Chapter 2
Quantum Examples

In this chapter we review quantum theory (at the level of wave mechanics) and
develop a toolbox of simple quantum mechanical examples that we will use, in the
following chapters, to discuss a number of the issues raised in Chap. 1: locality,
ontology, measurement, etc.

2.1 Overview
We begin with the (time-dependent) Schrédinger Equation,
ih— = HW. (2.1)

For a single particle of mass /m moving in one dimension, the Hamiltonian operator
His
N m? 0?
H=—-———+V(kx) (2.2)
X

so that the time-dependent Schrodinger Equation reads:

OV ) R 02U (x, 1)
ih—=—————-

o S TV DD, 2.3)

We typically use this equation in the following sort of way: given some initial wave
function W (x, 0) (which we think of as having been created by a special preparation
of the particle in question), we then solve Schrodinger’s Equation to find the wave
function at some later time # when some kind of observation or measurement of the
particle occurs. A second basic postulate of the theory — the “Born rule” — is then
introduced to tell us what W (x, ¢) implies about how the measurement will come
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out. In its simplest form, corresponding to a measurement of the position x of the
particle, the Born rule says that the probability of observing the particle at the point
x is equal to the square of the wave function’s modulus:

P(x) = |W¥(x,0)%. (2.4)

(Well, technically, this P (x) is a probability density, i.e., a probability-per-unit-length
along the x axis. The precise statement is that the probability of finding the particle
in a range of size dx near the point x is P(x)dx = |W|?dx. Note also that we assume
here that the wave function is properly normalized, i.e., ffooo [W2dx = 1.)

If some property of the particle other than its position is measured (for example,
its momentum or energy) then we will use the “generalized Born rule”. This says
that we should write W(x, ¢) as a linear combination of eigenstates of the operator
corresponding to the property in question. That is, we should write

U(x,t) = zc,-\y,-(x, 1) 2.5)

(or perhaps instead an integral if the property in question has a continuous spectrum)
where W; is an eigenstate of the operator A with eigenvalue A;:

AW (x,1) = AW (x, 1). (2.6)
Then the probability that the measurement of A yields the value A; is
P(A) = lail. 2.7

As a simple example, suppose we measure the momentum of a particle at time ¢. The
momentum operator is

R 0
p=—ihs (2.8)
whose eigenstates are the plane waves
Uy (x) = e/, (2.9)

(Note that there’s a bit of funny business about normalization here, but let’s ignore
that for now.) Suppose our wave function at time 7 is ¥ (x, t) = V2 sin(kx). We can
write this as a linear combination of the momentum eigenstates as follows:

1 . 1 .
W(x,t) = V2sin(kx) = ——e!WOX/h .~ i(=hk)x/h 2.10
e (ko V2i V2i (210

This is a linear combination of two momentum eigenstates, with eigenvalues p =
+hk and p = —hk, and expansion coefficients cp; = 1/+/2i and c_py = —1/+/2i
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respectively. So evidently the probability that the momentum measurement has the
outcome “p = +hk” is P(+hk) = |1/+/2i|> = 1/2, and the probability that the
momentum measurement has the outcome “p = —hk” is P(—hk) = | — 1 /«/Ei |2
which is also 1/2.

Note that the original Born rule (for position measurements) can be understood as
a special case of the “generalized Born rule” if we take A to be the position operator
x with delta functions as eigenstates:

X0(x —x) =x"6(x —x). (2.11)

We can then write any arbitrary state W(x, ¢) as a linear combination of position
eigenstates as follows:

U(x,1) = /\Il(x/, H6(x — x')dx’ (2.12)

where the W (x’, t) should be understood as the expansion coefficient, like ¢;. Thus,
according to the generalized Born rule, the probability for a position measurement
to yield the value x’ should be the square of the expansion coefficient, i.e.,

Pi(x) = W, 1) (2.13)

just like in the original statement of the Born rule.

But enough about measurement. For now I just want to make sure you had heard
of this so that you understand, in some practical terms, what solving the Schrodinger
equation is for. There are a few Projects at the end of the chapter that will help you
practice using Born’s rule and then we will return to discuss all of this more critically
in Chap. 3.

For now, we return to Schrodinger’s equation. Given an initial wave function
W (x, 0), how does one actually solve it? Our standard technique will take advantage
of the fact that there exist “separable” solutions of the form

Wi (x, 1) = Pu (x) fu (D). (2.14)

If we plug this ansatz into the Schrodinger equation we find that the function v, (x)
should satisfy the “time-independent Schrodinger equation” (TISE),

2 0Py (x)

T om ox2 + V(x)tha (x) = Eptpn(x) (2.15)

where E, is just a constant that we can think of as the energy of the solution in
question. The function f,(¢) in turn satisfies

; hdfn(t)
dt

= E, fu(0) (2.16)
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which we can solve once and for all right now:
fult) = e En/R, (2.17)

Now we can explain our basic strategy. For a given potential energy function
V(x), we solve the TISE to find the “energy eigenstates” ¢/, (x) and corresponding
energy eigenvalues E,. If we can find a way to write the given initial wave function
as a linear combination of these “energy eigenstates”, as in

W(x,0) =D cnthy(x) (2.18)

then we can construct a solution of the full time-dependent Schrédinger equation
by simply tacking the appropriate time-dependent f, (¢) factor onto each term in the
sum. That is:

Wx, 1) = D cpthy(x)e F/, (2.19)

This is the basic technique we’ll now illustrate with a couple of examples.

2.2 Particle-in-a-Box

Suppose that a particle is absolutely confined to a certain region of the x-axis but is
“free” within that region. That is, suppose

0 forO<x <L

Vix) = oo  otherwise

(2.20)

which we can (only somewhat misleadingly) think of as the particle being confined
to a length-L “box” as illustrated in Fig.2.1.

Fig. 2.1 The length-L “box” that our “particle in a box” is confined to
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Outside the box, where V = oo, we need 1) = 0. Inside the box, where V = 0,
the TISE takes on the simple form:

0%
- —— -~ —E 2.21
2m Ox2 v ( )
whose solution is
1(x) = Asin(kx) + B cos(kx). (2.22)

But since the potential V' goes to infinity abruptly at x = 0 and x = L, the only way
the TISE will be solved for all x (including x = O and x = L) is if ¢o(x) = 0 at
x = 0and x = L. Requiring 1) = 0 at x = 0 means that we cannot have any of the
cosine term, i.e., B = 0. And then requiring ¢» = 0 at x = L puts a constraint on
the wave number k: an integer number of half-wavelengths must fit perfectly in the
box, i.e., k = k, where .

ky = — 2.23
2 (2.23)

withn = 1,2, 3, .... Good. So the “energy eigenfunctions” for the particle-in-a-box

potential take the form
bty =2 sin (12) (2.24)
(X)) =4/ — sin[—). .
L L

Note that the factor out front comes from requiring normalization: fOL [0, (x)|>dx =1.
We can find the corresponding energy eigenvalues by plugging 1, into Eq. (2.15).

The result is
m2mn?

o 225
2mL? ( )

The general solution of the time-dependent Schrodinger equation can thus be written

W(x. 1) =D cathy(x)e /. (2.26)

n=1

Let’s illustrate with a simple example. Suppose the wave function of a particle in
a box is given, at t = 0, by

B R
V2 V2

This function is plotted in Fig.2.2. Notice that there is constructive interference
between v, and v, on the left hand side of the box, giving rise to a ¥ with a large
modulus there, but (partial) destructive interference on the right. So at t = 0 the

V(x,0) = —=1(x) + —=12(x). 2.27)
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Fig. 2.2 The initial wave function (solid curve) for a particle-in-a-box that is in a superposition of
the two lowest energy eigenstates (shown individually as dashed curves)

particle is much more likely to be found (if looked for!) on the left hand side of the
box.

How, then, does W evolve in time? Here we don’t have to do any work to write the
initial wave function as a linear combination of energy eigenstates. Equation (2.27)
already gave it to us in that form! So then it is trivial to write down an equation for
the wave function at time ¢:

L
V2

or, writing everything out in full explicit glory,

W(x, 1) = —= (x)e  Bt/h 4 %%(kazt/h (2.28)

1 X o2 2 1 2mx I, 2
\IJ(X, t) — —sin (_) e*lﬁﬂ' t/2mL 4+ — sin (_) 674175,71' t/2mL . (229)
VL o\ L VL L

Notice that each term has an e~*£//? factor, but that the frequencies (w, = E,/h)
are different for the two terms. In particular, the frequency of the n = 2 term is four
times as big as the frequency of the n = 1 term. And so, for example, in a time
t = T1/2 = n/w; = hn/E; = 2mL?/hx equal to half the period of the n = 1
factor (so that the n = 1 factor is —1), the n = 2 factor will have gone through two
complete oscillations and will therefore be back to its original value of unity. At this
time, the overall wave function will therefore look like the one shown in Fig.2.3:
there will now be constructive interference (and hence a high probability of finding
the particle) on the right.

Thus, already in this simple example, we see an interesting non-trivial dynamics:
the (probability of finding the) particle in some sense “sloshes back and forth” in the
box.

2.3 Free Particle Gaussian Wave Packets

Let us now turn our attention to a second simple example — the “free particle”. This is
the same as the particle-in-a-box, but with the edges of the box (which in the previous
section were at x = 0 and L) pushed back to £=o0. So in principle we could jump in
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Fig. 2.3 The wave function for the same situation but after a time equal to half the period of the
n = 1 state. The frequency of the n = 2 state is four times higher, so in the same amount of time that
makes e~*E11/" = 1 we have that e=/£2!/" = 41, So the n = 2 term in the superposition looks
the same as it did at # = 0, but the n = 1 term is now “upside down”. This produces destructive
interference on the left and constructive interference on the right

by saying that the general solution to the TISE is just Eq. (2.22) again:

P(x) = Asin(kx) + B cos(kx) (2.30)
but where now there is no reason that B needs to be zero, and no constraint at all on
the wave number k.

This would be fine, actually, but it turns out to be a little nicer to instead use the
so-called plane-wave states

Ye(x) = e'kx 2.31)

1
V2T
which are also perfectly good solutions of the free-particle TISE and which, as
mentioned earlier, can be understood as eigenstates of the momentum operator p =
—ih 0/0x with eigenvalue p;, = hk. They are also of course energy eigenstates with

PR

E, = .
k 2m 2m

(2.32)
(Note that — like the “position eigenstates” we mentioned earlier in the chapter —
these momentum eigenstates are not properly normalized, and indeed not technically
normalizable at all! As long as we include the pre-factor of \/#2? in our definition of
the 1) states, however, their normalization is in a certain sense consistent with the
normalization of the d-function position eigenstates, and we won’t run into trouble.)

Let’s again focus on a concrete example: suppose that the wave function of a free
particle is initially given by the Gaussian function

W(x,0) = Ne > /4" (2.33)

where N is a normalization constant. What, exactly, N is is not that important, but it
will be a useful exercise to calculate it here. The idea is to choose N so that
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2 2 e 20?2
1=/|\Il(x,0)| dx = |N| / e %7 dx. (2.34)
—0Q

There is a cute trick to evaluate Gaussian integrals like that appearing here on the
right hand side. Let’s define the “standard Gaussian integral” as

o0 2
J = / e dx. (2.35)
—00

Then we can write J2 as a double integral like this:

J? = (/_; e dx)2 )
([ ([eva)

OOOO o0 ) )
:/ / e e dx dy. (2.36)
—00 J —00

One can think of this as integrating a two-dimensional Gaussian function over the
entire x — y—plane. But we can rewrite this integral using polar coordinates (r> =
x2 + y?) as follows:

o0
J? = / e A2y dr. (2.37)
0

But then this integral can be done (using a substitution, u = Ar?, so 2nrdr =
mdu/A) to give

s
J== 2.38
2 (2.38)
so that
7T
J=_/—. 2.39
2 (2.39)
Using this general result to simplify the right hand side of Eq. (2.34) gives
o 2 2
1= |N|2/ e ¥ /%" dx = |N|*o/27. (2.40)
—00
o)
1 1
IN| = — = (2.41)

NZARNAN =

We might as well choose N to be real and positive, so now we know how to write a
properly-normalized Gaussian initial wave function:
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1 .
U(x,0) = ————e ¥ /4", (2.42)

Vo2

But of course the real question is: how does this state evolve in time?

To find out, we need to follow the general procedure: write the initial state W (x, 0)
as a linear combination of the energy eigenstates, then just tack on the appropriate
e "Bt/ factor to each term in the linear combination.

OK, so, first step: write the initial state as a linear combination of the energy
eigenstates. Here there is a continuous infinity of energy eigenstates (parameterized
by the wave number k) so the linear combination will involve an integral rather than
a sum. It should look like this:

eikx
V2T

The (continuously infinite collection of!) numbers ¢ (k) are the “expansion coeffi-
cients”. How do we find them? One way is to recognize that the last equation says:
¢(k) is just the Fourier transform of W (x, 0). So if that’s a familiar thing, there you
go! If not, though, here’s how to extract them. This procedure is sometimes called
“Fourier’s trick”. The idea is to use the fact that the different energy eigenstates (here,
the plane waves) are orthogonal in the following sense: if you multiply one of them
(k) by the complex conjugate of a different one (k') the result is oscillatory and its
integral is zero — unless k = k’ in which case the product is just 1 and you get a giant

infinity. Formally:
ok ek \"
— M —= ) dx =6k k). 2.44
/ ( V2w ) ( V2w ) ( ) (249

We can use this property to isolate the expansion coefficients ¢ (k) in Eq.(2.43). Just
multiply both sides by e*** //27 and then integrate both sides with respect to x.
The result of the x-integral on the right is a delta function that we can use to do the
k-integral. When the dust settles, the result is

e—ik’x
k) = W(x,0)dx. 2.45
(k') /(m) (x. 0) dx (2.45)

So far we have avoided plugging in our Gaussian state for the initial wave function
so this result is completely general. But let’s now plug in Eq.(2.42) and proceed as
follows:

W(x,0) = / h o(k) dk. (2.43)
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1 .
p(k) = —/e_”‘x\ll(x,O) dx
V2T
N Zikx —x2/4o>
= —— [ e e ™ dx
«/277/

_ N /efﬁ(x2+4ik02x)dx
«/27r
/ — o [ ko x+ @ik Qiko™)?] g

N
/e

N Qiko?) l 14212
- LLa0 — 1 )
(X+ iko”) ’x

\/_e 402 e
—x/40? 2.46
m / (2:40)

which is just another “standard Gaussian integral”. Using our general formula to
perform it, we arrive at:

— 5 [(x+2iko?)?—(2ika?) ]dx

b(k) = V2No e ¥, (2.47)

Qualitatively, the important thing here is that the Fourier transform of a Gaussian
(in x) is another Gaussian (in k). And notice in particular that the “width” of ¢(k) is
(something like) 1/0 — the inverse of the width of the original Gaussian in position
space. This illustrates an important qualitative principle of Fourier analysis, that
to make a sharply peaked function in position space requires superposing plane-
waves with a very broad range of wave numbers, whereas you only need a narrower
range of wave numbers to construct a more spread out function in position space. In
the context of quantum mechanics this idea is intimately related to the Heisenberg
uncertainty principle: the width of a wave packet in position space is essentially “the
uncertainty in its position”, Ax, whereas the “width” in k-space is (since p = hk)
“the uncertainty in its momentum” divided by /. These being inverses of each other
therefore means that the position uncertainty and the momentum uncertainty are
inversely related: Ax ~ h/Ap.

See the end-of-chapter Projects for some further (and more careful) exploration
of this connection.

Let’s step back and remember why we’re doing all this math. We want to start with
anice Gaussian wave packet and see how it evolves in time according to Schrodinger’s
equation. To do that, we needed to first figure out how to write the initial Gaussian
packet as a superposition of the energy eigenstates — here, the plane-wave states.
That’s what we’ve just accomplished! That is, we figured out that we can write

LIJ(x,O)=/¢

(2.48)
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Fig. 2.4 A wave function that is a Gaussian with half-width ¢ at = 0 spreads out in time

where
o(k) = V2No e ¥, (2.49)

Now the whole reason we wanted to write W (x, 0) in this special form, is that doing
so makes it easy to write down an equation for the state at a later time #: we just tack
the e*£7/" factor on each term. So let’s do that! The result is:

ikx
W(x,t) = /¢(k) 3_2_77 o B Ih g
_oN
=7

Now, with the same sort of massaging we did before (“completing the square” in the
argument of the exponential, etc.) we can do this integral. I’ll leave that as a Project
if you want to go through it and just quote the result here:

oK gikx p=ihk21/2m g1 (2.50)

%2

W(x,t) = NL e 4oZtihijam) (2.51)
ih
o2+ 5%
Phew!

This function is Gaussian-ish... You could think of it as a Gaussian with a time-
dependent, complex width (whatever that means!). But if you multiply it by its
complex conjugate, to get the probability density for finding the particle, that is
definitely Gaussian:

) N2 —.X'2
P(x) =¥, = — exp - . (2.52)
L | 202 (14 )

m2at




44 2 Quantum Examples

Notice in particular that the width of this Gaussian (i.e., the uncertainty in the position
of the particle) grows with time:

2.2

See Fig.2.4 for an illustration. Initially (for times small compared to 2mo?/h) the
width grows slowly, but then later (for times long compared to 2ma?/h the width
grows linearly in time. So the uncertainty in the position of the particle grows and
grows as time evolves. Interestingly, the uncertainty in the momentum never changes:
the first line of Eq. (2.50) can be understood as saying that the complex phases of
the momentum “expansion coefficients” change with time, but their magnitudes stay
the same. So the probability distribution for momentum values, and hence Ap, is
independent of time. This makes sense, if you think about it, since we’re talking about
a free particle, i.e., a particle on which no forces act. Anyway, this nicely illustrates
the fact that the Heisenberg uncertainty principle takes the form of an inequality: the
product of Ax and Ap can be arbitrarily large, but there’s a smallest possible value.

2.4 Diffraction and Interference

The spreading of an initial wave packet is closely related to the phenomenon of
diffraction. Imagine, for example, a particle that is incident on a barrier with a slit:
the barrier simply blocks/absorbs the part of the particle’s wave function that hits it, so
that just downstream of the barrier and along the direction transverse to the direction
of propagation of the particle, the wave function has a packet-shaped profile like the
ones we were discussing in the last section. And the evolution of the packet-shape
with position, downstream of the slit, is (approximately) the same as the evolution
of the one-dimensional packets (discussed in the previous section) with time. In
particular, as we saw in the last section, the wave packet will spread in this transverse
direction as it propagates downstream. This is the phenomenon, illustrated in Fig. 2.5,
of diffraction.

Of course, for a literal slit (which absorbs everything that hits it, and transmits
whatever part of the incident wave goes through the slit) the transverse profile of the
wave function (just downstream of the barrier) would be something like this:

N for — L <x <%
_ 2 2
Y, 0 = [ 0 otherwise (2.54)

with the constant N evidently being 1/+/L to ensure proper normalization. As it
turns out, the sharp edges (at x = —L/2 and x = L/2) of this function produce a
Fourier transform ¢ (k) that diverges at k = 0 and this makes it slightly tricky to work
with. See the Projects for a work-around that allows one to deal with this situation.
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Fig. 2.5 An incident wave
passes through a slit and
diffracts

But just to understand the process conceptually, we can contemplate a “Gaussian
slit”, i.e., a barrier with a “transmission profile” (i.e., fraction of incident wave func-
tion that transmits rather than being absorbed) equal to a Gaussian. Then — basically
by definition — the transverse profile of the beam just downstream of the barrier is a
Gaussian, as in Eq. (2.42). If we make the approximation that the wave just steadily
propagates to the right at some speed v = % then we can relate the coordinate y
along the direction of propagation to the time via y = vt. (This approximation is
explained and developed further in the Projects.) And so we can immediately use, for
example, Eq. (2.52) to write down an expression for the “intensity” (i.e., probability
density) for finding the particle in the two-dimensional region behind the barrier:

I(x,y) ~ 2oL ()
x,y) ~ |W(ix,y)| e . (2.55)
1+ s
m?v2ot
I used Mathematica to make a nice density plot of this function; the result is shown
in Fig.2.6.

One of the nice reasons for setting this up, however, is that it provides a simple
way to examine the structure of the wave function behind a double slit barrier. The
classic two-slit interference pattern was first identified by Thomas Young as crucial
evidence that light was a wave. And then of course the identification that “particles”
(such as electrons) also exhibit interference, played and continues to play a crucial
role in our understanding of the quantum nature of the sub-atomic realm.

So, then, imagine a barrier with not one but rwo “Gaussian slits” centered, say, at
x = a and x = —a. Then, the transverse profile of the wave function just behind the
barrier will be given by

W(x,0) ~ Ws(x —a,0) + Vg(x +a,0) (2.56)
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Fig. 2.6 Density plot of |¥ (x, y)|? from Eq. (2.55) illustrating the intensity of a wave, diffracting
as it propagates to the right having emerged from a “Gaussian slit” on the left edge of the image

i.e., a superposition of two Gaussians, one centered at x = a and one centered at
X =—a.

Each Gaussian term just spreads out in time in the way we analyzed in the previous
section. (Formally, we can say that since the Schrodinger equation is linear in W,
the solution W(x, ¢) for this initial state — a superposition of two Gaussians — is
just the corresponding superposition of the solutions for the two superposed terms
individually.) Thus, using Eq. (2.51) twice (but with one small tweak each time) we
can write

1 _ ()c—a)z _ (x+a)2
Yx,t) ~VYg(x—a,)+VYg(x+a,t) ~ ———|e *Hinpm 4 g a0 tih/m
o+ %

(2.57)
or, converting this into an expression for the wave function in the two-dimensional
region in the way that we did before,

1 __ w-a? __ aa?
W(x, y) ~ I:e 4@2+ihy/2mv) - @ 4(a2+ihy/2mu)] . (2.58)
o? + ;Z—yv

This is slightly messy to work with, but the idea qualitatively is that, as the two
individual Gaussians begin to spread, they start to overlap. But then there can be
either constructive or destructive interference depending on the relative phases in
the region of overlap. For example, along the symmetry line, x = 0, the phases
of the two terms will always match and we will therefore always have constructive
interference, corresponding to a large value of |¥|?, i.e., a high probability for the
particle (if looked for) to be detected. But if we move a little bit to the side (say,
in the positive x-direction) we are moving foward the central peak of one of the
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Fig.2.7 Density plot of |¥|? from Eq. (2.58). A classic interference pattern emerges in the intensity
of the wave downstream from the “double Gaussian slit” barrier at the left edge of the image

Gaussians and away from the central peak of the other, and so the phases of the two
terms change at different rates, and eventually we find a spot where there is (at least
for large y, nearly complete) destructive interference, corresponding to |¥|> = 0.
Moving even farther in the positive x-direction eventually yields another spot where
there is constructive interference, and so on.

The intensity pattern that results is shown in Fig. 2.7, which is again a Mathematica
density plot of | W (x, y)|?, with W (x, y) given by Eq.(2.58). It is the classic two-slit
interference pattern.

Of course, one should remember that such images of smoothly-distributed waves
only tell half the story according to quantum mechanics. When an individual particle
is looked for, it is not observed to be spread out like in these pictures; instead, it
is found at some one particular spot, with the smooth |W|? functions providing the
probability distribution for the discrete sharp “hit”. See, for example, in Fig.2.8,
the beautiful results of Tonomura et al. for a two-slit experiment with individual
electrons and, in Fig.2.9, the equally beautiful results of Dimitrova and Weis for a
similar experiment using individual photons.

2.5 Spin

We will have occasion later to discuss measurements of the spin of (spin 1/2) particles.
For such measurements, there are only two possible outcomes — “spin up” along the
axis in question, or “spin down”. This makes spin a very simple and elegant system
to treat using the quantum formalism.

We can represent the “spin up along the z-axis” state this way:
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Fig. 2.8 Data from a
double-slit experiment with
electrons, in which electrons
are sent through the
apparatus one at a time. Each
electron is found at a
particular spot on the
detection screen. The
statistical pattern of spots —
that is, the probability
distribution for electron
detection — builds up the
classic two-slit interference
pattern. (Reproduced from
Tonomura et al.,
“Demonstration of
single-electron buildup of an
interference pattern”
American Journal of Physics
57 (2), February 1989, pp.
117-120, our Ref. [1], with
the permission of the
American Association of
Physics Teachers. http://aapt.
scitation.org/doi/abs/10.
1119/1.16104) See also

Ref. [2]

and the “spin down along the z-axis” state this way:

2 Quantum Examples
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5000 frames 20'000 frames

Fig. 2.9 Results of a similar experiment with “feeble light”, i.e., individual photons. Just as with
Tonomura’s electrons, the measurement (here, using a CCD array) of the position of the photon
always yields a definite, sharp location. The interference pattern is then realized in the statistical
distribution of such individual sharp locations, after many photons are detected. (Reproduced from
T.L. Dimitrova and A. Weis, “The Wave-Particle Duality of Light: A Demonstration Experiment,”
American Journal of Physics 76 (2008), pp. 137-142, our Ref. [3], with the permission of the
American Association of Physics Teachers. http://aapt.scitation.org/doi/abs/10.1119/1.2815364)

- (?) . (2.60)

Note that these two-component vectors (technically “spinors”) are the eigenvectors
(with eigenvalues 41 and —1 respectively) of the spin-along-z operator, which can
be represented as a two-by-two matrix:

6, = (é _01). 2.61)

Of course, this is quantum mechanics, so the two eigenstates of 6, are not the only
possible states — instead they merely form a basis for the space of possible states.
(Think of the spin up and spin down states here, ¥, and 1/__, as being like the energy
eigenstates for the particle-in-a-box potential. These are not the only possible states!
Instead, the general state is an arbitrary properly-normalized linear combination of
them.) Here, a general state can be written as

— ((1))+c (?) - (if) (2.62)

The expansion coefficients c; and c_ should of course be understood to have their
usual, generalized Born rule meanings: if a particle is in the spin state v and its spin
along the z-axis is measured, the probability for the measurement to have outcome
“spin up along z” is P, = |c,|* whereas the probability for the measurement to
have outcome “spin down along z” is P_ = |c_|?>. And note that, since these are

200 frames 1000 frames

100'000 frames 500000 frames
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the only two possible outcomes, the probabilities should sum to one. That is, proper
normalization for the general spin state 1) requires |c4|> + |c_|> = 1.

Things get a little more interesting when we consider the possibility of measuring
the spin of a particle along some axis other than the z-axis. We will only ever have
occasion to care about measurements along axes in (say) the x —z-plane. The operator
corresponding to spin measurements along the x-axis can be written

G, = ((1) (1)) (2.63)

1 (1
S 7 (1) (2.64)

(with eigenvalue +1 corresponding to “spin up” along the x-direction) and

1 (1
Yoy = 7 (_1) (2.65)

(with eigenvalue —1 corresponding to “spin down’ along the x-direction).
The operator corresponding to spin measurements along an arbitrary direction 7
in the x-z-plane is

whose eigenvectors are

(2.66)

Q>

= cos ()5 4 sin(), — (cos(e) sin(6) )

sin(f) — cos(6)

where 6 is the angle between 7 and Z (toward X). It is a simple exercise in linear
algebra to show that the eigenvectors of this matrix can be written

[ cos(0/2)
Yin = (sin(9/2) ) (2.67)
(with eigenvalue +1, corresponding to “spin up along n”’) and
[ sin(0/2)
Yon = ( —cos(0/2) ) (2.68)

(with eigenvalue —1, corresponding to “spin down along n””). Notice that, for § = 0,
these states correspond to ), and _,, as they should, and similarly for § = 90°,
they correspond to ¢4, and 9_,.

Let’s consider a concrete example to illustrate these ideas. Suppose a particle is
prepared in the “spin up along n” state where n is a direction 60° down from the
z-axis (toward the x-axis). That is, suppose
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cos(30°)
=1 . 2.69
w() ( Sln(300) ( )
Then, we are going to measure the spin of this particle along the z-axis. What is the
probability that this z-spin measurement comes out “spin down”?
To answer this, as always, we have to write the given state as a linear combination

of the eigenstates of the operator corresponding to the measurement that is to be
performed. Here that means writing 1 as a linear combination of ¢, and v_,. But

that is easy:
_ fcos(30°)\ o 1 . A
Py = (sin(30°)) = cos(30°) (O) + sin(30°) (1) . (2.70)

So then we can read off that the probability of the measurement having outcome
“spin down along z” is the square of the expansion coefficient on the “spin down
along z” term, i.e.,

1
P_. = sin?(30°) = T (2.71)

So if a whole beam of particles (all identically prepared in the state i)g) is sent
into a Stern Gerlach device (with its axis aligned along the z direction), 25% of
the particles will emerge having been deflected “down” and the remaining 75% will
emerge having been deflected “up”.

2.6 Several Particles

So far all of the examples we’ve considered involve only a single particle (and in
particular its spatial or spin degrees of freedom). In situations involving two or more
particles, the principles are the same, but there are some important new possibilities
that will become important in subsequent chapters. Let us lay some of the groundwork
here.

A crucial point is that, for an N-particle system, it is not the case that each of the
N particles has its own wave function. Instead, there is a single wave function for
the whole N-particle system. This wave function obeys the N-particle Schrodinger
equation

2
ViW(x1, x2, oy XN, 1) + V (X1, X2, ooy xN) W (X1, X2, .oy XN, ).

. 6\P(X1,XQ,...,XN,I‘) N 7h2
in ot = ; 2m;

(2.72)
Note that the wave function W (xy, x», ..., Xy, t) is a (time-dependent) function on the
configuration space of the N-particle system: x; is the spatial coordinate of particle

1, x, is the spatial coordinate of particle 2, etc.
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As an example, consider the case of two particles (which have identical m and
which do not interact with each other) trapped in the box from Sect.2.2. The time-
dependent Schrodinger equation reads

.haqj(xlvth) R PV xR PV, a0
l ot T 2m ox? 2m ox?

(2.73)
+ V)W (xy, x2, 1) + V(x2)W(xq, x2, 1)

where V is just the “particle-in-a-box” potential, Eq. (2.20).
It is easy to show, by separation of variables, that there are solutions of the form

2 2 )
W, 0 (x1, X2, 1) =4/ 7 sin (mle) \ 7 sin (mzxz) e~ EntEDI/R (2.74)

which are products: one of the one-particle energy eigenfunctions for particle 1,
times one of the one-particle energy eigenfunctions for particle 2, and then with the
usual time-dependent phase factor involving the energy, which is just the sum of the
two one-particle energies.

If the two-particle quantum state is one of these product states, the wave function
W is formally a function on the two-particle configuration space, but there is an
obvious sense in which each particle has its own definite state.

But, as usual in quantum mechanics, these states do not exhaust the possibilities
— instead, they merely form a basis for the space of all possible wave functions. And
that gives rise to the crucially-important concept of “entanglement”. An “entangled”
wave function (or quantum state) for several particles is simply one that is not a
product. An entangled state of two particles, that is, cannot be written as “some
wave function for particle 1” times “some wave function for particle 2”. In entangled
states, the individual particles really fail to have their own, individual, states.

Here is an example. Consider the two particles in the “box” potential, and suppose
we are only interested in the situation at = 0 (so we ignore time-dependence). One
possible state for the two particles to be in is

Wio =1 (x)a(x2) (2.75)

corresponding to particle 1 being in the ground state and particle 2 being in the first
excited state. Another possible state is

Uy 1 = P (x)1(x2) (2.76)

corresponding to particle 1 being in the first excited state and particle 2 being in the
ground state. Neither of these states is particularly interesting or troubling since, for
each of them, each particle has its own definite state (with a definite energy).

But here is another possible state that the two-particle system could be in:
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Fig. 2.10 The cartoon graph on the left indicates (in a very rough way) the structure (in the two-
dimensional configuration space) of W, ~ sin(wx;/L)sin(2wxy/L). This is the product of a
function that is positive for all x; between 0 and L, but then switches from being positive for
0 < xp < L/2 to being negative for L/2 < x» < L. So the product has a reasonably large
magnitude in roughly the grey-shaded areas and is positive and negative in the regions indicated.
The graph on the right indicates the structure of W, 1 ~ sin(27x1 /L) sin(mx2/L) in a similar way

1 1
Wy = 7 (Vi2+Wy,) = E[Tbl(xl)wz(xz) + P (x1) Y1 (x2)]- (2.77)

This is a superposition of (on the one hand) a state in which particle 1 is in the ground
state and particle 2 is in the first excited state and (on the other hand) a state in which
particle 2 is in the first excited state and particle 2 is in the ground state. So neither
particle 1 nor particle 2 is in a state of definite energy at all. (Interestingly, though,
this entangled two-particle state is an eigenstate of the total energy: the two particles
definitely have a total energy of E| 4 Ej... there’s just no particular fact of the matter
about how this total energy is distributed between the two particles!)

It is perhaps helpful to practice visualizing these states in the two-particle con-
figuration space. Figure2.10 shows sketchy cartoon versions of the two states W
and ¥, ;. Each wave function is positive in one part, negative in another, and zero
between them.

The sum of these two states — the entangled superposition state in Eq.(2.77)
— is shown in this same sketchy cartoon style in Fig.2.11. There is (approximate)
destructive interference in the upper-left and lower-right corners of the configuration
space, and instead constructive interference in the lower-left and upper-right corners.
So the state W,,,; has a large positive value in the lower-left corner, a large negative
value in the upper-right corner, and is approximately zero elsewhere. Note that, since
the probability of finding the particles at positions x| and x; is |¥|?, this means that,
if the two particles are in the state W,,,, they are unlikely to be found at different
locations: the upper-left and lower-right corners of the configuration space here
correspond, respectively, to “particle 1 is on the left and particle 2 is on the right”
and “particle 1 is on the right and particle 2 is on the left". These are precisely
the regions of configuration space where W has a small amplitude and hence the
corresponding probability is small. On the other hand, the probabilities for finding
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Fig. 2.11 The structure of the entangled state W,,; = % (\Ill,z + \112,1) in configuration space.

In the upper-left corner (i.e.,0 < x; < L/2 and L/2 < x» < L) the two superposed terms have
opposite sign and (partially) cancel out. The same thing happens in the lower-right corner. But in
the lower left corner (i.e.,0 < x; < L/2 and 0 < xp < L/2) the two superposed terms have the
same (positive) sign and hence add up to a function with a large (positive) value. The same thing
happens in the upper-right corner, but with “positive” replaced by “negative”

both particles “on the left” and finding both particles “on the right” are high. So
in some sense this particular entangled state is one in which neither particle has a
definite energy, and of course neither particle has a definite position either, and yet
there are certain correlations between them, i.e., certain joint properties that are more
well-defined: the rotal energy of the two particles, for example, is perfectly definite,
and it is extremely likely that the particles will be found to be near one another if
their positions are measured.

That last sentence, by the way, should kind of blow your mind. So slow down and
let it percolate for a while if you didn’t already!

This example of two particles in a box has dealt exclusively with the spatial
degrees of freedom of two particles. Note that it is also possible for the spin degrees
of freedom of two particles to be entangled. For example, we might have two particles
in the joint spin state:

b 0.0 O0) e

This can be understood as a superposition (with, for variety, a minus sign this time)
of (on the one hand) a state in which particle 1 is “spin up along z” and particle 2
is “spin down along z”, and then (on the other hand) a state in which particle 1 is
“spin down along z” and particle 2 is “spin up along z”. As in the previous example,
neither particle individually has a definite spin state, but there are certain correlations
between the particles’ spins; for example, here, if the z-spins of both particles are
measured, one cannot predict in advance whether it will be “particle 1 is spin up”
and “particle 2 is spin down” (which joint outcome has probability 50%) or instead



2.6 Several Particles 55

“particle 1 is spin down” and “particle 2 is spin up” (which also has probability
50%)... but one can predict in advance, with 100% certainty, that the outcomes of
the two spin measurements will be opposite — one “up” and one “down”.

You can play around a little bit more with this entangled spin state in the Projects
if you so choose. And then we will encounter it again soon when we discuss the
famous argument of Einstein, Podolsky, and Rosen in Chap. 4.

Projects:

(2.1) For the example from the Particle-in-a-box section — with W(x, 0) given
by Eq.(2.27) — calculate the probability that a measurement of the parti-
cle’s position x at time ¢ finds the particle on the left-hand-side of the box:
0<x<1L)/2.

(2.2) Use Mathematica or a similar software package to make nice movies of the
exact evolution of the real and imaginary parts of W(x, ¢) given by Eq. (2.29).

(2.3) Aparticlein abox starts in the state ¥ (x, 0) = 1/\/2. Whatis ¥ (x, t)? What
is the probability that an energy measurement at time ¢ yields the ground state
energy?

(2.4) Show explicitly that Eq.(2.26) satisfies the time-dependent Schrodinger
Equation.

(2.5) The uncertainty of some quantity A is defined as: (AA)?> = ((A — (A)?) =
(A%) — (A)?. Use this definition to calculate the exact uncertainty Ax of
the position for the Gaussian wave packet given by Eq.(2.33). Note that, for
example, (x?) = f x2|W(x)|*dx. (Here’s a clever way to do integrals of this

form: [ x2e~*dx = -2 e~ dx.) Then calculate also the uncertainty
Ak in the wave number using (2.47) and convert this into a statement about
the uncertainty in the momentum. What, exactly, is the product of Ax and
Ap? As it turns out, this Gaussian is a “minimum uncertainty wave packet”
— meaning that the product of Ax and Ap for this state is the smallest the
product can ever be. (But it can be and usually is bigger!) Summarize this
fact by writing down an exact mathematical statement of the Heisenberg
uncertainty principle.

(2.6) Work through the gory mathematical details of deriving Eq.(2.51) from
Eq. (2.50). Or better, develop a general formula for Gaussian integrals of
the form | e~ ¢Bk gk in terms of A and B. Then use the general formula
to show how (2.51) follows from (2.50).

(2.7) Show explicitly that the W(x, ) in Eq.(2.51) solves the time-dependent
Schrodinger Equation.

(2.8) Use Mathematica (or some similar package) to make some nice animations
showing the time-evolution of W (x, t) for the initially Gaussian wave packet,
Eq. (2.51). For example, what does the real partlook like? The imaginary part?
The modulus squared?

(2.9) Suppose the initial wave function is a position eigenstate: W(x,0) =
0(x — x"). What is W(x, r)? Note that this is a very useful result, since
any initial wave function can be written as a linear combination of ¢ func-
tions in a rather trivial way: W(x,0) = [W(x’,0)d(x — x')dx. And of
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course the Schrodinger equation is linear, so W(x, ¢) is just that same lin-
ear combination of the time-evolved versions of §(x — x'), i.e., ¥(x,1) =
f\IJ(x’, 0)G(x, x',t)dx, where G(x,x',t) is just the wave function that
W(x,0) = d(x — x’) evolves into at time 7. Use this alternative approach to
re-derive our expression for W (x, ) for the initially Gaussian wave packet.
Use the approach from Project 2.9 to write an expression for W (x, ) for a
W (x, 0) that is constant for —L/2 < x < L/2, and zero otherwise. This
expression will have some divergence issues. But you should be able to show
that in the + — oo limit, a certain simplification allows you to derive a nice
result for (what can be understood as) the probability density associated with
(regular, non-Gaussian) single-slit diffraction (assuming the detection screen
is far behind the slit). Make a nice graph.

Let’s try to understand the mathematics behind the idea, from Sect.2.4, of
trading out the #-dependence of our one-dimensional W (x, f), using y =
vt, for a wave function that we interpret as a solution ¥ (x, y) of the two-
dimensional TISE. Start with the Schrodinger Equation in two dimensions,

H? H? 2mi O
Bt B\ /] =0 2.7
(8x2 ay? h 8t) (.. =0, 79

and look for solutions of the form
W(x,y,1) = ¢(x, y)e k=D (2.80)

corresponding to a plane wave propagating in the y-direction, but with a
slowly-varying y-dependent transverse profile ¢. (a) Plug Eq.(2.80) into

Eq.(2.79) and show that, for w = hk?/2m and Zkg—i) > %, ¢ should satisfy

— +2ik— =0. 2.81
8x2+ i a9y (2.81)

(b) Explain why the two conditions used in (a) are reasonable and what they
mean physically. (c) Argue that, with y <> vt (where v = hk/m), Eq.(2.81)
is just the one-dimensional time-dependent Schrodinger equation. [Note that
this technique is called the “paraxial approximation”.]

A spin 1/2 particle is prepared in the state ©_, (spin down along x). We then
perform a measurement of its spin along the same n direction used in the
example in the text: 60° down from the z-axis (toward the x-axis). Find the
probabilities for the two possible measurement outcomes.

If aspin 1/2 particle is placed in a magnetic field B, the spin-up and spin-down
states (parallel to the magnetic field direction) have different energies, which
one can capture with an appropriate Hamiltonian operator. For example, if
the magnetic field is in the y-direction, we can write
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(2.14)

(2.15)
(2.16)

(2.17)

ﬁ:m@:m(g D

where w is a constant (with angular frequency units, hence the letter) that
depends on the magnetic dipole moment of the particle and the strength of
the field. Use this Hamiltonian operator in Eq. (2.1) to find out how the (spin)
state of a particle, say initially in the state ¢, evolves in time. (Hint: use
the general method outlined in the chapter of solving the time-dependent
Schrodinger equation, namely, first find the energy eigenstates, then write
the initial state as a linear combination of energy eigenstates, then tack the
appropriate time-dependent exponential factor onto each term in the linear
combination.)

For the “two particles in a box” system, construct an entangled state in which
even the total energy of the two particles is not well-defined. Use Mathematica
to make some density plots and/or movies showing how the state looks and
how it evolves in time.

The “two particles in a box” system is mathematically isomorphic to a “one
particle in a two-dimensional box” system. Explain and contemplate.
Re-write the “singlet” spin state for two spin 1/2 particles — Eq.(2.78) — in
terms of the spin-up and spin-down along the x-axis states, ¥y, and ¥_.
Re-write the “singlet” spin state for two spin 1/2 particles — Eq.(2.78) — in
terms of the spin-up and spin-down along the n-axis states, iy, and ¥_,.
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