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Chapter 2
CREB at the Crossroads of Activity- 
Dependent Regulation of Nervous System 
Development and Function

Yesser H. Belgacem and Laura N. Borodinsky

Abstract The central nervous system is a highly plastic network of cells that con-
stantly adjusts its functions to environmental stimuli throughout life. Transcription- 
dependent mechanisms modify neuronal properties to respond to external stimuli 
regulating numerous developmental functions, such as cell survival and differentia-
tion, and physiological functions such as learning, memory, and circadian rhythmic-
ity. The discovery and cloning of the cyclic adenosine monophosphate (cAMP) 
responsive element binding protein (CREB) constituted a big step toward decipher-
ing the molecular mechanisms underlying neuronal plasticity. CREB was first dis-
covered in learning and memory studies as a crucial mediator of activity-dependent 
changes in target gene expression that in turn impose long-lasting modifications of 
the structure and function of neurons. In this chapter, we review the molecular and 
signaling mechanisms of neural activity-dependent recruitment of CREB and its 
cofactors. We discuss the crosstalk between signaling pathways that imprints diverse 
spatiotemporal patterns of CREB activation allowing for the integration of a wide 
variety of stimuli.
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Abbreviations

AC Adenylate cyclase
ATF1 Activating transcription factor 1
BDNF Brain-derived neurotrophic factor
b-zip Basic leucine zipper domain
CaMKII/IV Ca2+/Calmodulin dependent Kinase II and IV
cAMP 3′,5′-cyclic adenosine monophosphate
CaRE Ca2+ Responsive Element
CBP CREB Binding Protein
Cn Calcineurin
CRE cAMP-responsive elements
CREB cAMP responsive element binding protein
CRTC cAMP-regulated transcriptional coactivator
CREM cAMP responsive element modulator ERK
DARPP Dopamine and cAMP–regulated phosphoprotein
ERK Extracellular signal-regulated kinase
IP3 Inositol 1,4,5-trisphosphate
KID Kinase Inducible Domain
LTP Long-term potentiation
MAPK Mitogen-activated protein kinase
MSK-I Mitogen/Stress Activated Kinase I
NGF Nerve growth factor
NMDA N-Methyl-d-Aspartate
NMDAR N-Methyl-d-Aspartate ionotropic glutamate receptor
PDGF Platelet-derived growth factor
PI3K Phosphatidylinositol 3-kinase
PIP3 (3,4,5)-trisphosphate
PKA cAMP-dependent Protein Kinase
PKB Protein Kinase B
PKC Protein Kinase C
pp90RSK pp90 ribosomal S6 kinase
Shh Sonic hedgehog
SIK1 Salt-inducible kinase 1
TORC Transducer of regulated CREB
TRPC Transient receptor potential canonical channel
VGCC Voltage-gated Ca2+ channel

 Introduction

During development of the nervous system, numerous cascades of transcription fac-
tors are the means of a genetic program governing a wide variety of critical events 
such as neural cell proliferation, migration, differentiation and synapse formation. 
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As mentioned in Chap. 1, until recently, the dogma has been that genetic programs 
determine the fate of different neural cells. However, emerging studies provided 
by multiple research groups indicate that the cell environment allows for plasticity 
in the process of neural cell specification. This phenomenon often involves activity- 
dependent mechanisms that add a homeostatic dimension to nervous system 
development. Once development concludes, control of gene expression by activity-
dependent mechanisms becomes a predominant feature of neurons. Interestingly, 
these mechanisms resemble those occurring during development.

In this chapter, we review prominent examples of activity-induced molecular 
mechanisms modulating gene expression in the developing and adult central 
nervous system. We particularly focus on 3′,5′-cyclic adenosine monophosphate 
(cAMP) responsive element binding protein (CREB) as the paradigmatic model of 
an activity-dependent transcription factor that participates in diverse processes of 
the developing and mature nervous system by regulating expression of crucial 
target genes.

We present some of the classical intracellular signaling cascades that transduce 
extracellular activity-dependent stimuli to CREB activation and the crosstalk among 
them. We also present the more recently discovered mechanisms controlling CREB 
expression and activity.

 Molecular Structure of CREB

The CREB family of transcription factors is composed of several members, including 
CREB itself, the activating transcription factor 1 (ATF1), and the cAMP responsive 
element modulator CREM, among others (Altarejos and Montminy 2011; Flavell 
and Greenberg 2008; Mayr and Montminy 2001). There is a high level of redun-
dancy between members of the CREB family that act as homo- or heterodimers to 
bind to cAMP-responsive elements (CRE) found in the regulatory regions of target 
genes (Altarejos and Montminy 2011; Flavell and Greenberg 2008; Mayr and 
Montminy 2001).

CREB is mainly activated or inactivated through phosphorylation or dephos-
phorylation of key serine amino acids, a mechanism characterized by a quick 
response rate leading to transcription of target genes, peaking 30 min to 1 h after 
stimulation (Michael et al. 2000). Several kinases have been shown to phosophor-
ylate Ser133, such as cAMP-dependent Protein Kinase (PKA), Protein Kinase C 
(PKC), Akt, MAPKAP Kinase 2, Ca2+/Calmodulin dependent Kinase II and IV 
(CaMKII/IV) and Mitogen/Stress Activated Kinase I (MSK-I) (Mayr and 
Montminy 2001). Ser133 is dephosphorylated by such phosphatases as serine/
threonine phosphatases PP-1 (Bito et  al. 1996; Alberts et  al. 1994) and PP-2A 
(Wadzinski et al. 1993).

Once phosphorylated at Ser 133, CREB is able to recruit transcription coactiva-
tors such as the histone acetyltransferase CREB Binding Protein (CBP) and its para-
logue p300; it thus upregulates transcription of target genes (Parker et  al. 1996; 
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Mayr and Montminy 2001). While Ser133 phosphorylation is the main way of 
activating CREB, other phosphorylation sites are important for the regulation of 
CREB activity (Kornhauser et  al. 2002; Sakamoto et  al. 2011) such as Ser142, 
which depending on the context, can activate or inhibit CREB’s promotion of 
transcription (Wu and McMurray 2001; Gau et al. 2002).

CREB1 is a 43 kD soluble protein, which is constitutively expressed and is 
mainly found in the nucleus. It is a member of the basic leucine zipper domain 
(b-zip) transcription factor family (Mayr and Montminy 2001) (Fig.  2.1). The 
C-terminal b-zip domain is important for CREB homodimerization and for binding 
to the specific DNA palindromic consensus sequences of CRE “TGACGTCA” 
(Montminy and Bilezikjian 1987). However, CREB is capable, though with a five- 
fold reduced affinity, to bind on half CREs “CGTCA” (Fink et al. 1988; Craig et al. 
2001). Phosphorylation of CREB does not seem to affect binding on CRE (Mayr 
and Montminy 2001). Methylation of the CpG present in CRE (Iguchi-Ariga and 
Schaffner 1989; Zhang et al. 2005) as well as the sequence of DNA surrounding 
CRE are important regulators of CREB binding on CREs (Connor and Marriott 
2000; Mayr and Montminy 2001).

Upon binding to DNA and activation by phosphorylation on the Kinase Inducible 
Domain (KID), CREB recruits cofactors and members of the transcriptional 
machinery. The KID domain is surrounded by two glutamine-rich domains (Q1 and 
Q2) (Fig. 2.1) that are constitutive activators of transcription (Felinski et al. 2001; 
Brindle et al. 1993; Quinn 1993) and interact with several co-activators and mem-
bers of the transcriptional machinery (Felinski and Quinn 1999).

While more than 750,000 potential binding sites for CREB have been identified 
in the human genome (Zhang et al. 2005), CREB stimulation leads to the expression 
of specific set of genes (Impey et  al. 2004; Zhang et  al. 2005), highlighting the 
importance of the regulation of CREB’s action. This is done at multiple levels rang-
ing from the type of ligand and signaling mechanism triggering CREB phosphory-
lation/dephosphorylation, the cell type and subcellular localization of the transducing 
machinery, the presence of cofactors, and the methylation level of target DNA 
sequences.

Fig. 2.1 CREB structure and function. Main domains of CREB are represented by colored boxes. 
The C-terminal basic leucine zipper domain (b-zip) is important for CREB homodimerization and 
for binding to the CRE element on target gene enhancer regions. The KID domain contains several 
serines (S) that, depending on their phosphorylation status, control the interaction between CREB 
and cofactors such as CBP. Two glutamine-rich domains (Q1 and Q2) are constitutive activators of 
transcription and interact with several co-activators and members of the transcriptional machinery. 
Arrows indicate the binding potential of KID and bZIP domains
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 Mechanisms of CREB Activation

Researchers in the field of learning and memory have been major contributors to the 
discovery of how electrical activity is translated into gene expression. Stimulation 
of sensory neurons activates specific neuronal networks through synaptic connec-
tions that, under specific conditions, are reinforced and stabilized in time (for 
reviews see Kandel et al. 2014; Flavell and Greenberg 2008).

 The cAMP/PKA Axis

The first described signaling pathway involving CREB as playing a role in central 
nervous system physiology was discovered while studying learning and memory. 
The studies done on the mollusk Aplysia californica identified a model for simple 
forms of procedural memories such as habituation, dishabituation and sensitization 
(Kandel et al. 2014). Aplysia has a simple reflex called the gill withdrawal reflex: if 
the siphon of the animal is mechanically stimulated, sensory neurons innervating 
motor neurons trigger the withdrawal of the gill. Sensitization occurs if, before 
stimulating the siphon, an electric shock is applied to the tail of the animal, resulting 
in a stronger depolarization of motor neurons during the gill withdrawal reflex. Eric 
Kandel’s group discovered that this sensitization is due to a release of serotonin by 
modulatory neurons, resulting in synthesis of cAMP in sensory neurons (Brunelli 
et al. 1976) thus activating PKA (Castellucci et al. 1980). Other groups also identi-
fied the cAMP signaling axis as a component in various forms of learning and mem-
ory in Drosophila melanogaster (Dudai et al. 1976; Byers et al. 1981). Interestingly, 
when a single shock is applied to the Aplysia’s tail, the sensitization does not last 
more than few hours. However, if multiple shocks are delivered, the sensitization 
lasts several days, suggesting that a long-term memory has been acquired. This long 
term facilitation is dependent on mRNA and protein synthesis (Montarolo et  al. 
1986). The mechanism linking cAMP and activity to gene transcription in sensory 
neurons during long-term facilitation remained elusive until Montminy and col-
leagues’ breakthrough while investigating the mechanisms by which cAMP regu-
lates somatostatin gene transcription. By analyzing the regulatory sequences of the 
somatostatin gene, they found a short palindromic sequence (5′-TGACGTCA-3) 
responsive to cAMP (CRE) that is highly conserved in the regulatory regions of 
other genes for which transcription is controlled by cAMP (Montminy et al. 1986). 
Shortly after, Marc Montminy and Louise Bilezikjian identified a nuclear protein 
that binds to CRE and named it CREB (Montminy and Bilezikjian 1987). Using an 
elegant approach, Dash and colleagues (Dash et al. 1990) injected oligonucleotides 
coding for CRE and abolished long-term but not short-term facilitation in Aplysia 
sensory neurons, suggesting a prominent role for CREB in transducing activity into 
gene transcription necessary for long-term memory. In summary, the serotonin recep-
tor, a G-protein-coupled membrane receptor recruits an adenylate cyclase (AC), 
leading to production of cAMP and activation of PKA that phosphorylates CREB 
on the KID domain, particularly at the Ser133, activating it (Figs. 2.1 and 2.2).
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 Calcium as Second Messenger

Ca2+ is a very important second messenger implicated in the transduction of numer-
ous signaling pathways and playing a wide variety of roles in the central nervous 
system development and physiology (Bito and Takemoto-Kimura 2003; Flavell and 
Greenberg 2008; Ghosh et al. 1994; Carlezon et al. 2005; Lonze and Ginty 2002; 
Mayr and Montminy 2001; Sakamoto et  al. 2011; Rosenberg and Spitzer 2011; 
Spitzer 2006). Increases in cytosolic Ca2+ concentration occur through a wide vari-
ety of mechanisms (Ghosh et al. 1994; Kornhauser et al. 1990; Averaimo and Nicol 
2014; Brini et  al. 2014), including voltage-gated Ca2+ channels (VGCCs) upon 
depolarization, and ligand-gated Ca2+ channels such as the N-Methyl-d-Aspartate 
(NMDA) ionotropic glutamate receptor (NMDAR), which upon glutamate binding 
allows Ca2+ influx (Fig. 2.2). Transient increases in Ca2+ are followed by recruitment 
of different signaling pathways, which will modify the activation status of CREB.

 Ca2+/CaMK Axis

Long-term synaptic plasticity is triggered by depolarization of the postsynaptic 
membrane and, consequently, transcription of immediate early genes (Flavell and 
Greenberg 2008; Kandel et  al. 2014; Mayr and Montminy 2001; Shaywitz and 
Greenberg 1999). The Greenberg and Kandel groups simultaneously discovered the 
mechanisms controlling the immediate early gene c-fos expression by membrane 

Fig. 2.2 Classical signaling pathways that lead to CREB activation. Membrane depolarization 
(voltage-gated Ca2+ channels, VGCC) and glutamate receptors (NMDAR) lead to cytosolic and 
nuclear Ca2+ elevations recruiting the CaMK or Ras/MAPK signaling pathways. G-protein-coupled 
receptors (GPCR) activate the cAMP/PKA axis, while Receptor Tyrosine Kinases (RTKs) gener-
ally recruit the Ras/MAPK or Akt signaling cascades
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depolarization (Sheng et al. 1990; Dash et al. 1991; Sheng et al. 1991). Sheng and 
colleagues first found that in the rat pheochromocytoma cell line PC12, c-fos 
responds to potassium chloride-induced depolarization through a cis-regulating 
element present in the c-fos promoter (Sheng et  al. 1990). This element, called 
CaRE (for Ca2+ Responsive Element), is responsive to depolarization and Ca2+ 
influx through voltage-gated Ca2+ channels. CaRE (-TGACGTTT-) is very similar 
to CRE (-TGACGTCA-) as it is recognized by cAMP/PKA-activated CREB (Sheng 
et al. 1990). In PC12 cells, depolarization and Ca2+ influx do not activate the cAMP/
PKA axis, suggesting that another kinase transduces the depolarizing signal to 
CREB (Sheng et al. 1990). Instead, CREB activation is mediated by CaMKI and II 
(Sheng et al. 1991) (Fig. 2.2). This depolarization/Ca2+/CaMK axis is independent 
but synergistic to the effects of the cAMP/PKA axis on CREB activation and subse-
quent c-fos transcription (Sheng et al. 1990, 1991).

 Ca2+/MAPK Axis

Another source of Ca2+ influx is the set of ligand-controlled Ca2+ channel receptors 
including the NMDAR. Ginty and collaborators (Ginty et al. 1993) discovered that 
these receptors are capable of activating CREB while studying the molecular basis 
of circadian rhythms in the suprachiasmatic neurons of the hypothalamus. The 
pacemaker cells in this structure regulate the circadian rhythms of the whole organ-
ism. Rhythms can be shifted by inputs of environmental information such as light: 
during the subjective night, a pulse of light activates retinal ganglionic cells that 
project axons to the suprachiasmatic nuclei establishing glutamatergic synapses. 
Interestingly, this signal triggers expression of immediate early genes such as c-fos, 
similarly to what is observed in long-term memory. Taking this analogy in consid-
eration, Ginty et al. (1993) investigated the possibility that CREB transduces the 
signal of light pulses to the transcription of the early gene c-fos. They first isolated 
an antibody recognizing specifically phosphorylated CREB at the Ser133 and then, 
found, in vivo, that a pulse of light during the subjective night induces rapid CREB 
phosphorylation at Ser133 (Ginty et al. 1993). Trying to understand the mechanism 
responsible for the light-induced CREB phosphorylation, they found that in vitro, a 
7-min NMDA incubation or depolarization induces a very strong phosphorylation 
of CREB at Ser133. Furthermore, the effect observed with NMDA but not with 
depolarization was prevented by APV, a potent NMDAR antagonist (Ginty et al. 
1993). These results suggest that NMDARs are capable of activating CREB through 
a mechanism other than depolarization. It has been shown that an increase in cyto-
solic Ca2+ concentration is responsible for the recruitment of the extracellular sig-
nal–related protein kinase/mitogen-activated protein kinase (ERK/MAPK) pathway 
and subsequent CREB phosphorylation (Impey et  al. 1998; Rosen et  al. 1994). 
Obrietan et al. (1998) later showed that CREB activation by NMDAR in the supra-
chiasmatic nucleus, is, at least partially, mediated through the Ras/ERK/MAPK sig-
naling pathway (Obrietan et al. 1998) (Fig. 2.2).
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 Receptor Tyrosine Kinases

 Ras /MAPK

Neurotrophins and their tyrosine kinase receptors play important roles in the central 
nervous system development and homeostasis. Nerve growth factor (NGF) is a mem-
ber of this family that induces expression of immediate early genes, particularly c-fos. 
Greenberg’s group, using PC12 cells, investigated how NGF activates c-fos transcrip-
tion (Ginty et al. 1994). They ruled out the implication of cAMP/PKA and Ca2+/CamK 
axes. Instead, by using an inducible dominant-negative mutant of Ras, they identified 
a 105 kD CREB kinase (Ras-dependent p105 kinase) under the control of Ras that 
transduces the NGF-dependent phosphorylation of CREB on Ser 133 (Ginty et al. 
1994) (Fig. 2.2). Xing et al. (1996) later identified the Ras- dependent p105 kinase as 
RSK2 (Xing et al. 1996), a member of the pp90 ribosomal S6 kinase (pp90RSK) fam-
ily. Numerous extracellular signals mediated via receptor tyrosine kinases trigger 
MAP kinases and subsequently CREB kinases, such as MAPKAP-K2/3, MSK1 or 
MSK 1–3 (Shaywitz and Greenberg 1999; Flavell and Greenberg 2008; Carlezon 
et al. 2005; Lonze and Ginty 2002; Mayr and Montminy 2001; Sakamoto et al. 2011).

 PI3K/Akt-PKB

The serine/threonine protein kinase Akt is mainly known for its anti-apoptotic and 
cell survival roles following growth factor stimulation. Upon binding to their recep-
tors, growth factors trigger a signaling cascade involving the phosphatidylinositol 
3-kinase (PI3K), which synthesizes the second messenger phosphatidylinositol 
(3,4,5)-trisphosphate (PIP3) at the plasma membrane. Akt (also called Protein 
kinase B (PKB)) is consequently recruited and docked to the membrane, where it is 
activated. Akt is then translocated to the cytosol and then to the nucleus to phos-
phorylate its targets (see Manning and Cantley 2007 for review). Du and Montminy 
demonstrated in 293 T cells that serum induces CREB phosphorylation at Ser 133 
via recruitment of the PI3K/Akt axis, thus promoting cell survival (Du and 
Montminy 1998). Later, the PI3K/Akt/CREB signaling was also implicated in cell 
survival in the central nervous system (Chong et al. 2005) (Fig. 2.2).

 Crosstalk Between CREB-Activating Pathways

Since the identification of the classical signaling cascades described previously in 
this chapter, numerous studies in multiple models discovered that combinations of 
these pathways work together, whether in parallel, synergistically or in an antago-
nistic manner to modulate CREB phosphorylation and activation.

CREB-induced immediate early genes are important for long-term potentiation 
(LTP), and both cAMP and Ca2+ second messengers play an important role in 
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activating CREB (Impey et al. 1996). Moreover, the CRE element present in imme-
diate early gene promoters is responsive to both Ca2+ and cAMP in a synergistic 
manner (Deutsch et al. 1987; Sheng et al. 1990; Impey et al. 1994). Late phase LTP 
(L-LTP) is a good example of the dual action of Ca2+ and cAMP (Impey et al. 1996). 
Indeed, Ca2+ induces phosphorylation of CREB at Ser133, an event necessary but 
not sufficient to promote sustained transcription of target genes (Brindle et al. 1995; 
Wagner et al. 2000; Ravnskjaer et al. 2007; Ginty et al. 1994; Impey et al. 1996). 
Impey and colleagues discovered that in PC12 cells and hippocampal neurons, Ca2+ 
influx recruits the ERK signaling cascade leading to CREB phosphorylation at 
Ser133. Remarkably, cAMP-induced PKA activation is mandatory for translocation 
of activated ERK in the nucleus where it promotes CREB phosphorylation. These 
studies demonstrate crosstalk between the cAMP-PKA and Ca2+-MAPK signaling 
pathways in neurons important for L-LTP (Impey et al. 1998).

Another example of crosstalk between signaling pathways has come from a 
study on brain-derived neurotrophic factor (BDNF) signaling in neurons. In cul-
tured cortical neurons and hippocampal slices, BDNF induces release of Ca2+ 
from intracellular stores and subsequent activation of CaMKIV.  In parallel, 
BDNF triggers the Ras/ERK/RSK pathway. Both the Ca2+/CaMKIV and Ras/
ERK signaling lead to CREB phosphorylation at Ser133 (Finkbeiner et al. 1997). 
The study suggests that the two signaling pathways may induce different spatio-
temporal dynamics for CREB activation given the distinct kinetics and localiza-
tion of the Ras pathway and the IP3-induced mobilization of intracellular Ca2+ 
(Finkbeiner et al. 1997).

Platelet-derived growth factor (PDGF) promotes a neuroprotective action against 
toxicity induced by HIV-1 in primary midbrain neurons and in vivo on dopaminer-
gic neurons of the substantia nigra, also by a crosstalk between pathways  converging 
in CREB. PDGF activates the PI3K/Akt and Ca2+/ERK signaling through IP3-
mediated intracellular Ca2+ release and Ca2+ influx through transient receptor poten-
tial canonical (TRPC) channels leading to CREB phosphorylation (Yao et al. 2009). 
Whether both pathways are additive in CREB activation remains unclear.

Another example of signaling crosstalk converging on CREB activation comes 
from our recent study on the Sonic hedgehog (Shh) pathway in the developing 
Xenopus laevis spinal cord (Belgacem and Borodinsky 2015). Shh stimulation of 
embryonic spinal neurons elicits a non-canonical, Ca2+ spike-dependent pathway 
that regulates neurotransmitter specification (Belgacem and Borodinsky 2011). Shh 
activation of its coreceptor Smoothened, recruits a phospholipase C, inducing 
inositol 1,4,5-trisphosphate (IP3) oscillations in the primary cilium of embryonic 
spinal neurons and enhancing Ca2+ spike activity that relies on both IP3 receptor 
(IP3R)-regulated intracellular Ca2+ stores and Ca2+ influx through voltage-gated 
Ca2+ channels and TRPC1 (Belgacem and Borodinsky 2011) (Fig. 2.3). This Ca2+ 
spike-dependent, non-canonical Shh pathway results in PKA activation, which acti-
vates CREB that, in turn, represses gli1 transcription and contributes to the switch 
off of the Shh canonical, Gli transcription factor-mediated pathway during spinal 
cord development (Belgacem and Borodinsky 2015) (Fig. 2.3).
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 Activation of CREB Cofactors by Activity Dependent 
Signaling Pathways: Consequences for CREB Function

CREB phosphorylation on key amino acids is a crucial step in its activation and 
recruitment of cofactors allowing for specific gene transcription. Activity-dependent 
signaling controls all the steps from CREB phosphorylation to recruitment and acti-
vation of the cofactors. In this section, we will focus particularly on two important 
CREB cofactors: CBP and TORC/CRTC1.

Fig. 2.3 CREB contributes to the Shh-calcium signaling axis-dependent switch off of the canoni-
cal Shh pathway in the embryonic spinal cord. In embryonic spinal neurons, Smo-dependent Shh 
signaling activates the synthesis of IP3 second messenger at the primary cilium. IP3 transients 
trigger the release of intracellular Ca2+ from intracellular stores that, in conjunction with Ca2+ 
influx through voltage-gated Ca2+ channels (VGCC) and transient receptor potential canonical 
(TRPC) channels lead to activation of Ca2+-sensitive adenylate cyclase (AC) and an increase in 
cAMP levels. In turn, this leads to PKA-dependent CREB phosphorylation at serine 133. CREB 
represses expression of the canonical Shh transcription factor Gli1
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 CBP

The most studied site of phosphorylation by serine/threonine kinases is the Ser133 
that controls the binding of CREB to CBP/p300 (Gonzalez et al. 1989; Gonzalez and 
Montminy 1989; Altarejos and Montminy 2011; Parker et al. 1996). However, it has 
been observed that growth factor and stress pathways, while promoting CREB phos-
phorylation at Ser133, do not promote gene transcription as efficiently as the cAMP-
induced Ser133 phosphorylation does (Mayr and Montminy 2001; Hardingham 
et al. 2001; Chawla et al. 1998; Altarejos and Montminy 2011; Brindle et al. 1995; 
Ravnskjaer et al. 2007; Bito et al. 1996; Mayr et al. 2001). This difference could be 
due to subcellular events such as the presence of nuclear Ca2+ waves as observed in 
hippocampal neurons (Hardingham et al. 2001) or the activation of other factors that 
could act as positive or negative regulators and that are preferentially activated by 
Ras or cAMP (discussed in (Mayr and Montminy 2001)). For instance, Chawla et al. 
(1998) in mouse pituitary cell line AtT20 show that CBP is activated by nuclear Ca2+, 
CaMKIV and cAMP (Chawla et al. 1998) (Fig. 2.4). Receptor tyrosine kinase-medi-
ated growth factors and stress pathways that do not elevate intracellular Ca2+ and 
cAMP might then fail to efficiently recruit CBP and, consequently, prevent the phos-
phorylated CREB from promoting gene transcription.

Activity-dependent signaling can negatively or positively regulate CREB 
activity by recruiting CaMKII or CaMKIV, respectively (Matthews et al. 1994). 
Sun et  al. (1994) investigated the mechanisms responsible for this difference. 
They demonstrated, in vitro in GH3 pituitary tumor cells using mutagenesis stud-
ies and phosphopeptide mapping analysis, that, while both CaMKII and IV phos-
phorylate CREB at Ser133, CaMKII also phosphorylates Ser142 (Fig. 2.1) (Sun 
et al. 1994). Additionally, they showed that Ser 142 has an inhibitory effect on 
CREB-induced gene transcription. Wu and McMurray (2001) later showed in 
human neuroblastoma cells (SK-N-MC) and African green monkey kidney cells 
(CV-1) that phosphorylation of Ser142 by CaMKII prevents CREB dimerization 
and binding to CBP (Wu and McMurray 2001), explaining its negative effect on 
CREB transcriptional capability (Sun et al. 1994). These results have been con-
firmed in  vivo (Flavell and Greenberg 2008; Carlezon et  al. 2005; Lonze and 
Ginty 2002; Mayr and Montminy 2001; Sakamoto et al. 2011), highlighting the 
importance of CREB phosphorylation status, as well as the fact that Ca2+ can be a 
positive or a negative regulator of CREB activity depending on the subtype of 
CaMK recruited in the cell.

Although in general Ser142 phosphorylation inhibits CREB-dependent gene 
transcription, Kornhauser and colleagues showed that in rat cortical neurons in vitro 
and in vivo, Ca2+ influx through VGCCs or NMDAR triggers CREB triple phos-
phorylation at Ser133, 142 and 143, promoting CREB transcriptional action 
(Kornhauser et al. 2002). Strikingly, this triple phosphorylation disrupts CBP bind-
ing on CREB, suggesting that CBP is not always necessary to transduce CREB- 
dependent signaling.

2 CREB at the Crossroads of Activity-Dependent Regulation of Nervous System…
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 TORC/CRTC1

Another important CREB coactivator called cAMP-regulated transcriptional coacti-
vator (CRTC) or transducer of regulated CREB (TORC) was discovered simultane-
ously by two groups (Iourgenko et al. 2003; Conkright et al. 2003). Three genes 
code for this evolutionarily conserved cofactor: CRTC1–3, with CRTC1 as the 
prevalent isoform found in the brain. Contrary to CBP, CRTC binds to the bZIP 
domain of CREB (Altarejos and Montminy 2011; Xue et al. 2015). Under basal 
conditions, TORC1 phosphorylated at Ser 151 is maintained in the cytosol by 
14–3-3 proteins (Screaton et  al. 2004). Upon Ca2+ influx in the cell, calcineurin 
dephosphorylates TORC and, thus, allows its translocation to the nucleus, where it 

Fig. 2.4 Model of activity-dependent recruitment of CREB co-activators. Binding of cofactors to 
CREB and DNA is modulated by Ca2+ and cAMP second messengers. Activity-induced signaling 
leads to increases in cAMP and Ca2+, which inhibit Salt-induced kinase 2 (SIK2) and activate 
calcineurin. This results in dephosphorylation of serine 151 (S151) on the cofactor CRTC1 and its 
translocation to the nucleus, where it promotes binding of CREB to the TFIID complex. In parallel, 
Ca2+-activated CaMKIV and cAMP lead to CBP recruitment and a reciprocal synergism between 
CBP and CRTC1
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promotes binding of CREB to the TFIID complex, enhancing CREB DNA binding 
activity independently of CREB’s phosphorylation status (Bittinger et  al. 2004; 
Screaton et al. 2004). cAMP elevation also leads to CRTC dephosphorylation and 
nuclear translocation by inhibiting the TORC2 kinase SIK2 (Screaton et al. 2004) 
(Fig. 2.4).

TORC is essential for CRE-dependent transcription of numerous genes triggered 
by Ca2+ or cAMP elevation (Altarejos and Montminy 2011; Xue et al. 2015). For 
instance, TORC plays a crucial role in long term memory: Zhou et al. (2006) showed 
that, in hippocampus, neuronal activity elicits CRTC1 translocation to the nucleus, 
leading to CRE-mediated gene expression necessary for L-LTP (Zhou et al. 2006). 
Interestingly, Kovacs et al. (2007) later showed that CRTC1 was acting as an inte-
grator of neuronal activity by detecting the coincidence of Ca2+ and cAMP increases 
in hippocampal neurons, thus leading to activation of the genetic machinery respon-
sible of L-LTP (Kovacs et al. 2007) (Fig. 2.4). These studies illustrate the role of 
signaling pathway crosstalk in CREB function via regulating its cofactors.

 CBP and TORC Interaction

CBP and TORC2 interact in an activity-dependent synergistic way. cAMP signaling 
that leads to TORC dephosphorylation and translocation to the nucleus also pro-
motes its association with CBP/p300 and subsequently increases CBP occupancy 
on promoters of target genes (Ravnskjaer et al. 2007). Interestingly, CBP/p300 has 
a reciprocal effect on TORC2 recruitment. This interaction participates in the speci-
ficity of CRE-driven gene expression by favoring cAMP-dependent signaling over 
other pathways such as the stress cascade (Ravnskjaer et al. 2007) (Fig. 2.4).

 Spatiotemporal Patterns of CREB Activation

Regulation of gene expression through CREB is fast and transitory; for instance, in 
PC12 cells cAMP-induced somatostatin expression peaks 15–30 min after stimula-
tion and goes back to baseline after 4 h (Hagiwara et al. 1992). The decay in CREB 
activity is controlled by specific serine/threonine protein phosphatases such as pro-
tein phosphatase PP1 and PP2A that dephosphorylate CREB at Ser133 (Flavell and 
Greenberg 2008). The duration of CREB activation is key for the efficiency of target 
gene expression. Bito et  al. (1996) showed in hippocampal neurons that a short 
stimulation of synaptic activity was translated into a transient CREB phosphoryla-
tion that was not sufficient to cause gene expression (Bito et al. 1996). This might 
be due to activation of CaMKIV, which phosphorylates CREB, followed by calci-
neurin (Cn) or PP2B, a Ca2+/calmodulin-dependent serine/threonine phosphatase, 
and PP1-mediated CREB dephosphorylation (Fig. 2.5a). However, when synaptic 
stimulation is prolonged, the effects of Cn/PP1 are strongly reduced, allowing for a 
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Fig. 2.5 Spatiotemporal control of CREB activation. (a) Temporal integration of activity through 
CREB. Upper panel: The duration of synaptic activity influences the duration of CREB phos-
phorylation. Short stimulation induces a low increase in cytosolic [Ca2+] and transient CREB phos-
phorylation that does not lead to expression of target genes. Longer synaptic stimulation triggers a 
large increase in cytosolic [Ca2+] and sustained CREB activation, enhancing expression of target 
genes. Lower panel: In hippocampal neurons, synaptic activity triggers a fast acting signaling that 
recruits CaMKIV and CREB phosphorylation within 10 min. This signal is then replaced by a 
slower and long lasting Ras/MAPK-dependent pathway that dominates 60 min after the initial 
stimulation, thus both fast and long-lasting CREB activation are ensured. (b) Spatial integration of 
Ca2+-mediated activity through CREB. In cortical neurons, glutamatergic synaptic activity triggers 
CREB phosphorylation through recruitment of CaMKIV leading to expression of target genes and 
cell survival. Excitotoxic levels of glutamate (Glu), also lead to recruitment of phosphatases such 
as calcineurin, with consequent CREB dephosphorylation, inactivation and cell death
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sustained activation of CREB and expression of target genes (Mayr and Montminy 
2001). Moreover, Cn can be activated and inactivated by Ca2+ and Calmodulin 
(Stemmer et  al. 1995), which might result in varied temporal patterns of CREB 
activation.

Another example of dynamic temporal control of CREB activity comes from the 
work of Wu et al. (2001), who showed in hippocampal neurons in vitro that within 
10 min of stimulation, the Ca2+-induced CaMKIV signaling phosphorylates CREB 
at Ser133. Then, the slower intracellular Ca2+-sensitive Ras/MAPK pathway follows 
and predominates after 60 min of stimulation, extending CREB phosphorylation 
and promoting gene expression (Wu et al. 2001) (Fig. 2.5a). The fast CaMKIV sig-
naling may convey acute and precise information to the nucleus, while MAPK sig-
naling might code information about the duration of the stimulation.

The expression of phosphatases is cell specific, allowing for different responses 
in CREB-mediated gene expression depending on the neuronal subtype. Liu and 
Graybiel (1996) compared the convergence of Ca2+ and cAMP signaling on CREB 
phosphorylation by activating the D1/D5 dopamine receptor (D1/D5R) and L-type 
VGCC at the same time in two populations of striatal neurons in organotypic slices 
(Liu and Graybiel 1996). The two neuronal populations differ in their expression of 
two phosphatases: while neurons present in the striosomes express the phosphatase 
dopamine and cAMP–regulated phosphoprotein (DARPP-32) and Ca2+/PP2B, 
which are induced by cAMP and Ca2+ respectively, neurons found in the striatal 
matrix do not. While both D1/D5R and L-type VGCC were able to transiently stim-
ulate CREB phosphorylation, only D1/D5R promoted sustained CREB phosphory-
lation in DARPP-32-expressing cells, while L-type VGCC did it in DARPP-32-lacking 
cells (Liu and Graybiel 1996). This is interesting because only sustained CREB 
phosphorylation leads to c-fos expression, highlighting the importance of the spa-
tiotemporal control of CREB activation. Thus, the duration of CREB phosphoryla-
tion is not only controlled by the coincidence of the synaptic stimulation, but also 
by the cell-specific presence of CREB phosphatases.

Strong activation of the NMDAR can lead to an excitotoxic cell death signal, 
while exerting a cell survival role or mediating synaptic plasticity when activated 
within the synapse. This divergent effect seems to be due, at least partially, to the 
duration of CREB phosphorylation following NMDAR activation. In cortical neu-
rons, synaptic NMDAR stimulation leads to a sustained phosphorylation of CREB 
at the Ser133 that lasts 3 h, while excitotoxic activation of NMDAR leads to a tran-
sient, shorter activation of CREB. This difference on the effects of NMDAR activa-
tion on CREB phosphorylation is due to the recruitment of Cn after excitotoxic 
activation of NMDAR and therefore CREB dephosphorylation (Lee et al. 2005). 
This effect could be, at least partially, due to the activation of extrasynaptic NMDAR 
during excitotoxic glutamatergic stimulation (Fig. 2.5b).

Dynamic control of CREB activity also occurs at the CREB coactivator level. 
For instance, in rat developing cortical neurons, CRTC1/TORC is dephosphorylated 
via calcineurin following depolarization-induced Ca2+ influx, leading to CRTC1 
nuclear translocation. This promotes CREB activation and expression of genes 
such as the salt-inducible kinase 1 (SIK1). In turn, SIK1 phosphorylates CRTC1 
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in response to persistent depolarization and therefore inactivates CRTC1 and 
CREB- driven transcription (Li et al. 2009).

Examples of spatially restricted CREB activation include the regulation of CREB 
in axons. In embryonic dorsal root ganglia cultures, CREB mRNA is translated in 
axons under the control of NGF in an activity-dependent manner; CREB is then 
retrogradely transported to the nucleus by endosomes containing the NGF receptor 
TrkA and phosphorylated in endosomes by this receptor through a MEK5-ERK5 
signaling. CREB is finally translocated in the nucleus where it promotes cell sur-
vival (Cox et al. 2008).

 Additional Regulatory Mechanisms of CREB Activation/
Recruitment

CREB can be regulated independently of phosphorylation through such mechanisms 
as ubiquitination (Comerford et  al. 2003) and glycosylation (Lamarre-Vincent and 
Hsieh-Wilson 2003), and also through activity-dependent epigenetic modifications of 
CREB mRNA. Rajasethupathy et al. (2009) showed that in Aplysia the small RNA 
miR-124 inhibits CREB translation. In turn, serotonin signaling in presynaptic sensory 
neurons relieves this negative effect enabling long-term facilitation (Rajasethupathy 
et al. 2009). Similarly, miR-134 exerts a negative effect on CREB translation and syn-
aptic plasticity (Gao et al. 2010). These studies present alternative mechanisms for 
activity-dependent regulation of CREB in the central nervous system.

 Concluding Remarks

Long-term plasticity of the central nervous system relies on a molecular machinery 
that in neurons transduces extracellular stimuli into long lasting structural and func-
tional modifications. In the context of a living organism, changes in the environment 
lead to the activation of numerous intracellular signaling cascades that need to be 
integrated to achieve the appropriate neuronal response. The crosstalk among differ-
ent signaling pathways allows for spatiotemporal integration of multiple signals 
converging at CREB and its cofactors. In addition to regulation of the level of phos-
phorylation of CREB, several other mechanisms, such as activity-dependent epi-
genetic modifications of CREB mRNA, are emerging as crucial in controlling 
CREB activity and target gene transcription. Future studies will likely reveal novel 
activity-dependent mechanisms that utilize CREB to integrate diverse stimuli that 
generate complex neuronal responses.
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