorem.

Theorem 20 (Time-Changed Poisson Process) Let Nt be a point process with
theFt -intensity λt and the Gt -intensity λ̃t , whereFt and Gt are filtrations of Nt
such that

F N
t ⊂ Gt ⊂ Ft .

Suppose that N∞ = ∞, a.s. Define for each t , the Gt -stopping time θ (t) as

∫ θ(t)

0
λ̃sds = t .

Then, the point process Ñt defined by the time change θ (t),

Ñt = Nθ(t),

is a standard Poisson process (i.e., with Gt -intensity 1)
Having defined,mathematically, the intensity for a general point process, on

a given filtration–and appreciated the subtleties around the choice of filtration-,
to proceed further, we need to provide an “operational” tool to construct these
quantities and relate them to each other in some way. This is achieved by using
the concept of copula functions, which we describe next.
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2.3 Copulas

Default correlation has been, for a long time, a very ambiguous concept –
shrouded in mystery and often misunderstood, or at least misinterpreted in
one way or another. This state of fuzziness is probably due to the fact that our
minds are trained to think in terms of Gaussian distributions. A multivariate
Gaussian distribution is completely determined by its pair-wise correlations
(and variances or its covariance matrix). This fact is very specific to normal
distributions. When we are talking about “correlating default events” we are
trying to specify the multivariate distribution of a set of Bernoulli variables
which cannot be achieved by looking solely at the pairwise correlations; a
more general tool is needed.

Consider two random variables (T1, T2), with a bivariate distribution
F (t1, t2), and marginals F1 (t1), F2 (t2); then, we have the following proper-
ties:

F (t1, +∞) = F1 (t1) , F (+∞, t2) = F2 (t2) ;

F (t1, −∞) = F (−∞, t2) = F (−∞,−∞) = 0;

F (+∞,+∞) = 1.

Furthermore, the measure of the rectangle [x1, x2] × [y1, y2] is positive and
given by:

P (x1 ≤ T1 ≤ x2, y1 ≤ T2 ≤ y2) = F (x2, y2) − F (x2, y1) − F (x1, y2) + F (x1, y1) ≥ 0.

When T1 and T2 are independent, the bivariate distribution is simply the
product of the (univariate) marginals:

F (t1, t2) = F1 (t1) × F2 (t2) .

The problem of determining a bivariate distribution from its marginals has an
infinite number of solutions. In particular, we have an upper and lower bound
that are solutions to this problem. Fréchet (1957) has shown that the following
condition holds:

max (F1 (t1) + F2 (t2) − 1, 0) ≤ F (t1, t2) ≤ min (F1 (t1) , F2 (t2)) .
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This family of solutions can be parametrized elegantly by using the formalism
of Copula functions. We present here a short summary of the main results
regarding copulas (we refer to Embrechts et al. (2003) for more details).

2.3.1 Sklar’s Theorem

Basically, a copula function is a function that links a set of univariate marginal
distributions to a complete multivariate distribution.
The formal mathematical definition is given below (see Nelsen 1999).

Definition 21 (Copula) An n-dimensional copula is any function C : [0, 1]n
→ [0, 1] with the following properties

• C is grounded, i.e., C (u1, . . . , un) = 0 for all (u1, . . . , un) ∈ [0, 1]n

such that uk = 0 for at least one k;
• C is n-increasing, i.e., the C-volume of all n-boxes whose vertices lie in
[0, 1]n is positive:

2∑
i1=1

. . .

2∑
in=1

(−1)i1+···+in C
(
ui11 , . . . , uinn

)
≥ 0,

for all
(
u11, . . . , u

1
n

)
and

(
u21, . . . , u

2
n

)
in [0, 1]n with u1k ≤ u2k , 1 ≤ k ≤ n;

• C has margins Ck , which satisfy Ck (uk) = C (1, . . . , 1, uk, 1 . . . , 1) =
uk for all uk in [0, 1].

This definition ensures that C is a multivariate uniform distribution.
For our purposes, we shall use the following (equivalent) operational defi-

nition.

Definition 22 (Copula Function) Let U1,U2, . . . ,Un be a set of n uniform
random variables. Then, the joint distribution function

C (u1, u2, . . . , un) = P (U1 ≤ u1,U2 ≤ u2, . . . ,Un ≤ un)

is called a Copula function.
The link between copulas and the construction of multivariate distributions

is given by Sklar’s theorem.
For a set of n random variables X1, X2, . . . , Xn with univariate distribu-

tions Fi (xi ) = P (Xi ≤ xi ), we can define their multivariate distribution
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F (x1, x2, . . . , xn) by a choice of Copula function as follows:

F (x1, x2, . . . , xn) � C (F1 (x1) , F2 (x2) , . . . , Fn (xn)) .

To see that, it suffices to write:

C (F1 (x1) , F2 (x2) , . . . , Fn (xn)) = P (U1 ≤ F1 (x1) ,U2 ≤ F2 (x2) , . . . ,Un ≤ Fn (xn))

= P

(
F−1
1 (U1) ≤ x1, F

−1
2 (U2) ≤ x2, . . . , F

−1
n (Un) ≤ xn

)

= P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)

= F (x1, x2, . . . , xn) .

The converse result is also true. Sklar (1959) has shown that any multivariate
distribution can be expressed as a Copula function.

Theorem 23 (Sklar’s theorem) Let F be an n-dimensional distribution function
with margins F1, . . . , Fn . Then, there exists an n-copula C such that for all
(x1, . . . , xn) ∈ R

n
,

F (x1, . . . , xn) = C (F1 (x1) , . . . , Fn (xn)) .

If F1, . . . , Fn are all continuous, then C is unique. Otherwise, C is uniquely
determined on Ran F1 × · · · × Ran Fn . Conversely, if C is an n-copula and
F1, . . . , Fn are distribution functions, then the function F defined above is an
n-dimensional distribution function with margins F1, . . . , Fn .

The mixed kth-order partial derivatives of a copula function C , ∂kC(u)
∂u1...∂uk

,
exist for almost all u in [0, 1]n ; moreover, the partial derivatives are always
bounded between 0 and 1,

0 ≤ ∂kC (u)

∂u1 . . . ∂uk
≤ 1.

Now, every copula function C can be decomposed into its absolutely contin-
uous part and its singular part:

C (u1, . . . , un) = AC (u1, . . . , un) + SC (u1, . . . , un) ,

where

AC (u1, . . . , un) =
∫ u1

0
. . .

∫ un

0

∂nC (s1, . . . , sn)

∂s1 . . . ∂sn
ds1 . . . dsn ,

SC (u1, . . . , un) = C (u1, . . . , un) − AC (u1, . . . , un) .
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If C = AC on [0, 1]n , then C is said to be absolutely continuous; in this
case, it will have a density distribution ∂nC(u1,...,un)

∂u1...∂un
.

If C = SC on [0, 1]n , then C is said to be singular, and will have zero
density, ∂nC(u1,...,un)

∂u1...∂un
= 0, almost everywhere in [0, 1]n .

The Marshall-Olkin copula, which we will study later, is an important ex-
ample of a copula function with a regular continuous part and a singular part
on the diagonals.

Frechet-Hoeffding Bounds. Define the functions Mn , 
n and Wn , on
[0, 1]n , as

Mn (u) = min (u1, . . . , un) ,


n (u) = u1 . . . un ,

Wn (u) = max (u1 + · · · + un − n + 1, 0) .

Note that the functions Mn and 
n are n-copula functions, for all n ≥ 2; the
function Wn , on the other hand, is not a copula function for any n ≥ 3.
The upper and lower bounds for a copula function are given by the Frechet-

Hoeffding bounds inequality (Fréchet 1957).

Theorem 24 (Frechet-Hoeffding Bounds) Let C be an n-copula function, then
for every u in [0, 1]n , we have

Wn (u) ≤ C (u) ≤ Mn (u) .

The whole question now is: what is the best choice of copula function for
our purposes.
The traditional copula used in the market explicitly or implicitly is the

Gaussian Copula. It has the advantage of being easy to simulate and its corre-
lation parameters happen to have a nice interpretation in the Firm Asset Value
approach. That is effectively what is used, for example, in the CreditMetrics
model (see Gupton et al. 1997). Other approaches are also possible: we can
assume alternatively that individual obligor defaults are driven by the so-called
“Shock models”, where common market factors trigger the joint defaults of
multiple credits simultaneously. The copula function that originates from this
model is known as the Marshall-Olkin copula function.

2.3.2 Dependence Concepts

As we have seen previously, linear correlation (also known as Pearson’s cor-
relation) is not sufficient to quantify the dependence between two random
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variables. The tool that one should use to specify a well-posed dependence
structure is the copula function, and as such, any metric, which better captures
the random variables distributional dependence features, ought to be based
on the copula function itself. Some of the most popular copula-based (de-
pendence) metrics include: Kendall’s Tau, Spearman’s rho and the (upper) tail
dependence coefficient. We review each one in turn.

Linear Correlation. The linear correlation (or Pearson’s correlation) coef-
ficient is defined as follows.

Definition 25 (Linear Correlation) Let X and Y be two random variables with
non-zero finite variances, then the linear correlation coefficient ρ (X, Y ) is

ρ (X, Y ) = Cov(X, Y )√
Var (X)

√
Var (Y )

,

where Cov(X, Y ) = E [X · Y ] − E [X ]E [Y ] is the covariance of X and Y ;
Var(X) and Var(Y ) are the variances of X and Y .

Pearson’s correlation is a measure of linear dependence. In particular, if we
have perfect linear dependence between the random variables X and Y , i.e.,
when Y = aX + b, for some fixed coefficients a �= 0 and b, then the linear
correlation is exactly equal to one: |ρ (X, Y )| = 1; and the converse result is
also true.

Linear correlation is a natural dependencemeasure for elliptical distributions
(such as themultivariate normal or themultivariate t-distribution). For all other
distributions, the linear correlation coefficient can be verymisleading. Even for
elliptical distributions, it only really makes sense for the Gaussian distribution;
for t-distributions, where we have heavier tails, the behaviour in the tail is
parametrized differently and cannot be captured through the simplistic linear
correlation coefficient.

Concordance. Let (X, Y ) and
(
X̃ , Ỹ

)
be two pairs of random variables

with identical marginal distributions.
The probability of concordance between (X, Y ) and

(
X̃ , Ỹ

)
is given by

P
((
X − X̃

) (
Y − Ỹ

)
> 0
)
;

similarly, the probability of discordance is

P
((
X − X̃

) (
Y − Ỹ

)
< 0
)
.

The difference between the probabilities of concordance and discordance
can be expressed in terms of the copula functions (see Nelsen 1999).
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Theorem 26 (Difference of Concordance and Discordance Probabilities) Let
(X, Y ) and

(
X̃ , Ỹ

)
be two pairs of continuous random variables, with common

marginal distributions (F,G), and bivariate joint distributions H and H̃ re-
spectively. Their bivariate copula functions are C and C̃ respectively: H (x, y) =
C (F (x) ,G (y)), H̃ (x, y) = C̃ (F (x) ,G (y)). Let Q denote the difference
between the probabilities of concordance and discordance

Q = P
((
X − X̃

) (
Y − Ỹ

)
> 0
)− P

((
X − X̃

) (
Y − Ỹ

)
< 0
)
,

then, we have

Q = Q
(
C, C̃

) = 4
∫ ∫

[0,1]2
C̃ (u, v) dC (u, v) − 1.

This result will be used next to derive the expressions of the Kendall tau and
Spearman rho coefficients.

Kendall’s Tau and Spearman’s Rho. The most important copula-based
concordance measures, to be used with distributions other than the normal
one, are: Kendall’s tau and Spearman’s rho.

Definition 27 (Kendall’s Tau) For two random variables X and Y , Kendall’s
tau is defined as

τ (X, Y ) = P
((
X − X̃

) (
Y − Ỹ

)
> 0
)− P

((
X − X̃

) (
Y − Ỹ

)
< 0
)
,

where
(
X̃ , Ỹ

)
is an independent copy of the pair (X, Y ).

This can be written in terms of the copula function.

Theorem 28 Let X and Y be two continuous random variables with copula C ,
then their Kendall’s tau coefficient is given by

τ (X, Y ) = Q (C,C) = 4
∫ ∫

[0,1]2
C (u, v) dC (u, v) − 1.

Within the same class of concordance measures, we have the Spearman’s rho
coefficient, which is defined as follows.

Definition 29 (Spearman’s Rho) For two random variables X andY, Spearman’s
rho is defined as

ρS (X, Y ) = 3P
((
X − X̃

) (
Y − Y ′) > 0

)− P
((
X − X̃

) (
Y − Y ′) < 0

)
,
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where
(
X̃ , Ỹ

)
and

(
X ′, Y ′) are independent copies of the pair (X, Y ).

Expressed in terms of the copula function, we have the following result.

Theorem 30 Let X and Y be two continuous random variables with copula C ,
then their Spearman’s rho coefficient is given by

ρS (X, Y ) = Q (C, 
) = 12
∫ ∫

[0,1]2
uvdC (u, v) − 3 = 12

∫ ∫

[0,1]2
C (u, v) dudv − 3.

If X and Y have marginal distributions F and G, we can use their uniform
variates U = F (X) and V = G (Y ), and can re-write the Spearman rho
measure as

ρS (X, Y ) = 12
∫ ∫

[0,1]2
uvdC (u, v) − 3 = 12E [UV ] − 3

= E [UV ] − 1
4

1
12

= Cov(X, Y )√
Var (X)

√
Var (Y )

= ρ (F (X) ,G (Y )) .

Tail Dependence. Another important concept, especially for heavy-tailed
distributions, is the tail dependence coefficient: it quantifies the amount of
joint dependence in the tail of the distribution.

Definition 31 (Tail Dependence) Let X and Y be two continuous random
variables with marginal distributions F and G. The upper tail dependence
coefficient is defined as

lim
u↑1P

(
Y > G−1 (u)

∣∣∣X > F−1 (u)
)

= λU ,

if the limit λU ∈ [0, 1] exists.
If λU > 0, we say that X and Y are asymptotically dependent in the upper

tail.
If λU = 0, we say that X and Y are asymptotically independent in the upper

tail.
We can re-write the upper tail conditional probability

P
(
Y > G−1 (u)

∣∣X > F−1 (u)
)
as

1 − P

(
X ≤ F−1 (u)

)
− P

(
Y ≤ G−1 (u)

)
+ P

(
X ≤ F−1 (u) , Y ≤ G−1 (u)

)

1 − P
(
X ≤ F−1 (u)

) ,

which gives an alternative definition in terms of the copula function.
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Definition 32 (Copula Tail Dependence) The upper tail dependence λU for a
bivariate copula function C is defined as

lim
u↑1

1 − 2u + C (u, u)

1 − u
= λU ,

if the limit λU exists.
Similarly, we can also define a lower tail dependence measure in a symmetric

way

lim
u↓0

C (u, u)

u
= λL .

2.3.3 Elliptical Copulas

Elliptical distributions are typically the most commonly used multivariate dis-
tribution functions. They enjoy many of the multivariate normal distribution
tractability features; and they can also be simulated very easily.

Elliptical copulas are the copula functions generated from elliptical distri-
butions.

Definition 33 (Elliptical Distributions) Let X be an n-dimensional random
variable; Fix a real vector μ ∈ R

n , a positive definite, symmetric matrix n × n
matrix�, and a real function φ (.).We say thatX has an elliptical distribution,
X ∼En (μ,�, φ), with parameters μ, �, φ if the characteristic function of
the vector X−μ is a function of the quadratic form tT�t:

ϕX−μ (t) = E

[
exp
(
tT (X − μ)

)]
= φ

(
tT�t

)
.

The most important elliptical copulas are the Gaussian copula and the t-
copula.

Gaussian Copula. The copula of the n-variate normal distribution with
Gaussian correlation matrix R is given by

CG
R (u) = �n

R

(
�−1 (u1) , . . . , �−1 (un)

)
,

where �n
R denotes the n-dimensional multivariate standard normal distribu-

tion with correlation matrix R; �−1 denotes the inverse of the univariate
standard normal distribution. In the bivariate case, we can write the Gaussian
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copula function as

CG
R (u1, u2) =

∫ �−1(u1)

−∞

∫ �−1(u2)

−∞
1

2π
√
1 − R2

12

exp

⎛
⎝− x2 − 2R12xy + y2

2
(
1 − R2

12

)
⎞
⎠ dxdy.

Student t-copula. If the vector X can be represented as

X d= μ +
√

ν√
S
Z,

where μ ∈ R
n , and the random variables S ∼ χ2

ν and Z ∼ Nn (0, �) are
independent, then X has an n-dimensional multivariate tν-distribution, with
mean μ (for ν > 1) and covariance matrix ν

ν−2� (for ν > 2).
The (Student) t-copula is then defined as

Ct
ν,R (u) = tnν,R

(
t−1
ν (u1) , . . . , t−1

ν (un)
)
,

where Ri j = �i j√
�i i� j j

, is tnν,R is the n-dimensional multivariate t-distribution

with parameters (ν, R), and is the inverse of the univariate tν-distribution
with ν degrees of freedom. In the bivariate case, the expression of the copula
function is

Ct
ν,R (u1, u2) =

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞
1

2π
√
1 − R2

12

⎛
⎝1 + x2 − 2R12xy + y2

ν
(
1 − R2

12

)
⎞
⎠

− ν+2
2

dxdy.

2.3.4 Archimedean Copulas

An interesting class of copula functions used in finance insurance applications
to model asymmetric losses and gains is the Archimedean copula. Unlike their
elliptical counterparts, which are derived from a given family of multivariate
distributions, Archimedean copulas are instead constructed, by hand, from
a set of generator functions, thereby creating a rich variety of dependence
structures. In addition to the asymmetric properties offered by these copulas,
they also enjoy easy-to-implement closed-form expressions, which is very useful
in numerical applications.

We start with the definition of a pseudo-inverse function needed to construct
the Archimedean copula.
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Definition 34 (Pseudo-inverse) Let ϕ : [0, 1] → [0,∞] be a continuous,
strictly decreasing function, with ϕ (1) = 0. The pseudo-inverse of ϕ is the
function ϕ[−1] : [0,∞] → [0, 1] defined as

ϕ[−1] (x) =
{

ϕ−1 (x) , for 0 ≤ x ≤ ϕ (0) ,
0, if ϕ (0) < x ≤ ∞.

We can now give a general definition of bivariate Archimedean copulas (see
Nelsen 1999).

Definition 35 (Bivariate Archimedean Copula) Let ϕ : [0, 1] → [0,∞] be a
continuous, strictly decreasing function, with ϕ (1) = 0, and let ϕ[−1] be its
pseudo-inverse. Define the bivariate function C : [0, 1]2 → [0, 1] by

C (u, v) = ϕ[−1] (ϕ (u) + ϕ (v)) .

Then, the function C is a copula if and only if is ϕ convex. Copulas of this
form are called Archimedean copulas; and ϕ is the generator of the copula. If
ϕ (0) = ∞, we say that ϕ is a strict generator and C is a strict Archimedean
copula.

We give a few popular examples.

Example 36 (Gumbel Copula). Let ϕ (x) = (− ln x)θ , where θ ≥ 1. Its
copula function Cθ (u, v) is called a Gumbel copula:

Cθ (u, v) = exp

(
− ((− ln u)θ + (− ln v)θ

) 1
θ

)
.

Example 37 (Clayton Copula). Let ϕ (x) = x−θ−1
θ

, where θ ∈ [−1,∞),
θ �= 0. Its copula function Cθ (u, v) is called a Clayton copula:

Cθ (u, v) = max

((
u−θ + v−θ − 1

)− 1
θ , 0

)
.

Example 38 (Frank Copula). Let ϕ (x) = − ln e−θx−1
e−θ−1

, where θ ∈ R, θ �= 0.
Its copula function Cθ (u, v) is called a Frank copula:

Cθ (u, v) = −1

θ
ln

(
1 +

(
e−θu − 1

) (
e−θv − 1

)

e−θ − 1

)
.
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To generalize to an n-dimensional Archimedean copula, we can construct,
by extension, the function Cn as

Cn (u) = ϕ[−1] (ϕ (u1) + · · · + ϕ (un)) ,

but we also need to show that it is indeed a copula function under some
conditions.

First, we define what it is meant by a completely monotone function: we
say that a function g (x) is completely monotone on the interval I , if it has
derivatives of all orders, which alternate in sign, i.e., it satisfies

(−1)k
dk

dxk
g (x) ≥ 0,

for all k ≥ 0, and all x in the interior of the interval I .
We can now state the following theorem from Kimberling (1974), which

gives necessary and sufficient conditions for the function Cn to be a copula.

Theorem 39 (Kimberling 1974) Let ϕ : [0, 1] → [0,∞] be a continuous,
strictly decreasing function, with ϕ (1) = ∞ and ϕ (1) = 0, and let ϕ[−1] be its
pseudo-inverse. The n-dimensional function Cn : [0, 1]n → [0, 1] defined by

Cn (u) = ϕ[−1] (ϕ (u1) + · · · + ϕ (un)) ,

is a n-copula, for all n ≥ 2, if and only if ϕ−1 is completely monotone on [0,∞).
Some n-dimensional examples are given below.

Example 40 (Gumbel Copula). Let ϕi (t) = (− ln t)θi , with θi ≥ 1, for 1 ≤
i ≤ n, be the generators of the Gumbel copula. The n-dimensional extension
of the Gumbel family of copula functions is an n-copula if θ1 ≤ · · · ≤ θn .

Example 41 The Archimedean copula family defined with generators ϕi (t) =(
t−1 − 1

)θi , for θi ≥ 1, is indeed an n-copula if θ1 ≤ · · · ≤ θn .

2.3.5 Marshall-Olkin Copulas

Next, we discuss the general class ofMarshall-Olkin copula functions.We start
with the bivariate case, then generalize to the n-dimensional case.

Suppose we have a system with two components subject to some indepen-
dent shocks, which can trigger the failure of one of the components separately
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or both components at the same time.Thus, we have three independent Poisson
processes with intensities (λ1, λ2, λ12) respectively. Their corresponding first
jump times are (θ1, θ2, θ12): they are independent exponentially-distributed
variables with parameters (λ1, λ2, λ12) respectively. We denote by τ1 and τ2
the failure time of the two components.
The joint survival probability function of the two components, H (T1, T2),

is given by

H (T1, T2) = P (τ1 > T1, τ2 > T2) = P (θ1 > T1) P (θ2 > T2) P (θ12 > max (T1, T2))

= exp (−λ1T1) exp (−λ2T2) exp (−λ12 max (T1, T2)) .

Similarly, the univariate survival probabilities, F1 (T1) and F2 (T2), are

F1 (T1) = P (τ1 > T1) = P (θ1 > T1) P (θ12 > max (T1, T2)) = exp (−λ1T1 − λ12 max (T1, T2)) ,

F2 (T2) = P (τ2 > T2) = P (θ2 > T2) P (θ12 > max (T1, T2)) = exp (−λ2T2 − λ12 max (T1, T2)) .

Define the ratios α1 = λ12
λ1+λ12

and α2 = λ12
λ2+λ12

, and substitute the univariate
(survival) marginals into the bivariate (survival) distribution function

H (T1, T2) = F1 (T1) F2 (T2)min
((

F1 (T1)
)−α1

,
(
F2 (T2)

)−α2
)
.

This leads to the family of Marshall-Olkin copula functions

Cα1,α2 (u1, u2) = min
(
u1−α1
1 u2, u1u

1−α2
2

)
.

This copula function has both an absolutely continuous part

ACα1,α2
= ∂2

∂u1∂u2
Cα1,α2 (u1, u2) =

{
u−α1
1 , if uα1

1 > uα2
2 ,

u−α2
2 , if uα1

1 > uα2
2 ;

and a singularity on the region defined by the curve
{
uα1
1 = uα2

2

}
, where we

have a simultaneous failure of both components at some time θ12.
Kendall’s tau, Spearman’s rho and upper tail dependence, for this copula

function, can be computed easily and are given by

τ
(
Cα1,α2

) = α1α2

α1 + α2 − α1α2
,

ρS
(
Cα1,α2

) = 3α1α2

2α1 + 2α2 − α1α2
,

λU = min (α1, α2) .
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For the n-dimensional generalization, we have n components, and 2n − 1
common shocks, which can trigger the failure of one or more components in
the system. We denote by 
n the set of all non-empty subset of {1, . . . , n}.
We have 2n − 1 independent Poisson shocks Nπ , π ∈ 
n , with intensities
λπ , which can trigger the failure of the components in the subset π only. Their
first jump times are θπ . The failure time of each individual component is then
given by: τi = min {θπ : i ∈ π}.
The

(
τi , τ j

)
-bivariate marginal of the Marshall-Olkin copula is also a

Marshall-Olkin copula with parameters

αi =
∑

π :i∈π, j∈π λπ∑
π :i∈π λπ

and α j =
∑

π :i∈π, j∈π λπ∑
π : j∈π λπ

;

the Kendall tau and Spearman rho coefficients are given by

τ
(
Cαi ,α j

) = αiα j

αi + α j − αiα j
and ρS

(
Cαi ,α j

) = 3αiα j

2αi + 2α j − αiα j
.

The n-dimensional Marshall-Olkin copula function provides a very rich
joint dependence structure, with enoughflexibility to capture the granular joint
probabilities of every combination of sub-defaults; but with 2n combinations
to deal with, the problem explodes rapidly as the number of names grows. We
shall see later in Chap. 7 that we can build a parsimonious parametrization of
the model, which gives the desired default clustering properties that we need
while maintaining numerical tractability.
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