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Abstract. Given an n-dimensional convex body by a membership ora-
cle in general, it is known that any polynomial-time deterministic algo-
rithm cannot approximate its volume within ratio (n/ log n)n. There is
a substantial progress on randomized approximation such as Markov
chain Monte Carlo for a high-dimensional volume, and for many #P-
hard problems, while only a few #P-hard problems are known to yield
deterministic approximation. Motivated by the problem of deterministi-
cally approximating the volume of a V-polytope, that is a polytope with
a small number of vertices and (possibly) exponentially many facets, this
paper investigates the problem of computing the volume of a “knapsack
dual polytope,” which is known to be #P-hard due to Khachiyan (1989).
We reduce an approximate volume of a knapsack dual polytope to that
of the intersection of two cross-polytopes, and give FPTASs for those
volume computations. Interestingly, computing the volume of the inter-
section of two cross-polytopes (i.e., L1-balls) is #P-hard, unlike the cases
of L∞-balls or L2-balls.

Keywords: #P-hard · Deterministic approximation · FPTAS ·
V-polytope · Intersection of L1-balls

1 Introduction

1.1 Approximation of a High Dimensional Volume: Randomized
vs. Deterministic

A high dimensional volume is hard to compute, even for approximation.
When an n-dimensional convex body is given by a membership oracle, no
polynomial-time deterministic algorithm can approximate its volume within
ratio (n/ log n)n [3,6,10,21]. The impossibility comes from the fact that the
volume of an n-dimensional L∞-ball (i.e., hypercube) is exponentially large to
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the volume of its inscribed L2-ball or L1-ball, despite that the L2-ball (L1-ball as
well) is convex and touches each facet of the L∞-ball (see e.g., [23]). Lovász said
in [21] for a convex body K that “If K is a polytope, then there may be much
better ways to compute Vol(K).” Unfortunately, computing an exact volume is
often #P-hard, even for a relatively simple polytope. For instance, computing
the volume of a knapsack polytope K(b) = {x ∈ [0, 1]n|∑n

i=1 aixi ≤ b}, where
a1, . . . , an ∈ Z≥0 is the “item sizes” and b ∈ Z≥0 is the “knapsack capacity”, is
a well-known #P-hard problem [8].

The difficulty caused by the exponential gap between L∞-ball and L1-
ball also does harm a simple Monte Carlo algorithm. Then, the Markov chain
Monte Carlo (MCMC) method achieves a great success for approximating the
high dimensional volume. Dyer, Frieze and Kannan [9] gave the first fully
polynomial-time randomized approximation scheme (FPRAS) for the volume
computation of a general convex body1. They employed a grid-walk, which is
efficiently implemented with a membership oracle, and showed it is rapidly mix-
ing, then they gave an FPRAS runs in O∗(n23) time where O∗ ignores poly(log n)
and 1/ε factors. After several improvements, Lovász and Vempala [22] improved
the time complexity to O∗(n4) in which they employ hit-and-run walk, and
recently Cousins and Vempala [5] gave an O∗(n3)-time algorithm. Many ran-
domized techniques, including MCMC, also have been developed for designing
FPRAS for #P-hard problems.

In contrast, the development of deterministic approximations for #P-hard
problems is a current challenge, and not many results seem to be known. A
remarkable progress is the correlation decay argument due to Weitz [25]; he
designed a fully polynomial time approximation scheme (FPTAS ) for count-
ing independent sets in graphs whose maximum degree is at most 5. A similar
technique is independently presented by Bandyopadhyay and Gamarnik [2], and
there are several recent developments on the technique, e.g., [4,11,17,18,20]. For
counting knapsack solutions2, Gopalan, Klivans and Meka [12], and Štefankovič,
Vempala and Vigoda [24] gave deterministic approximation algorithms based on
dynamic programming (see also [13]), in a similar way to the simple random
sampling algorithm by Dyer [7]. (He showed a deterministic dynamic program-
ming and a random sampling algorithm in [7].) Modifying dynamic programming
in [24], Li and Shi [19] gave an FPTAS that can approximate the volume of a
knapsack polytope. Their algorithm runs in O((n3/ε2)poly log b) time where b is
the knapsack capacity. Motivated by a different approach, Ando and Kijima [1]
gave another FPTAS for the volume of a knapsack polytope.

1 Precisely, they are concerned with a “well-rounded” convex body, after an affine
transformation of a general finite convex body.

2 Given a ∈ Z
n
>0 and b ∈ Z>0, the problem is to compute |{x ∈ {0, 1}n |∑n

i=1 aixi ≤
b}|. Remark that it is computed in polynomial time when all the inputs ai (i =
1, . . . , n) and b are bounded by poly(n), using a version of the standard dynamic
programming for knapsack problem (see e.g., [7,13]). It should be worth noting that
[12,24] needed special techniques, different from ones for optimization problems, to
design FPTASs for the counting problem.
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Their scheme is based on a classical approximate convolution and runs in
O(n3/ε) time. The running time is independent of the size of items and the
knapsack capacity if we assume that the basic arithmetic operations can be
performed in constant time.

1.2 H-polytope and V-polytope

An H-polyhedron is an intersection of finitely many closed half-spaces in R
n.

An H-polytope is a bounded H-polyhedron. A V-polytope is a convex hull of
a finite point set in R

n [23]. From the view point of computational complexity,
a major difference between an H-polytope and a V-polytope is the measure of
their ‘input size.’ An H-polytope given by linear inequalities defining half-spaces
may have vertices exponentially many to the number of the inequalities, e.g., an
n-dimensional hypercube is given by 2n linear inequalities as an H-polytope,
and has 2n vertices. In contrast, a V-polytope given by a point set may have
facets exponentially many to the number of vertices, e.g., an n-dimensional cross-
polytope (that is an L1-ball, in fact) is given by a set of 2n points as a V-polytope,
and it has 2n facets.

There are many interesting properties between H-polytope and V-
polytope [23]. A membership query is polynomial time for both H-polytope
and V-polytope. It is still unknown about the complexity of a query if a given
pair of V-polytope and H-polytope are identical. Linear programming (LP) on a
V-polytope is trivially polynomial time since it is sufficient to check the objective
value of all vertices and hence LP is usually concerned with an H-polytope.

1.3 Volume of V-polytope

Motivated by a hardness of the volume computation of a V-polytope,
Khachiyan [15] is concerned with the following V-polytope: Suppose a vector
a = (a1, . . . , an) ∈ Z

n
≥0 is given. Then let

Pa
def= conv {±e1, . . . ,±en,a} (1)

where e1, . . . ,en are the standard basis vectors in R
n. This paper calls Pa knap-

sack dual polytope3. Khachiyan [15] showed that computing Vol(Pa) is #P -hard4.
The hardness is given by a Cook reduction from counting set partitions, of which
the decision version is a celebrated weakly NP-hard problem. It is not known if

3 See [23] for the duality of polytopes. In fact, Pa itself is not the dual of a knapsack
polytope in a canonical form, but it is obtained by an affine transformation from
a dual of knapsack polytope under some assumptions. Khachiyan [16] says that
computing Vol(Pa) ‘is “polar” to determining the volume of the intersection of a
cube and a halfspace.’ .

4 If all ai (i = 1, . . . , n) are bounded by poly(n), it is computed in polynomial time,
so did the counting knapsack solutions. See also footnote 1 for counting knapsack
solutions.
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we can have an efficient approximation algorithm for computing Vol(Pa) imme-
diately from the approximation algorithm in e.g., [1] by exploiting that Pa is a
dual of a knapsack polytope.

1.4 Contribution

Motivated by a development of techniques for deterministic approximation of
the volumes of V-polytopes, this paper investigates the knapsack dual polytope
Pa given by (1). The main goal of the paper is to establish the following theorem.

Theorem 1. For any ε (0 < ε < 1), there exists a deterministic algorithm that
outputs a value V̂ satisfying (1 − ε)Vol(Pa) ≤ V̂ ≤ (1 + ε)Vol(Pa) in O(n10ε−6)
time.

As far as we know, this is the first result on designing an FPTAS for computing
the volume of a V-polytope which is known to be #P-hard. We also discuss some
topics related to the volume of V-polytopes appearing in the proof process. Let
us briefly explain the outline of the paper.

Technique/Organization. The first step for Theorem 1 is a transformation of the
approximation problem to another one: An approximate volume of Pa is reduced
to the volume of a union of geometric sequence of cross-polytopes (Sect. 3.1),
and then it is reduced to the volume of the intersection of two cross-polytopes
(Sect. 3.2). We remark that the former reduction is just for approximation, and
is useless for proving #P-hardness. A technical point of this step is that the
latter reduction is based on a subtraction—if you are familiar with an approxi-
mation, you may worry that a subtraction may destroy an approximation ratio5.
It requires careful tuning of a parameter (β in Sect. 3) which plays conflicting
functions in Sects. 3.1 and 3.2: the larger β, the better approximation in Sect. 3.1,
while the smaller β, the better in Sect. 3.2. Then, Sect. 3.3 claims by giving an
appropriate β that if we have an FPTAS for the volume of an intersection of
two cross-polytopes then we have an FPTAS of Vol(Pa).

Section 4 shows an FPTAS for the volume of the intersection of two cross-
polytopes (i.e., L1-balls). The scheme is based on a modified version of the
technique developed in [1], which is based on a classical approximate convolution.
At a glance, the volume of the intersection of two-balls may seem easy. It is
true for two L∞-balls (i.e., axis-aligned hypercubes), or L2-balls (i.e., Euclidean
balls). However, we show in Sect. 5 that computing the volume of the intersection
of cross-polytopes is #P-hard. Intuitively, this interesting fact may come from
the fact that the V-polytope, meaning that an n-dimensional cross-polytope, has
2n facets. In Sect. 6, we extend the technique in Sect. 4 to the intersection of any
constant number of cross-polytopes.
5 Suppose you know that x is approximately 49 within 1% error. Then, you know

that x+50 is approximately 99 within 1% error. However, it is difficult to say 50−x
is approximately 1. Even when additionally you know that x does not exceed 50,
50−x may be 2, 1, 0.1 or smaller than 0.001, meaning that the approximation ratio
is unbounded.
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2 Preliminaries

This section presents some notation. Let conv(S) denote the convex hull of S ⊆
R

n, where S is not restricted to a finite point set. A cross-polytope C(c, r) of
radius r ∈ R>0 centered at c ∈ R

n is given by

C(c, r) def= conv{c ± rei i = 1, . . . , n}
where e1, . . . ,en are the standard basis vectors in R

n. Clearly, C(c, r) has 2n
vertices. In fact, C(c, r) is an L1-ball in R

n described by

C(c, r) = {x ∈ R
n | ‖x − c‖1 ≤ r} = {x ∈ R

n | 〈x − c,σ〉 ≤ r (∀σ ∈ {−1, 1}n)}
where ‖u‖1 =

∑n
i=1 |ui| for u = (u1, . . . , un) ∈ R

n and 〈u,v〉 =
∑n

i=1 uivi for
u,v ∈ R

n. Note that C(c, r) has 2n facets. It is not difficult to see that the
volume of a cross-polytope in n-dimension is Vol(C(c, r)) = 2n

n! r
n for any r ≥ 0

and c ∈ R
n, where Vol(S) for S ⊆ R

n denotes the (n-dimensional) volume of S.

3 FPTAS for Knapsack Dual Polytope

This section reduces an approximation of Vol(Pa) to that of the intersection of
two cross-polytopes. In Sect. 4, we will give an FPTAS for the volume of the
intersection of two cross-polytopes, accordingly we obtain Theorem 1.

3.1 Reduction to a Geometric Series of Cross-Polytopes

Let β be a parameter6 satisfying 0 < β < 1, and let Q0, Q1, Q2, . . . be a sequence
of cross-polytopes defined by

Qk
def= C((1 − βk)a, βk) (2)

for k = 0, 1, 2, . . .. Remark that Q0 = C(0, 1), Q1 = C((1 − β)a, β), Q∞ =
C(a, 0) = {a}. The goal of Sect. 3.1 is to establish the following. Here 1 ± ε is
the final relative approximation ratio that we aim to achieve.

Lemma 1. Let ε satisfy 0 < ε < 1. If 1 − β ≤ c1ε

n‖a‖1 where 0 < c1 < 1, then

(1 − c1ε)Vol(Pa) ≤ Vol (
⋃∞

k=0 Qk) ≤ Vol(Pa).

Figure 1 illustrates the approximation of Pa by this infinite sequence of cross-
polytopes. The second inequality in Lemma 1 is relatively easy by the following
lemma. 7

Lemma 2.
⋃∞

k=0 Qk ⊆ Pa

To prove the first inequality in Lemma 1, we need the following lemmas.

Lemma 3.
⋃∞

k=0 conv(Qk ∪ Qk+1) ∪ {a} ⊇ Pa

Lemma 4. If 1 − β ≤ c1ε

n‖a‖1 , then Vol (
⋃∞

k=0 Qk) ≥ (1 − c1ε)Vol(Pa).

6 We will set β = 1 − ε

2n‖a‖1
, later.

7 Most of the proofs cannot be included due to the space limit.
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Fig. 1. Approximating Pa by an infinite sequence of cross-polytopes.

3.2 Reduction to the Intersection of Two Cross-Polytopes

We here claim the following.

Lemma 5. Vol (
⋃∞

k=0 Qk) = 1
1−βn

(
2n

n! − Vol(Q1 ∩ Q0)
)

The first step of the proof is the following recursive formula.

Lemma 6.
⋃m

k=0 Qk =
(⋃̇m−1

k=0 Qk \ Qk+1

)
∪̇ Qm where A ∪̇ B denotes the dis-

joint union of A and B, meaning that A ∪̇ B = A ∪ B and A ∩ B = ∅.
The second step is the following lemma.

Lemma 7. Vol(Qk \ Qk+1) = βnkVol(Q0 \ Q1).

By using Lemmas 6 and 7, we can prove Lemma 5 as follows.

Proof (Proof of Lemma 5).

Vol

( ∞⋃

k=0

Qk

)

= Vol
((⋃̇∞

k=0
Qk \ Qk+1

)

∪̇Q∞

)

=
∞∑

k=0

Vol(Qk \ Qk+1) + Vol(Q∞) =
∞∑

k=0

βnkVol(Q0 \ Q1)

=
1

1 − βn
Vol(Q0 \ Q1) =

1
1 − βn

(
2n

n!
− Vol(Q1 ∩ Q0)

)

��
A reader who are familiar with approximation may worry about the subtrac-

tion 2n

n! − Vol(Q0 ∩ Q1) in Lemma 5. We claim the following.

Lemma 8. If 1−β ≥ c2ε

n‖a‖1 and 0 < c2ε < 1, then Vol(Q0 ∩Q1) ≤ 1
1 + c2ε

2n

2n

n! .

Intuitively, Lemma 8 implies that 2n

n! − Vol(Q0 ∩ Q1) is large enough, and an
approximation of Vol(Q0 ∩Q1) provides a good approximation of Vol(

⋃∞
k=0 Qk),

and hence Vol(Pa).
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3.3 Approximation Algorithm and Analysis

Based on Lemma 1 in Sect. 3.1 and Lemma 5 in Sect. 3.2, we give an FPTAS for
Vol(Pa) where we assume an algorithm to approximate Vol(Q0 ∩ Q1).

Algorithm 1 ( (1 ± ε)-approximation (0 < ε ≤ 1/2))
Input: a ∈ Z

n
+;

1. Set parameter β := 1 − ε

2n‖a‖1 ;

2. Approximate I
def= Vol(C(0, 1) ∩ C((1 − β)a, β)) by Z such that

I ≤ Z ≤
(
1 + ε2

4n

)
I;

3. Output V̂ = 1+ε
1−βn

(
2n

n! − Z
)
.

Lemma 9. The output V̂ of Algorithm 1 satisfies

(1 − ε) Vol(Pa) ≤ V̂ ≤ (1 + ε)Vol(Pa).

4 The Volume of the Intersection of Two Cross-Polytopes

This section gives an FPTAS for the volume of the intersection of two cross-
polytopes in the n-dimensional space. Without loss of generality8, we are con-
cerned with Vol(C(0, 1) ∩ C(c, r)) for c ≥ 0 and r (0 < r ≤ 1). This section
establishes the following.

Theorem 2. For any δ (0 < δ < 1), there exists a deterministic algorithm which
outputs a value Z satisfying Vol(C(0, 1) ∩ C(c, r)) ≤ Z ≤ (1 + δ)Vol(C(0, 1) ∩
C(c, r)) for any input c ≥ 0 and r (0 < r ≤ 1) satisfying ‖c‖1 ≤ r, and runs in
O(n7δ−3) time.

The assumption that ‖c‖1 ≤ r implies both centers 0 and c are contained in
the intersection C(0, 1)∩C(c, r). Note that the assumption does not harm to our
main goal Theorem 1 (recall Algorithm 1 in Sect. 3.3). We show in Sect. 5 that
Computing Vol(C(0, 1) ∩ C(c, r)) remains #P -hard even on the assumption.

4.1 Preliminaries: Convolution for the Volume

As a preliminary step, Sect. 4.1 gives a convolution which provides Vol(C(0, 1)∩
C(c, r)). Let Ψ0 : R2 → R be given by Ψ0(u, v) = 1 if u ≥ 0 and v ≥ 0, otherwise
Ψ0(u, v) = 0. Inductively, we define Ψi : R2 → R for i = 1, 2, . . . , n by

Ψi(u, v) def=
∫ 1

−1

Ψi−1(u − |s|, v − |s − ci|)ds (3)

for u, v ∈ R. We remark that Ψi(u, v) = 0 holds if u ≤ 0 or v ≤ 0, for any
i = 1, 2, . . . , n by the definition.

8 Remark that Vol(C(c, r) ∩ C(c′, r′)) = rnVol
(
C(0, 1) ∩ C

(
(c−c′)+

r
, r′

r

))
holds for

any c, c′ ∈ R
n and r, r′ ∈ R>0, where (c − c′)+ = (|c1 − c′

1|, |c2 − c′
2|, . . . , |cn − c′

n|).
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Lemma 10. Ψn(1, r) = Vol(C(0, 1) ∩ C(c, r))

To prove Lemma 10, it might be helpful to introduce a probability space.
Let X = (X1, . . . , Xn) be a uniform random variable over [−1, 1]n, i.e., Xi

(i = 1, . . . , n) are mutually independent. Then, Pr [X ∈ C(0, 1) ∩ C(c, r)] =
Vol(C(0,1)∩C(c,r))

Vol([−1,1]n) = 1
2n Vol(C(0, 1) ∩ C(c, r)) holds.

Lemma 11. For any u, v ∈ R and any i = 1, 2, . . . , n,

1
2i

Ψi(u, v) = Pr

⎡

⎣

⎛

⎝
i∑

j=1

|Xj | ≤ u

⎞

⎠ ∧
⎛

⎝
i∑

j=1

|Xj − cj | ≤ v

⎞

⎠

⎤

⎦ .

Now, Lemma 10 is easy from Lemma 11.

4.2 Idea for Approximation

Our FPTAS is based on an approximation of Ψi(u, v). Let G0(u, v) = Ψ0(u, v)
for any u, v ∈ R, i.e., G0(u, v) = 1 if u ≥ 0 and v ≥ 0, otherwise G0(u, v) = 0.
Inductively assuming Gi−1(u, v), we define

Gi(u, v) def=
∫ 1

−1

Gi−1(u − |s|, v − |s − ci|)ds (4)

for u, v ∈ R, for convenience. Then, let Gi(u, v) be a staircase approximation of
Gi(u, v), given by

Gi(u, v) def=

⎧
⎪⎨

⎪⎩

Gi

(
1
M k, r

M �
)

(
if 1

M (k − 1) < u ≤ 1
M k (k = 1, 2, . . .), and

r
M (� − 1) < v ≤ r

M � (� = 1, 2, . . .).

)

0 (otherwise)
(5)

for any u, v ∈ R. Thus, we remark that

Gi(u, v) = Gi

(
1
M �Mu�, r

M

⌈
M
r v

⌉)
(6)

holds for any u, v ∈ R, by the definition. Section 4.3 will show that Gi(u, v)
approximates Ψi(u, v) well.

In the rest of Sect. 4.2, we briefly comment on the computation of Gi. First,
remark that (4) implies that Gi(u, v) is computed only from Gi−1(u′, v′) for
u′ ≤ u and v′ ≤ v, i.e., we do not need to know Gi−1(u′, v′) for u′ > u or v′ > v.
Second, remark (6) implies that Gi(u, v) for u ≤ 1 and v ≤ r takes (at most)
(M + 1)2 different values. Precisely, let

Γ
def=

{
1
M

(k, r�) | k = 0, 1, 2, . . . ,M, � = 0, 1, 2, . . . ,M

}
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then Gi(u, v) for (u, v) ∈ Γ provides all possible values of Gi(u, v) for u ≤ 1 and
v ≤ r, since (6).

Then, we explain how to compute Gi(u, v) for (u, v) ∈ Γ from Gi−1. For an
arbitrary (u, v) ∈ Γ , let

S(u) def=
{
s ∈ [−1, 1] | u − |s| = 1

M k (k = 0, 1, 2, . . . ,M)
}

=
{
s ∈ [−1, 1] | s = ±(u − 1

M k) (k = 0, 1, 2, . . . ,M)
}

,

let

Si(v) def=
{
s ∈ [−1, 1] | v − |s − ci| = r

M � (� = 0, 1, 2, . . . ,M)
}

=
{
s ∈ [−1, 1] | s = ci ± (v − r

M �) (� = 0, 1, 2, . . . ,M)
}

,

and let Ti(u, v) def= S(u) ∪ Si(v) ∪ {−1, 0, ci, 1}. Suppose t0, t1, . . . , tm be an
ordering of all elements of Ti(u, v) such that ti ≤ ti+1 for any i = 0, 1, . . . ,m,
where m = |Ti(u, v)|. Then, we can compute Gi(u, v) for any (u, v) ∈ Γ by
Gi(u, v) = Gi(u, v), which can be transformed into

Gi(u, v) =
∫ 1

−1

Gi−1(u − |s|, v − |s − ci|)ds

=
m−1∑

j=0

(tj+1 − tj)Gi−1

(
1
M �M(u − |tj+1|)�, r

M

⌈
M
r (v − |tj+1 − ci|)

⌉)
(7)

where we remark again that the terms of (7) consist of Gi−1(u, v) for (u, v) ∈ Γ .

4.3 Algorithm and Analysis

Based on the arguments in Sect. 4.2, our algorithm is described as follows.

Algorithm 2 (for (1 + δ)-approximation (0 < δ ≤ 1))
Input: c ∈ Q

n
≥0, r ∈ Q (0 ≤ r ≤ 1);

1. Set M := �4n2δ−1�;
2. Set G0(u, v) := 1 for (u, v) ∈ Γ , otherwise G0(u, v) := 0;
3. For i := 1, . . . , n,
4. For (u, v) ∈ Γ ,
5. Compute Gi(u, v) from Gi−1 by (7);
6. Output Gn(1, r).

Lemma 12. The running time of Algorithm 2 is O(n7δ−3).

Theorem 2 is immediate from Lemma 12 and the following Lemma 13.

Lemma 13. Ψn(1, r) ≤ Gn(1, r) ≤ (1 + δ)Ψn(1, r).

The proof sketch of Lemma 13 is the following.
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Proof (Proof Sketch of Lemma 13). The first inequality is immediate. Then, we
show the latter inequality. We can prove that

Ψn(1, r)
Ψn(1 + n

M , r(1 + n
M ))

≥
(

M

M + n

)2n

=
(

1
1 + n

M

)2n

≥
(
1 − n

M

)2n

≥
(

1 − δ

4n

)2n

≥ 1 − 2n
δ

4n
= 1 − δ

2
.

Then,
Ψn(1+

n
M ,r(1+

n
M ))

Ψn(1,r) ≤ 1
1− δ

2
≤ 1 + δ for any δ ≤ 1, and we obtain the

claim. ��

5 Hardness of the Volume of the Intersection of Two
Cross-Polytopes

This section establishes the following.

Theorem 3. Given a vector c ∈ Z
n
>0 and integers r1, r2 ∈ Z>0, computing the

volume of C(0, r1)∩C(c, r2) is #P-hard, even when each cross-polytopes contains
the center of the other one, i.e., 0 ∈ C(c, r2) and c ∈ C(0, r1).

The proof of Theorem 3 is a reduction of counting set partitions, which is a
well-known #P-hard problem. To be precise, we reduce the following problem,
which is a version of counting set partition (for the #P-hardness of counting set
partition, see e.g., [14]).

Problem 1 (#LARGE SET). Given an integer vector a ∈ Z
n
>0 such that ‖a‖1 is

even, meaning that ‖a‖1/2 is an integer, the problem is to compute

|{σ ∈ {−1, 1}n | 〈σ,a〉 > 0}| . (8)

Note that |{σ ∈ {−1, 1}n | 〈σ,a〉 = 0}| =
∣
∣
∣
{

S ⊆ {1, . . . , n} | ∑i∈S ai = ‖a‖1
2

}∣
∣
∣

holds: if σ ∈ {−1, 1}n satisfies 〈σ,a〉 = 0, then let S ⊆ {1, . . . , n} be the set
of indices of σi = 1 then

∑
i∈S ai = ‖a‖1/2 holds. Using the following simple

observation, we see that Problem 1 is equivalent to counting set partitions.

Observation 1. For any σ ∈ {−1, 1}n, 〈σ,a〉 > 0 if and only if 〈−σ,a〉 < 0.

By Observation 1, we see that |{σ ∈ {−1, 1}n | 〈σ,a〉 = 0}| is equal to 2n −
2 |{σ ∈ {−1, 1}n | 〈σ,a〉 > 0}|.

In the following, let a ∈ Z
n
>0 be an instance of Problem 1. Roughly speaking,

our proof of Theorem 3 claims that the volume of (C(δa, 1)∩C(0, 1+ε))\C(0, 1)
is proportional to the answer of #LARGE SET when 0 < ε < δ � 1/‖a‖1. If
we could compute the volume of the intersection of two cross-polytopes exactly,
then we obtain Vol((C(δa, 1) ∩ C(0, 1 + ε)) \ C(0, 1)) = Vol(C(δa, 1) ∩ C(0, 1 +
ε)) − Vol(C(δa, 1) ∩ C(0, 1)), which would solve #LARGE SET.
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6 Intersection of a Constant Number of Cross-Polytopes

Let pi ∈ R
n, ri ∈ R≥0 and C(pi, ri) for i = 1, . . . , k, where C(p, r) is a cross-

polytope (L1-ball) with center p ∈ R
n and radius r ∈ R≥0. Then, we are to

compute the following polytope given by S(Π, r) =
⋂k

i=1 C(pi, ri), where Π is
an n × k matrix Π = (p1, . . . ,pk) and r = (r1, . . . , rk). For the analysis, we
assume that p1, . . . ,pk are internal points of S(Π, r).

Theorem 4. There is an algorithm that outputs an approximation Z of
Vol(S(Π, r)) in O(kk+2n2k+3/δk+1) time satisfying Vol(S(Π, r)) ≤ Z ≤
(1 + δ)Vol(S(Π, r)).

7 Conclusion

Motivated by the problem of deterministically approximating the volume of a
V-polytope, this paper gave an FPTAS for the volume of the knapsack dual
polytope Vol(Pa). In the process, we showed that computing the volume of the
intersection of L1-balls is #P-hard, and gave an FPTAS. As we remarked, the
volume of the intersection of two Lq-balls are easy for q = 2,∞. The complexity
of the volume of the intersection of two Lq-balls for other q > 0 is interesting.
The problem seems difficult even for approximation in the case of q ∈ (0, 1),
since Lq-ball is no longer convex. Our FPTAS for the intersection of two cross-
polytopes assumes that each cross-polytope contains the center of the other one.
It is open if an FPTAS exists without the assumption.

Acknowledgments. This work is partly supported by Grant-in-Aid for Scientific
Research on Innovative Areas MEXT Japan “Exploring the Limits of Computation
(ELC)” (No. 24106008, 24106005) and by JST PRESTO Grant Number JPMJPR16E4,
Japan.

References

1. Ando, E., Kijima, S.: An FPTAS for the volume computation of 0–1 knapsack poly-
topes based on approximate convolution. Algorithmica 76(4), 1245–1263 (2016)

2. Bandyopadhyay, A., Gamarnik, D.: Counting without sampling: asymptotics of
the log-partition function for certain statistical physics models. Random Struct.
Algorithms 33, 452–479 (2008)
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