
Real-Time Contour Image Vectorization on GPU

Xiaoliang Xiong(B), Jie Feng(B), and Bingfeng Zhou

Institute of Computer Science and Technology, Peking University, Beijing, China
{jonny xiong,feng jie,cczbf}@pku.edu.cn

Abstract. In this paper, we present a novel algorithm to convert the
contour in a raster image into its vector form. Different from the state-of-
art methods, we explore the potential parallelism that exists in the prob-
lem and propose an algorithm suitable to be accelerated by the graph-
ics hardware. In our algorithm, the vectorization task is decomposed
into four steps: detecting the boundary pixels, pre-computing the con-
nectivity relationship of detected pixels, organizing detected pixels into
boundary loops and vectorizing each loop into line segments. The bound-
ary detection and connectivity pre-computing are parallelized owing to
the independence between scanlines. After a sequential boundary pixels
organizing, all loops are vectorized concurrently. With a GPU imple-
mentation, the vectorization can be accomplished in real-time. Then,
the image can be represented by the vectorized contour. This real-time
vectorization algorithm can be used on images with multiple silhouettes
and multi-view videos. We demonstrate the efficiency of our algorithm
with several applications including cartoon and document vectorization.

Keywords: Vectorization · Real-time rendering · GPU acceleration

1 Introduction

Vector image is a compact form to represent image with a set of geometry prim-
itives (like points, curves or polygons). It is independent with displaying resolu-
tion so that it can be rendered at any scale without aliasing. A raster image, in
contrast, uses a large pixel matrix to store the image information, which requires
much more space and conveys less semantics. It can be directly mapped onto dis-
play device and rendered with high efficiency, but suffers seriously from aliasing
or loss of details when the image is scaled. The advantages of vector image over
raster image, make it widely used in situations such as computer-aided design,
on the Internet and plenty of practical applications.

Shape-from-Silhouette (SFS) is a specific application which adopts vector
form as silhouette representation. It retrieves the 3D shape of the target object
from multiple silhouette images taking at different viewpoints. In SFS, silhouette
boundaries are approximated by line segments to simplify the computation and
achieve the real-time rendering performance. Thus, an efficient algorithm to
convert the silhouettes from pixels to vectors is essential. This is the motivation

c© Springer International Publishing AG 2017
J. Braz et al. (Eds.): VISIGRAPP 2016, CCIS 693, pp. 35–50, 2017.
DOI: 10.1007/978-3-319-64870-5 2

36 X. Xiong et al.

of our work. Also, it is necessary to do the raster-to-vector conversion with
high efficiency in applications like high-speed document scanning and cartoon
animation.

Existing vectorization methods mainly focus on the accuracy during the con-
version and ideally expect to approximate both the sharp and smooth features
in the raster image with less geometry primitives. Triangular mesh [17], gradient
mesh [12] and diffusion curves [10] are three commonly used geometry represen-
tatives. There are some researches adopt GPU to improve the rendering speed of
constructed vector image [14], but the efficiency of the vector image construction
is not high enough.

In contrast, we focus primarily on the silhouettes in the raster image and
explore the potential parallelism in the problem to vectorize their contours as
fast as possible. Both accuracy and efficiency are concerned to satisfy practical
applications. Inspired by the scanline algorithm in polygon filling, we first detect
the boundary pixels line by line in parallel, resulting in a set of unorganised pixels
on each line. So secondly, the relationships of these pixels are computed. We note
that only adjacent lines are directly related and each two lines can be processed
simultaneously. Thirdly, all the boundary pixels are organized into loops based
on pre-computed relationship. Fourthly, these loops which consist of boundary
pixels can be vectorized into line segments concurrently. Hence, the problem
is naturally decomposed into four steps and three steps can be parallelized.
With this decomposition, our algorithm becomes not so sensitive to the image
resolution.

Our key contribution is a novel algorithm that vectorizes the silhouettes in
a raster image with high efficiency. We make a decomposition on the problem
and take advantage of the potential parallelism to get an acceleration. We also
apply the algorithm into several practical situations.

2 Related Work

Comparing to raster images, vector images has the advantages of more com-
pact in presentation, requiring less space to store, convenient to transmit and
edit, artifact-free in display etc. Image vectorization techniques aim at doing the
raster-to-vector conversion accurately and efficiently. It includes crude vector-
ization on binary images and advanced vectorization on color images.

2.1 Image Vectorization

Crude Vectorization. Crude vectorization concerns grouping the pixels in
the raster image into raw line fragments and representing the original image
with primary geometry like skeleton and contour polygon. It is a fundamental
process in the interpretation of image elements (like curves, lines) and can be
used as preprocessing of applications like cartoon animation, topographic map
reconstruction, SFS, etc.

Crude vectorization is often divided into two classes: Thinning based meth-
ods [11] and Non-thinning based methods [3]. The former first thin the rastered

Real-Time Contour Image Vectorization on GPU 37

object into a one-pixel-wide skeleton with iterative erosion, then these pixels are
tracked into chain and approximated with line segments. The latter first extract
the contour of the image, compute the medial axis between the contour pixels
and then do the line segment approximation. Thinning based methods lose line
width information during erosion and is time consuming. These disadvantages
are compensated by non-thinning based methods that may have gaps at junc-
tions. And both of these methods are sequential and need a long process time.
[2] present a new medial axis pixel tracking strategy, which can preserve the
width information and avoid distortion at junctions.

Advanced Vectorization. Advanced vectorization approaches concentrate on
accurate approximation for all features in the raster image and take accuracy as
their first consideration. Triangle mesh based methods [17] first sample important
points in the image, then decompose this image into a set of triangles and store
the corresponding pixel color on the triangle vertices. Inside each triangle, the
color of each pixel can be recalculated through interpolation. [14] converts the
image plane into triangular patches with curved boundaries instead of simple tri-
angles and make the color distribution inside each patch more smooth. Diffusion
curve based methods [10] first detect the edges in the original image, based on
which it is converted into diffusion curve representation. Then a Poisson Equa-
tion is solved to calculate the final image. After vectorization by these methods,
image can be effectively compressed, features are maintained or enhanced in
different extent.

2.2 Image Vectorization in Applications

Cartoon Animation. In automatic cartoon animation, the artists only need
to draw the key frames and in-betweens are generated by shape matching and
interpolation. However, these techniques cannot be directly used in raster images,
but are more suitable for vector-based graphics. Thus, a vectorization process
is required to convert a raster key frame into its vector form. [18] subdivide
the cartoon character into non-overlapping triangles based on which skeleton is
extracted. Then artifacts are removed at the junction points and intersection
areas by optimizing the triangles. There are also researches [16] on converting
raster cartoon film into its vector form because the vector version is more easy
to store, transmit, edit, display and so on. They take temporal coherence into
consideration to alleviate flicker between cartoon frames.

Shape-from-Silhouette. Shape-from-Silhouette (SFS) is a method of estimat-
ing 3D shape of an object from its silhouette images. One famous SFS technique
is the visual hull [6,8]. VH is defined as the maximal shape that reproduces the
silhouettes of a 3D object from any viewpoint. It can be computed by inter-
secting the visual cones created by the viewing rays emanating from the camera
center and passing through the silhouette contours, which is originally a chain
of pixels. Most existing works adopt line segments as an approximation of the

38 X. Xiong et al.

silhouette contour to reduce large amount of redundant computation. The con-
version from silhouette contour to line segments is originally a vectorization
problem and efficient algorithm is needed to decrease time consumption in VH
pre-computing.

Complex hardware like multi-processors [8] and distributed system [7] are
adopted to do this step to guarantee the VH computation in real-time. There
are many GPU-based methods [5,13,15] to accelerate the visual hull computa-
tion, for the VH algorithm is highly parallel. Thus, it is natural to think if the
preprocessing can be parallelized, too. This is the motivation of our work and
draws our attention mainly on the parallelization of contour vectorization.

Document Image Processing. Document processing is a complex procedure
which evolves converting the text on paper or electronic documents into features
the computer can recognize. [1] present a thinning algorithm based on line sweep
operation, resulting in a representation with skeletons and intersection sets, that
provides extra features for subsequent character recognition. It is efficient in
computation comparing to pixel-based thinning algorithm [11] which outputs
skeletons only.

GPU-Acceleration in Image Vectorization. Existing GPU related work
is on the vectorized image rendering. [9] introduce a novel representation for
random-access rendering of antialiased vector graphics. It has the ability to
map vector graphics onto arbitrary surfaces, or under arbitrary deformations.
[14] develop a real-time GPU-accelerated parallel algorithm based on recursive
patch subdivision for rasterizing their vectorized results. [10] also propose a
GPU implementation for rendering their vectorized images described by diffu-
sion curves.

3 Our Algorithm

Our goal is to convert the silhouettes in an input image from raster to vector
form with high efficiency and accuracy. The input image is preprocessed and
converted into silhouette images by thresholding or background subtraction in
advance. Intuitively, the boundary pixels are detected by scanning each line in
these images. Since all scanlines are independent, the detection can be done con-
currently. The resulting pixels on each line are then organized into loops based
on their connectivity relationship with previous line, which can be precomputed
in parallel. Finally, all organized loops are vectorized into line segments inde-
pendently. Figure 1 shows the process of vectorizing a cartoon color image with
our method. In the following, we describe each step in detail. To clarify the
description, we refer boundary as unordered pixels, loop as an ordered pixel list
and contour as all loops of a silhouette.

Real-Time Contour Image Vectorization on GPU 39

Fig. 1. Vectorizing a cartoon color image with our method. (a) The input raster image.
(b) The binary silhouettes. (c) The main procedure of our algorithm: 1© parallel bound-
ary detection and 2© precontouring, 3© sequential contouring and 4© parallel contour
vectorization. (d) The vectorization result. The contours are represented by line seg-
ments. The whole computation is completed in 9 ms, which provides possibility for
real-time applications. (Color figure online)

3.1 Boundary Pixel Detecting

To rapidly extract the boundary pixels, we scan all lines in the silhouette images
in parallel. A scanline ŝi is a one-pixel-wide horizontal line that crosses the
silhouette image from left to right. It is used to find the pairwise boundary
pixels (Ik,Ok) of a foreground area. The collection of all scanlines are denoted
as S,

S = {ŝi|i = 1, . . . , h},
where h is the height of silhouette image. During scanning, when the scanline
enters the foreground from background, the corresponding boundary pixel is
recorded as Ik and when it leaves foreground into background, the boundary
pixel is recorded as Ok. The point pair (Ik, Ok) is called an interval R(i)

k on ŝi,
and the pixels between Ik and Ok belong to the foreground. All such pixel pairs
on ŝi consist its interval collection si,

si = {R(i)
k |R(i)

k = (Ik, Ok), Ik < Ok, 1 ≤ k ≤ Ni},

where line ŝi has Ni intervals. Figure 2 shows an example of two scanlines ŝi0 and
ŝi1 . In each line, pixels are illustrated in different colors, where black indicates
background, cyan for boundary pixels and gray for foreground. In the example,
line ŝi0 has 3 intervals and ŝi1 has 4 intervals respectively.

As the independence of boundary pixel detection on each line ŝi, the scanning
task of all lines S in the silhouette images can be allocated to multiple parallel
threads, each for one scanline. This parallelization has an advantage: when the
height of the image or the image number increases, we only need to add more
threads and the running time is not affected too much. And it provides possi-
bility for multiple images vectorization. The parallel scanning results in a group
of foreground pixel intervals si on each line and the connectivity relationship
between the lines should be computed in next step.

40 X. Xiong et al.

Fig. 2. Example of scanlines, intervals and segments. In this example, intervals on line
ŝi0 and ŝi1 are divided into 2 segments, each marked with a red box. (Color figure
online)

3.2 Pre-contouring

The detected boundary pixels are represented as foreground intervals si on each
line ŝi. They should be organized into loops that enclose the object in the sil-
houette images. The target contour loops are denoted as B:

B = {Lj |j = 1, . . . , l},
where l is the loop number and each loop Lj is a ordered list of boundary pixels:

Lj = {pm|m = 1, . . . ,M},
That is, the loop Lj starts from p1, goes along the silhouette and ends at pM . If
contour loops B are tracked directly on S, it is an up-down strategy that each
loop stretches to pixels on next line if corresponding intervals are connected with
current loop. The connectivity relationship between intervals on adjacent lines
is needed during contour tracking and should be computed first.

For arbitrary two adjacent lines ŝi0 and ŝi1 , their connectivity depends on
the overlapping of their foreground intervals. If intervals R

(i0)
j in si0 and R

(i1)
k

in si1 overlap, they consist a segment. In Fig. 2, R(i0)
1 and R

(i1)
1 overlap, so they

consist a segment, based on which we can infer these four boundary pixels are
in the same loop. In this example, the rest of intervals on line ŝi0 and ŝi1 are
divided into another segment and it has 3 intervals on i1 and 2 on i0 (3:2).

Theoretically, in the same segment the ratio of interval numbers on two
adjacent lines can be classified into six cases:(1) 1:0 (2) 0:1 (3) 1:1 (4) 1:n
(5) n:1 (6) n:n (Fig. 3). Case (1) and case (2) means interval only existing in
one of the lines; Case (3) means that current loop does not change obviously
from previous line to current line; case (4) and case (5) indicate loops merged or
closed and new loops generated respectively; case (6) is a combination of case
(4) and case (5). Each case indicates different change of loops in these lines and
the boundary pixels of the included intervals are related.

Because this relationship computing depends only on the adjacent lines, it can
be performed in parallel and separately accomplished as a pre-processing before
contour organizing. Each parallel thread is responsible for dividing intervals on
two lines into segments. With the connectivity relationship, we can organize each
loop in order more efficiently.

Real-Time Contour Image Vectorization on GPU 41

Fig. 3. Six cases of the connectivity relationship between intervals on two adjacent
lines.

3.3 Contouring

Up to now, the boundary pixels are detected and pre-contoured in parallel,
resulting in the foreground intervals and their connectivity relationship between
adjacent lines. With these information, we can organize the boundary pixels
into loops more easily, which is accomplished in each segment, according to
the interval numbers in the two lines. During organizing, new loops may be
generated, existing loops may be extended, merged, closed or branched from top
to bottom in the image. The connectivity relationship between the two adjacent
lines determines how the loop develops from the previous line to the current
line, which can be directly represented by the interval numbers on each line
(|{R(i1)

k }| : |{R(i0)
j }|)).

As described in Pre-contouring, in each individual segment, the connectivity
relationship of adjacent lines can be classified into 6 cases, and each case means
loop changes differently in these lines. Next, we will consider each case separately
and show how the loops develop from previous line to current line as illustrated
in Fig. 3.

– Loop Initialization (1:0)

During Contouring, a new loop is generated when new interval appears on cur-
rent line, which does not overlap with any intervals on previous line. This loop
records the boundary pixels of a presently separate region in the input image
and will be complemented by the following pixels. As shown in Fig. 3(a), a loop
starting from I(i1) and ends at O(i1) is generated.

– Loop Termination (0:1)

42 X. Xiong et al.

A loop is terminated when there is only an interval on the previous line in one
segment. It indicates all pixels on a separate region are organised into a closed
loop, which is called a contour in our algorithm. In Fig. 3(b), the corresponding
loop of I(i0) and I(i0) is terminated.

– Loop Extension (1:1)

In one segment, if there is an interval on each line, it indicates the shape changes
slightly in these two lines and the loop from the previous line can simply extend
to the boundary pixels on current line. As shown in Fig. 3(c), for each interval
in si0 and si1 :

si0 = {R(i0) = (I(i0), O(i0))},
si1 = {R(i1) = (I(i1), O(i1))},

we add boundary points I(i1) and O(i1) into the corresponding loops of I(i0) and
O(i0), respectively.

– Loop Merging or Closing (1:n)

In this case, n intervals on the previous line change into one on current line.
It means the loop number decreases and there are loops merged or closed. As
shown in Fig. 3(d), there are n intervals in si0 and 1 interval in si1 :

si0 = {R(i0)
j |R(i0)

j = (I(i0)j , O
(i0)
j), 1 ≤ j ≤ n},

si1 = {R(i1) = (I(i1), O(i1))}.

Hence, we add I(i1), O(i1) into the corresponding loops of I(i0)1 , O
(i0)
n , respectively.

For the rest of points in si0 , new pairs are formed as (O(i0)
w , I

(i0)
w+1), w = 0, . . . ,

n−1. If the points of one pair belongs to the same loop, this loop will be closed,
or else the different loops will be merged.

– Loop Branching (n:1)

On the contrary to the previous case, if 1 interval on previous line branches
into n intervals on current line, new loops are generated to record the boundary
pixels on the following line. In Fig. 3(e), there are n intervals in si1 and 1 interval
in si0 :

si1 = {R(i1)
k |R(i1)

k = (I(i1)k , O
(i1)
k), 1 ≤ k ≤ n},

si0 = {R(i0) = (I(i0), O(i0))}.

We add I
(i1)
1 , O

(i1)
n into the corresponding loop of I(i0), O(i0), respectively. For

the left points in si1 , new pairs are formed as (O(i1)
w , I

(i1)
w+1), w = 0, . . . , n − 1.

Each pair is used for generating a new loop.

– Loop Merging(Closing) and Branching (n:n)

Real-Time Contour Image Vectorization on GPU 43

If there are more than 1 intervals on both lines in a segment, we can treat it as
a combination of the case of loop merging(closing) and branching. In Fig. 3(f),
there are n intervals in si0 and m intervals in si1 :

si0 = {R(i0)
j |R(i0)

j = (I(i0)j , O
(i0)
j), 1 ≤ j ≤ n},

si1 = {R(i1)
k |R(i1)

k = (I(i1)k , O
(i1)
k), 1 ≤ k ≤ m}.

We add I
(i1)
1 , O

(i1)
m into the corresponding loop of I(i0)1 , O

(i0)
n , respectively. Loops

are merged or closed for the rest of points in si0 and generated for the rest of
points in si1 .

These six cases provide the rule for how to deal with boundary pixels on
current line according to the connectivity relationship with previous line during
loop organizing. This step must be in sequential manner because the boundary
pixels on current line must be connected to the loops produced by previous
boundary pixels. Furthermore, the computation need large memory to store the
edge pixels and requires frequent memory access, which is the weakness of GPU.
And this is the only step that has to be performed on CPUs. When all lines of
silhouette images are processed, target loops B is generated.

3.4 Contour Vectorization

Using the method given above, the contour of the foreground can be described
with a group of pixel loops B. Subsequently, we need to simplify each loop and
approximate them with a set of line segments. Our approximation method is sim-
ilar to the Active Contour Modeling [4]. Each loop Lj = {p1p2 · · · pi · · · pM−1pM}
is processed with a divide-and-conquer strategy. Let d be the maximum distance
between the point pi and line p1pM :

d = max{dist(pi,−−−→p1pM)}.
if d is smaller than t (a constant threshold, we set t=1 in our experiment), p1pM
is an approximate line segment and the discretization terminates. If not, loop
Lj is divided into two sub-loops Lj0 and Lj1 :

Lj0 = {p1p2pipM+1
2

},
Lj1 = {pM+1

2
· · · pj · · · pM−1pM}.

Then each sub-loop is tested iteratively until Lj0 or Lj1 satisfies the terminal
condition or is small enough.

The vectorization of each loop is independent and we can process it with
a GPU thread. When the loop number is small, the parallelism is limited and
it has little improvement in performance comparing to processing each loop
sequentially. The parallelizing of this step become more and more important as
the increasing of the loop number.

When the four steps are completed, our algorithm can output a vector image
with contour represented by line segments.

44 X. Xiong et al.

4 Experiment and Result

We implement our algorithm using CUDA on a common PC with Quad CPU
2.5 GHz, 2.75 GB RAM, and a GeForce GTX260+ graphic card. The vector-
ization task is decomposed into four steps, in which Boundary Detection and
Pre-contouring are performed on GPU with multiple threads, each processing
for different lines. Pre-contouring results are copied back to CPU for sequential
computation of Contouring, and the organized contour loops are copied into the
GPU for the final Vectorization.

Figures 4 and 5 show the vectorization results of some simple figures and
characters. The former is used in silhouette-based applications(e.g. SFS) and
the latter is inevitably used in document processing. The running time and the
number of primitives used for vector representation are listed in Table 1.

4.1 Comparison

We compare our algorithm with a Floodfill-based method on time efficiency. The
difference between them is the strategy of boundary pixel detection and ordering,
and we use the same way to vectorize the contour loops. Floodfill based method
iteratively searches the boundary pixels of the silhouette in neighborhood until
all pixels are processed. Hence the running time increases exponentially with
the image resolution and it depends heavily on the complexity of the scene. In
contrast, our method detects and pre-contours the boundary pixels in parallel.
The grouped pixels organizing depends a little on the image complexity, but
not so sensitive thanks to the pre-contouring. Figure 6 shows the speed up ratio
between Foodfill Based Method and our method on the three images with differ-
ent resolution and gives the corresponding running time of each method. We can

Fig. 4. Vectorization results of some figures. The first row shows the input raster images
of some familiar figures(Skater, Pigeon, Bird.), and the second row lists corresponding
vectorization results with contour represented by line segments.

Real-Time Contour Image Vectorization on GPU 45

Fig. 5. Vectorization results of different characters. The first, third and fifth rows are
input raster images(English, Digit and Chinese characters respectively), the second,
fourth and sixth rows are corresponding vectorization results with contour represented
by line segments.

46 X. Xiong et al.

Table 1. Statistics of vectorization results and running time.

Image Resolution Points Edges Loops Time(ms)

CharP 600 × 600 360 53 2 6.93

CharK 600 × 600 837 75 1 9.04

CharU 600 × 600 442 64 1 7.61

Digit4 600 × 600 414 24 2 5.93

Digit7 600 × 600 573 25 1 6.43

Digit8 600 × 600 1036 94 3 8.18

Chinese1 600 × 600 848 120 2 8.83

Chinese2 600 × 600 1080 223 7 10.73

Chinese3 600 × 600 1211 171 2 11.41

Pegion 400 × 400 439 86 2 5.89

Skater 400 × 400 596 104 4 6.56

Bird 600 × 480 833 83 1 8.92

Winnie 500 × 500 2761 432 26 8.54

Fig. 6. Comparison between Floodfilled based method (FBM) and our method. The
figure above shows the speedup ratio between two methods on different image resolution
and the corresponding running time(ms) of each method is listed below.

Real-Time Contour Image Vectorization on GPU 47

Fig. 7. Video vectorization. First row: four frames in the video. Second row: the cor-
responding vectorized results.

see that our method is not so sensitive to image resolution due to its parallelism
and has a significant speed up especially under high image resolution.

4.2 Video Vectorization

Taking advantage of the fast speed, we apply our algorithm in video vectoriza-
tion. Each frame is vectorized individually and we can achieve an average frame
rate of 48 fps, which we believe will be even faster if the temporal coherence is
considered. Figure 7 demonstrates the result.

Fig. 8. Silhouettes vectorization in eight video streams and Visual Hull rendering based
on the silhouettes. The first row shows 4 channel video images(eight in total), the second
row is the corresponding vectorized silhouettes. Visual hulls are rendered from different
viewpoints based on the silhouettes(the third row).

48 X. Xiong et al.

To further demonstrate the efficiency of our method, we perform the contour
vectorization among 8-channel multi-view video streams simultaneously (which
is a requirement of reconstructing dynamic visual hull) with image resolution
of 600 × 480. Owing to the parallelization of our algorithm, the boundary pixels
can be detected and pre-contoured in parallel among all video image lines at one
time point. Then the pixels contouring can be parallelized between each video.
Finally, each loop in the contour can be discretized into line segments in parallel.
With the vectorization result, we can reconstruct and render dynamic VHs over
20 fps (Fig. 8).

4.3 Cartoon Image Vectorization

Figure 1 shows the vectorization of a cartoon image Winnie. We first binarize the
input image according to the different colors and obtain a series of silhouettes.
Then these silhouette images are vectorized simultaneously and result in a vector
representation of the color image. Total computation can be accomplished in 9
ms.

Fig. 9. Vectorization of a typed document page. Left: the input document, right: the
vectorized result. The input image suffers from aliasing when the page is scaled and
our result can keep the shape of each character well.

Real-Time Contour Image Vectorization on GPU 49

4.4 Document Image Vectorization

Document image vectorization is challenging for complex situations may appear
in scanned document or handwritten pages and the number of contours may
be large enough to bring difficulties in data storing and transferring on GPUs.
To demonstrate the efficiency of our algorithm, we input a typed page at the
resolution of 2500× 1800, and the vectorization of the characters in this page
can be done in 40 ms (Fig. 9). After vectorization, each character is represented
with several line segments, which can be scaled without aliasing.

5 Conclusion

We propose a hardware-accelerated algorithm to vectorize the silhouettes in the
raster image with high efficiency. The problem is decomposed into four steps and
three of them can be parallelized significantly. We show the efficiency of our algo-
rithm on some challenge applications including multiple videos and document
image vectorization.

The limitation of our work lies in that the contouring step is still in sequential.
One feasible way to alleviate the problem is to partition the silhouette image
into several parts and the contouring among them can be parallelized. However,
a merge step is needed if loops between two parts are connected, which will
introduce extra computation cost. And we are exploring an ideal solution for
this problem.

Acknowledgements. This work is partially supported by NSFC grants #61170206,
#61370112, and Specialized Research Fund for the Doctoral Program of Higher
Education #20110001110077.

References

1. Chang, F., Lu, Y.-C., Pavlidis, T.: Feature analysis using line sweep thinning algo-
rithm. IEEE Trans. Pattern Anal. Mach. Intell. 21(2), 145–158 (1999)

2. Dori, D., Liu, W.: Sparse pixel vectorization: an algorithm and its performance
evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 21(3), 202–215 (1999)

3. Jimenez, J., Navalon, J.L.: Some experiments in image vectorization. IBM J. Res.
Dev. 26(6), 724–734 (1982)

4. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Com-
put. Vis. 1(4), 321–331 (1988)

5. Ladikos, A., Benhimane, S., Navab, N.: Efficient visual hull computation for real-
time 3d reconstruction using CUDA, pp. 1–8 (2008)

6. Laurentini, A.: The visual hull concept for silhouette-based image understanding.
IEEE Trans. Pattern Anal. Mach. Intell. 16(2), 150–162 (1994)

7. Li, M., Magnor, M., Seidel, H.-P.: A hybrid hardware-accelerated algorithm for
high quality rendering of visual hulls. In: Proceedings of Graphics Interface 2004,
pp. 41–48. Canadian Human-Computer Communications Society (2004)

8. Matusik, W., Buehler, C., Raskar, R., Gortler, S.J., McMillan, L.: Image-based
visual hulls. In: SIGGRAPH 2000, pp. 369–374. ACM (2000)

50 X. Xiong et al.

9. Nehab, D., Hoppe, H.: Random-access rendering of general vector graphics. In:
ACM Transactions on Graphics (TOG), vol. 27, p. 135. ACM(2008)

10. Orzan, A., Bousseau, A., Barla, P., Winnemöller, H., Thollot, J., Salesin, D.: Diffu-
sion curves: a vector representation for smooth-shaded images. ACM Trans. Graph.
56(7), 101–108 (2013)

11. Smith, R.W.: Computer processing of line images: a survey. Pattern Recogn. 20(1),
7–15 (1987)

12. Sun, J., Liang, L., Wen, F., Shum, H.-Y.: Image vectorization using optimized
gradient meshes. In: ACM Transactions on Graphics (TOG), vol. 26, p. 11. ACM
(2007)

13. Waizenegger, W., Feldmann, I., Eisert, P., Kauff, P.: Parallel high resolution real-
time visual hull on GPU. In: 2009 16th IEEE International Conference on Image
Processing (ICIP), pp. 4301–4304 (2009)

14. Xia, T., Liao, B., Yu, Y.: Patch-based image vectorization with automatic curvi-
linear feature alignment. In: ACM Transactions on Graphics (TOG), vol. 28, p.
115. ACM (2009)

15. Yous, S., Laga, H., Kidode, M., Chihara, K.: GPU-based shape from silhouettes.
In: Proceedings of the 5th International Conference on Computer Graphics and
Interactive Techniques in Australia and Southeast Asia, pp. 71–77. ACM (2007)

16. Zhang, S.-H., Chen, T., Zhang, Y.-F., Hu, S.-M., Martin, R.R.: Vectorizing cartoon
animations. IEEE Trans. Vis. Comput. Graph. 15(4), 618–629 (2009)

17. Zhao, J., Feng, J., and Zhou, B.: Image vectorization using blue-noise sampling.
In: IS&T/SPIE Electronic Imaging, p. 86640H. International Society for Optics
and Photonics (2013)

18. Zou, J.J., Yan, H.: Cartoon image vectorization based on shape subdivision. In:
Proceedings of the Computer Graphics International 2001, pp. 225–231. IEEE
(2001)

http://www.springer.com/978-3-319-64869-9

	Real-Time Contour Image Vectorization on GPU
	1 Introduction
	2 Related Work
	2.1 Image Vectorization
	2.2 Image Vectorization in Applications

	3 Our Algorithm
	3.1 Boundary Pixel Detecting
	3.2 Pre-contouring
	3.3 Contouring
	3.4 Contour Vectorization

	4 Experiment and Result
	4.1 Comparison
	4.2 Video Vectorization
	4.3 Cartoon Image Vectorization
	4.4 Document Image Vectorization

	5 Conclusion
	References

