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Plant Growth Promotion by Endophytic
Bacteria in Nonnative Crop Hosts

Akshit Puri, Kiran Preet Padda and Chris P. Chanway

Abstract Studies highlighting the colonization and plant growth-promoting ability
of endophytic bacteria inoculated into nonnative plant hosts reviewed and presented
in this chapter. Endophytic bacteria, especially those related to the genus Bacillus,
Burkholderia, Enterobacter, Gluconacetobacter, Herbaspirillum, Paenibacillus,
Pseudomonas have been reported to form endophytic colonies in roots and shoot of
nonnative plant hosts. Marker genes like green fluorescent protein have also been
used widely to view the sites of colonization in real time. Apart from colonizing a
nonnative plant host, these endophytic bacteria are also involved in promoting host
plant growth and acting as a biocontrol agent against pathogenic fungi. Such
endophytes have a great potential in future for sustainable agriculture since they
could be used in a range of environmental and biological conditions.

Keywords Endophytic bacteria � Nonnative crop hosts � Biological nitrogen
fixation � Plant growth promoting bacteria � Diazotrophic endophytes

2.1 Introduction

When one considers both the expected worldwide population increase and the
increasing environmental damage that is a result of ever-greater levels of indus-
trialization, it is clear that in the next 10–20 years it will be a significant challenge
to feed all of the world’s people, a problem that will only increase with time.
According to a report released by the United Nations in 2015, the world’s popu-
lation is set to rise to 9.7 billion by 2050 (United Nations 2015). Sadly, the threat of
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having inadequate food to feed all of the world’s population in future is again in the
news. At this point, our world is experiencing a variety of problems like climate
change, food wastage, spoilage on an enormous scale, unequal distribution of food
resources, and continuously growing population. There is certainly no time to lose
and the world needs to act to feed this growing population. Although it is quite
tempting to use chemical fertilizers to boost up the agricultural productivity, such a
solution will have a detrimental effect on our environment. Agricultural scientists
around the world are working round the clock to look for innovative ways to
increase agricultural productivity sustainably, but it certainly represents a great
challenge for them. The use of microorganisms with the objective of improving
agricultural productivity is one of the most important sustainable practices (Freitas
et al. 2007).

The soil is full of microscopic life including a diverse range of bacteria, fungi,
protozoa, and algae. It is estimated that there are more than 94 million organisms in
a single gram of soil, with most of them being bacteria (Glick 2015). The inter-
action between bacteria and plants could be beneficial, neutral, or detrimental to the
plant. However, the effect that a particular bacterium has on a plant may change as
the conditions change. For instance, a bacterium that facilitates plant growth by
providing either fixed nitrogen (N) or phosphorus compounds that are often present
in only limited amounts in many soils is unlikely to provide any benefit to plants
when a significant amount of chemical fertilizer added to the soil (Glick 2012). This
observed when a bacterial strain of Paenibacillus polymyxa (Bal et al. 2012) was
inoculated into lodgepole pine (Pinus contorta var. latifolia Engelm. ex S. Watson).
The bacterial strain fixed significant amounts of N directly from the atmosphere
under N-limited conditions (Anand et al. 2013), but was unresponsive when suf-
ficient amount of N was present in the soil (Yang et al. 2016, 2017).

2.2 Plant Growth-Promoting Bacteria (PGPB):
Biofertilizers for Sustainable Agriculture

Bacteria that are able to provide a range of benefits to the plant also known as plant
growth-promoting bacteria (PGPB). Bashan and Holguin (1998) proposed the term
PGPB in the field of plant-microbe interactions. These bacteria are capable to affect
plant growth via numerous independent or linked mechanisms for sustainable
agriculture (Compant et al. 2010; Palacios et al. 2014). They counteract many
stresses in plants (Kang et al. 2010; Kim et al. 2012), fighting against phy-
topathogens (Verhagen et al. 2004; Raaijmakers et al. 2009) and assisting in the
recovery of damaged or degraded environments (Denton 2007; de Bashan et al.
2012). Nowadays, PGPBs are of great interest because of their applications in
agriculture as biofertilizers, pesticides, and phytoremediation (Sturz et al. 2000;
Berg 2009; Lugtenberg and Kamilova 2009; Weyens et al. 2009; Compant et al.
2010). Classification of PGPB based on their habitable niche presented in Fig. 2.1.
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The rhizosphere is well explained and known to host a diversity of PGPB from
more than 20 genera, including Pseudomonas, Bacillus, Burkholderia,
Enterobacter, Paenibacillus, Azospirillum, Agrobacterium, and Azotobacter.
Several bacteria deriving from the rhizosphere not only colonize the rhizoplane but
can also enter plants and colonize internal tissues and many of them have shown
plant growth-promoting effects (Hallmann 2001; Sessitsch et al. 2004; Compant
et al. 2005, 2008, 2010; Hallmann and Berg 2006; Anand et al. 2013; Puri et al.
2015; Padda et al. 2016a, b). Often not considered as PGPB, cyanobacteria are also
renowned for their ability to promote plant growth indirectly by fixing carbon
through oxygen photosynthesis and N through biological nitrogen fixation. They
can survive in diverse ecological niches including but not limited to phyllosphere
(Fürnkranz et al. 2008; Hamisi et al. 2013), rhizosphere (Karthikeyan et al. 2009;
Prasanna et al. 2009) and plant interior (Tyagi et al. 1980; Krings et al. 2009).

2.3 Endophytic Bacteria: Microbial Life Inside the Plant

About 150 years ago the term, “endophyte” was first coined by de Bary (1866) for
pathogenic fungi entering inside leaves. Since then, many authors have been
redefining this term, but taken literally, the word endophyte means “in the plant”
(endon = within; phyton = plant). Galippe (1887) was the first scientist to postulate
that various vegetable plants host microbes within their interior and these microbes
are soil habitant. This was later confirmed by di Vestea (1888), but well-known
scientists at that time such as Pasteur, Chamberland, Fernbach, Laurent, and others
claimed that plants are normally free of microbes and they indeed demonstrated
contradictory results to prove that Galippe’s hypothesis is wrong (Compant et al.
2010). However, it is now well accepted that plants generally host a wide range of
phylogenetically distinct endophytes in various organs (Bacon and White 2000),

Fig. 2.1 Classification of plant growth-promoting bacteria (PGPB) based on their habitable
niches
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and that almost all of these microbes are derived from the soil environment
(Rosenblueth and Martínez-Romero 2006; Hardoim et al. 2008; Ryan et al. 2008;
Compant et al. 2010).

Since this chapter has key focus on endophytic bacteria, the term needs to
redefine before starting a new discussion. Numerous definitions of the term
“Endophytic Bacteria” could be found in the literature (Kado 1992; Quispel 1992;
Beattie and Lindow 1995; Hallmann et al. 1997), but each has its own restrictions.
In this chapter, we use the term “Endophytic Bacteria” to describe “the bacteria that
can be detected at a particular moment within the tissue of apparently healthy plant
hosts without inducing disease or organogenesis” (Chanway et al. 2014). It is
believed that via rhizosphere colonization, endophytic bacteria become colonize in
various plant parts/tissues such as roots, stem, leaves, flowers, fruits, and seeds
(James et al. 2002; Sessitsch et al. 2002; Berg et al. 2005; Compant et al. 2005,
2008, 2011; Okunishi et al. 2005; Bal et al. 2012; de Melo Pereira et al. 2012;
Anand and Chanway 2013a; Trognitz et al. 2014; Puri et al. 2015, 2016a, b).
Endophytic bacterial population is extremely variable in different plant organs and
tissues shown to vary in from as low as hundreds to as high as 9 � 109 of bacteria
per gram plant tissue (Jacobs et al. 1985; Misaghi and Donndelinger 1990; Sturz
et al. 1997; Hallmann et al. 1997; Chi et al. 2005; Padda et al. 2016a, b). In contrast
to free-living, rhizosphere or phyllosphere microorganisms, bacterial endophytes
are better protected from abiotic stresses such as extreme variations in temperature,
pH, nutrient, and water availability as well as biotic stresses such as competition
(Loper et al. 1985; Cocking 2003; Rosenblueth and Martinez-Romero 2006). In
addition, endophytic bacteria colonize niches that are more conducive to forming
mutualistic relationships with plants (Richardson et al. 2009), for example pro-
viding fixed N to the plant and getting photosynthate in return (Hallman et al. 1997;
Reinhold-Hurek and Hurek 1998a, b; Santi et al. 2013). Primary mechanisms by
which endophytic bacteria promotes plant growth are highlighted in Fig. 2.2.

2.3.1 Diazotrophic Endophytes: Biological N-Fixers Living
Inside the Plant

For plants, N is an essential mineral required to survive and grow. It is a primary
constituent of nucleotides, proteins, and chlorophyll (Robertson and Vitousek
2009). The availability of fixed N (nitrate or ammonium converted from dinitrogen)
is seen by many as the most yield-limiting factor related to crop production
(Muthukumarasamy et al. 2002). Although N is found in high abundance in the
atmosphere, biologically available N in terrestrial ecosystems is in short supply.
Root-nodulating bacteria, such as well-known rhizobia form a symbiotic associa-
tion and provide biologically fixed N directly to leguminous plants. However,
nonleguminous plants, including economically important crop species belonging to
Poaceae family like sugarcane (Saccharum officinarum L.), corn (Zea mays L.),
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wheat (Triticum spp.), and rice (Oryza sativa), do not have this type of symbiosis.
Brazilian researchers were the first to report the presence of N-fixing bacteria
(diazotrophs) in the rhizosphere and rhizoplane of a nonleguminous plant, sugar-
cane (Döbereiner and Alvahydo 1959; Döbereiner 1961). Initially, it was postulated
that nitrogenase activity occurs in the rhizosphere soil but not in roots (Döbereiner
et al. 1972; Ruschel 1981). In subsequent studies, various diazotrophs like
Azospirillum lipoferum, Azospirillum amazonense, Bacillus azotofixans,
Enterobacter cloacae, Erwinia herbicola, Bacillus polymyxa (Rennie et al. 1982;
Magalhaes et al. 1983; Seldin et al. 1984; Baldani et al. 1986) were isolated from
the rhizosphere of sugarcane. Later, it was determined that rhizospheric N-fixation
does not occur at sufficient rates to facilitate high sugarcane yields. Cavalcante and
Döbereiner (1988) reported the isolation of a diazotrophic bacterium from the stem
and root tissues of sugarcane and postulated that this bacterium might be involved
in fixing high amounts of N biologically. The isolated diazotroph was initially
named as Saccharobacter nitrocaptans (Cavalcante and Döbereiner 1988) but was
later changed to Acetobacter diazotrophicus (Gillis et al. 1989) and then renamed as
Gluconacetobacter diazotrophicus (Yamada et al. 1997). This bacterium was able
to form high endophytic populations and fix N at high sucrose concentrations
(Boddey et al. 1991) and in low pH conditions (Boddey et al. 1991; Stephan et al.

Fig. 2.2 Principal mechanisms of plant growth promotion exhibited by endophytic bacteria
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1991) and these conditions are typically found in sugarcane tissues. This led to the
suggestion that it can satisfy almost all of the sugarcane N requirements while
living inside the sugarcane tissues. The term “endophytic diazotrophic bacteria“
was then coined by Döbereiner (1992) to designate all diazotrophs able to colonize
primarily the root interior of graminaceous plants, survive very poorly in soil and
fix N in association with these plants (Baldani et al. 1998). Since the discovery of
endophytic diazotrophic bacteria in sugarcane, other agronomically important crop
species including rice (Baldani et al. 2000; Gyaneshwar et al. 2001; Hurek et al.
2002), corn (Olivares et al. 1996; Riggs et al. 2001; Roesch et al. 2008; Montañez
et al. 2009; Puri et al. 2015, 2016b), canola (Brassica napus L.) (Germida and de
Freitas 1998; Puri et al. 2016a; Padda et al. 2016a, b) and wheat (Sabry et al. 1997)
have been postulated to receive significant amounts of fixed N in this way.
Table 2.1 presents a brief list of prominent diazotrophic endophytes isolated from
key agricultural crops.

Table 2.1 Prominent diazotrophic bacteria isolated from different crop species

Crop Diazotrophic endophytes References

Canola Bacillus polymyxa Germida and de Freitas (1998)

Paenibacillus polymxa Padda et al. (2016a, b), Puri et al. (2016a)

Corn Burkholderia tropica sp. Reis et al. (2004)

Burkholderia silvatlantica sp. Perin et al. (2006)

Gluconacetobacter
diazotrophicus

Eskin (2012)

Herbaspirillum spp. Olivares et al. (1996), Roesch et al. (2008)

Ideonella spp. Roesch et al. (2008)

Klebsiella pneumoniae Palus et al. (1996), Chelius and Triplett
(2000)

Paenibacillus polymyxa Puri et al. (2015, 2016b)

Pseudomonas spp. Montañez et al. (2009)

Rice Alcaligenes faecalis
[now known as Pseudomonas
stutzeri (Vermeiren et al.
1999)]

You and Zhou (1989)

Azoarcus spp. Egener et al. (1999), Engelhard et al. (2000),
Hurek et al. (2002)

Burkholderia spp. Baldani et al. (2000), Rangjaroen et al. (2015)

Herbaspirillum spp. Baldani et al. (2000), Elbeltagy et al. (2001)

Klebsiella sp. Rangjaroen et al. (2015)

Serratia marcescens Gyaneshwar et al. (2001)

Sugarcane Azoarcus spp. Reinhold-Hurek et al. (1993)

Azospirillum brasilense Carrizo de Bellone and Bellone (2006)

Burkholderia tropica sp. Reis et al. (2004)
(continued)
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2.4 Foreign Associations: Endophytic Bacteria Promoting
the Growth of Nonnative Crop Species

Plants are a complex micro-ecosystem which can only be colonized by foreign
microbes having metabolic diversity. Foreign associations of endophytes are not
unfamiliar to the scientific community and numerous studies have highlighted the
ability of these microbes to associate with a diversity of hosts. Endophytic bacteria
can colonize and provide benefits to a variety of foreign plant hosts ranging from
monocots to dicots, gymnosperms to angiosperms and woody trees to herbaceous
plants. Although the list of these endophytes is very long and include genera such
as Acetobacter, Arthrobacter, Azoarcus, Azospirillum, Bacillus, Bradyrhizobium,
Burkholderia, Enterobacter, Flavobacterium, Frankia, Gluconacetobacter,
Herbaspirillum, Paenibacillus, Pseudomonas, Rhizobacter, Rhizobium,
Sinorhizobium, Streptomyces, and Xanthomonas, only a few important ones have
been discussed in this chapter. A brief informative list of key endophytes that have
been reported to play an important role in growth promotion of nonnative hosts
through direct or indirect mechanisms has been compiled in Table 2.2. In the
sub-sections to follow, studies relating to endophytic colonization and plant growth
promotion by six of the most important bacterial endophytes reported in foreign
plant host species have been reviewed in detail.

2.4.1 Arthrobacter

In 1947, Conn and Dimmick established a new genus “Arthrobacter” in the world
of Microbiology (Conn and Dimmick 1947). By far more than 70 species have been
included in this genus (Fu et al. 2014). Bacterial species belonging to this genus are

Table 2.1 (continued)

Crop Diazotrophic endophytes References

Burkholderia silvatlantica sp. Perin et al. (2006)

Herbaspirillum spp. Baldani et al. (1992, 1996, 2002), Cavalcante
and Dobereiner (1988), Muthukumarsamy
et al. (1999)

Gluconacetobacter
diazotrophicus

Gillis et al. (1989), Boddey et al. (1991),
Stephan et al. (1991), Cavalcante and
Dobereiner (1988), Sevilla et al. (2001)

Wheat Azorhizobium caulinodans Sabry et al. (1997)

Azospirillum brasilense Schloter and Hartmann (1998), Rothballer
et al. (2003)

Klebsiella pneumoniae Iniguez et al. (2004)

Herbaspirillum hiltneri Rothballer et al. (2006)
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Gram-positive obligate aerobes commonly found in soils. They are rod-shaped
during the stationary growth phase and cocci-shaped during stationary phase.
Members of Arthrobacter genus can survive in a variety of environmental condi-
tions, including but not limited to water, air, human skin, oil, sludge, tobacco
leaves, soil (Ding et al. 2013; Fu et al. 2014). Studies have shown that members of
this genus can be helpful in many ways in agriculture. For instance, they fix
atmospheric N, solubilize sulfur and phosphorous in soil and degrade heavy metals
in polluted sites (Singer et al. 2000; Jiang et al. 2004; Postma et al. 2010). One of
the most important aspects of plant growth promotion is deriving N from the
atmosphere. Arthrobacter sp. HS-G8 was isolated from compost in Japan’s
Okinawa prefecture that possessed N-fixing ability (Jiang et al. 2004). In another
study, two endophytic strains, Arthrobacter nitroguajacolicus A18 and A34,
originally isolated from corn leaves possess nitrogenase reductase gene nifH indi-
cating that these strains could fix atmospheric N (Pisarska and Pietr 2012). These
strains successfully colonized and fixed N in different cultivars of corn thereby
promoting the growth of a nonnative host (Pisarska and Pietr 2012). An endophytic
bacterial strain, Arthrobacter humicola YC6002, from surface-sterilized root tissues
of Korean turf grass (Zoysia japonica) reported by Chung et al. (2010). This
bacterial endophyte successfully colonized internal tissues of a nonnative host,
radish (Raphanus sativus), and could be used in future for weed management due to
its ability to produce phytotoxic compounds like 3-phenylpropionic acid (Chung
et al. 2010).

2.4.2 Bacillus

The history of genus Bacillus dates back to 1835 when Christian Gottfried
Ehrenberg isolated a bacterium (Vibrio subtilis, now known as Bacillus subtilis)
belonging to this genus (Ehrenberg 1835). Later, in 1872, Ferdinand Cohn pro-
posed a new genus “Bacillus” and renamed Vibrio subtilis to Bacillus subtilis
(Cohn 1872). Bacteria of this genus are Gram-positive, endospore-forming and
rod-shaped that could be either obligate aerobes or facultative anaerobes. Genus
Bacillus is one of the most diverse group of bacteria that is well known for its many
agricultural and industrial applications. In agriculture, bacteria of this genus are
widely used as an effective biocontrol agent for numerous crop species. The
commercial success of Bacillus thuringiensis exemplified as a biocontrol agent
worldwide. Other bacterial isolates of this genus having biocontrol and plant
growth-promoting (PGP) properties have also been widely studied and successfully
used commercially in agriculture. Endophytic colonization in plant species by
bacteria has also been reported (Wang et al. 2009b; Lee et al. 2012; Liu et al. 2014;
Khalifa and Almalki 2015). Biocontrol of pathogens like Sclerotinia sclerotiorum,
Fusarium oxysporum, Rhizoctonia solani, Botrytis cinereapers, Gibberella zeae,
Dothiorella gregaria, Colletotrichum gossypii, Phytophthora capsici, Pythium
myriotylum, Athelia rolfsii, Magnaporthe oryzae, Ralstonia solanacearum, and
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Xanthomonas axonopodis pv. punicae by Bacillus in non-native plants has been
reported over the years (Maheshwari 2013).

Stem rot disease of rapeseed (Brassica napus L.), caused by a pathogenic fungus
Sclerotinia sclerotiorum, is a major problem faced worldwide by many countries.
Chen et al. (2014) tested the ability of an endophyte, B. subtilis EDR4, to inhibit the
growth of this pathogen in vitro and in vivo in rapeseed under greenhouse and field
conditions. B. subtilis EDR4 was initially isolated from root tissues of wheat (Qiao
et al. 2006) and subsequently reported to inhibit the growth of the fungal pathogen,
Gaeumannomyces graminis var. tritici, of wheat (Liu et al. 2007). In the in vitro
experiments, germination rate and hyphal growth of S. sclerotiorum were signifi-
cantly inhibited by B. subtilis EDR4 and the results of in vivo experiment con-
ducted under greenhouse and field conditions were no different. Scanning electron
microscopy revealed that EDR4 causes leakage in the cytoplasm, shrinking of
hyphae and irregular swelling of tips of the fungus. In another study related to
Brassica napus, an endophytic strain B. licheniformis CHM1 was isolated from
stem tissues of rice and tested for biocontrol activity and plant growth promotion in
cole (Brassica napus) (Wang et al. 2009a). Strain CHM1 colonized stem/leaf tis-
sues and significantly promoted the growth of cole seedlings (increasing the fresh
weight of seedlings by 72% and chlorophyll content by 61%). This bacterial strain
also inhibited the growth of common fungal pathogens like F. oxysporum, R.
solani, B. cinereapers, D. gregaria, G. zeae and C. gossypii in in vitro experiments.
In in vivo experiments, it provided 60% protection against R. solani in horse bean
(Vicia faba) and 70% protection against Bipolaris maydis in corn. In a more recent
study, wheat plant growth was significantly promoted by two endophytic strains
(135 and 170) belonging to the genus Bacillus, isolated from stem and root tissues
of a medicinal plant, Lonicera japonica, native to eastern China (Zhao et al. 2015).
In in vitro experiments, it was found that these two strains possess many PGP traits
that could increase wheat growth. Results of in vivo experiment were consistent
with results of in vitro experiment since inoculation with these strains significantly
increases fresh weight, dry weight and length of wheat seedlings along with the
chlorophyll content. These strains also showed in vitro antifungal activity against
common pathogenic fungi like Magnaporthe grisea (rice blast fungus), F. oxys-
porum (usually affects wheat and rice crops) and Alternaria alternate (causes leaf
spot disease). Based on the results of physiological and biochemical tests, and the
sequencing of 16S rRNA gene and phylogeny analysis, it was revealed that strains
Bacillus spp. 135 and 170 are very closely related to B. subtilis FL and B. atro-
phaeus NRRLNRS-213T, respectively. This study was also important in estab-
lishing the fact that strains belonging to genus Bacillus are potentially capable of
colonizing and promoting the growth of a completely distinct host (wheat, a
monocot) as compared to the host species from which it was isolated (Lonicera
japonica, a eudicot).

In a completely different approach to combat with pathogens and increase plant
yield, Prabhukarthikeyan et al. (2014) used a bioformulation containing a mixture
of an entomopathogenic fungus, Beauveria bassiana B2, known for its ability to
control a wide range of agriculturally important insect pests and an endophytic
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strain of B. subtilis (EPC8) against Fusarium wilt (F. oxysporum f. sp. lycopersici)
and fruit borer (Helicoverpa armigera) disease in tomato (Solanum lycopersicum
Mill.). It should be noted that B. subtilis EPC8 was initially isolated from root
tissues of coconut (Cocos nucifera) (Rajendran et al. 2008). Bioformulation of B2
and EPC8 suppressed these pathogens in in vitro experiments and under glasshouse
and field conditions when tomato plants were treated with this mixture. The
combination of B2 and EPC8 was better than the pesticide control (carben-
dazim + quinalphos) against both Fusarium wilt and fruit borer in glasshouse study
and was equally good in field conditions. Interestingly, it was also observed that
such bioformulation promotes tomato growth by increasing the plant height and
fruit yield under both glasshouse and field conditions. Recently, Munjal et al.
(2016) reported that an endophytic biocontrol agent, Bacillus megaterium BP17,
initially isolated from root tissues of black pepper (Piper nigrum) (Aravind et al.
2009) can colonize ginger plant (Zingiber officinale). Ginger roots were success-
fully colonized by this bacterial strain with population size ranging from 2.5 to 2.8
log10 cfu/g. It was also reported that this bacterial strain is capable of releasing
antimicrobial chemical compounds. In an interesting study, colonization pattern of
three nonnative host species by an endophytic Bacillus strain under sterile and
non-sterile conditions was reported by Moreira et al. (2015). Bacillus amylolique-
faciens 629 was initially isolated from Theobroma cacao (Leite et al. 2013) and was
inoculated into three distinct host species namely, cucumber (Cucumis sativus cv.
Marketmore 76), corn (cv. BRS Caatingueiro) and common bean (Phaseolus vul-
garis cv. BRS Notável). Strain 629 successfully colonized stem and leaf tissues of
cucumber, root and stem tissues of common bean, and root, stem and leaf tissues of
corn plant under both sterile and non-sterile conditions significantly. It is important
to note that the population size of endophytic bacteria was 3 times lower under
non-sterile conditions in all plant species as compared to the sterile conditions. It
could be concluded that indigenous endophytic bacteria and fungi pose a compe-
tition to the nonindigenous endophytes. Thus, the foreign association and estab-
lishment of an endophyte within a nonnative host is a formidable task.

2.4.3 Burkholderia

The genus ‘Burkholderia’ was first proposed by Yabuuchi et al. (1992) for the RNA
homology group II of Pseudomonas genus. Seven species of this group were
transferred to the new genus Burkholderia and renamed as B. caryophylli, B.
cepacia, B. gladioli, B. mallei, B. pickettii, B. pseudomallei, and B. solanacearum.
Currently, there are close to 100 species in this genus that are known to inhabit
diverse ecological niches, ranging from contaminated soils to the respiratory tract of
humans. Burkholderia species are renowned for their ability to promote plant
growth through various mechanisms including, N-fixation (Gillis et al. 1995; Cruz
et al. 2001; Estrada-De Los Santos et al. 2001) and biocontrol of pathogens (Hebbar
et al. 1998; Heungens and Parke 2000; Parke and Gurian-Sherman 2001). The
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majority of species are soil bacteria that are generally found in the rhizosphere or as
free-living microbes in the soil but there are some species that can colonize internal
tissues of plants and form beneficial interactions (Caballero-Mellado et al. 2004;
Pandey et al. 2005; Park et al. 2005; Mendes et al. 2007; Ho et al. 2015). The
interactions of some endophytic species of Burkholderia genus seem to be restricted
to only one type of host, whereas other species have a diverse host range (Coenye
and Vandamme 2003).

In a recent study, three strains belonging to the B. gladioli species were isolated
from roots and seeds of ancient and wild maize plants (Shehata et al. 2016). In vitro
studies revealed that these strains can inhibit fungal pathogen Sclerotinia
homoeocarpa and their interaction was also visualized on microscope slides by
staining with Evans blue. These strains were also successful in inhibiting the
growth of other common crop pathogens. The ability of these strains to act as a
biocontrol against S. homoeocarpa was also tested in vivo with creeping bentgrass
(Agrostis stolonifera) in two greenhouse trials and the results were no different from
the in vitro studies. The endophytic ability of one of the strains, B. gladioli 3A12,
was also tested in a nonnative host, creeping bentgrass, by tagging the strain with
green fluorescent protein (GFP) and examining under a confocal microscope. It was
found that GFP-tagged 3A12 strain successfully colonized shoots of creeping
bentgrass. The authors concluded that wild cultivars of agricultural crops might
possess an unexplored reservoir of bacterial endophytes having biocontrol traits
against a wide range of pathogens. In a study conducted a few years back, an
endophyte, B. cenocepacia 869T2, was isolated from root tissues of vetiver grass
(Chrysopogon zizanioides) (Ho et al. 2015). In vitro, strain 869T2 was able to
inhibit the mycelial growth of Fusarium oxysporum f. sp. cubense tropical race 4
(Foc TR4), a pathogenic fungus that causes Panama disease in banana (Musa
acuminata), showing 44% antifungal efficiency. When this endophytic strain was
inoculated into banana plantlets (Cavendish cv. Pei-Chiao), it developed stable
endophytic population in pseudostem tissues, thus showing endophytism in a dis-
tinct host. The in-field experiment revealed that inoculation of banana plantlets with
strain 869T2 not only reduces the disease symptoms of Foc TR4 but also promotes
growth by increasing the plant height and pseudostem girth significantly. This strain
of B. cenocepacia can be used as an effective biocontrol agent in susceptible banana
cultivars. Species of Burkholderia MSSP inhabit root nodule of Mimosa pudica
capable for N fixation along with antagonism against Rhizoctonia solani, and
Sclerotinia sclerotiorum has been reported by Pandey et al. (2005).

A remarkable endophytic bacterial strain (PsJN) was isolated by Dr. Jerzy
Nowak as a contaminant from surface-sterilized onion (Allium cepa L.) roots
infected with fungal pathogen Glomus vesiculiferum (Frommel et al. 1991;
Sessitsch et al. 2005). This strain has shown outstanding ability over the years to
endophytically colonize a wide range of plant hosts. The strain PsJN was initially
classified as a Pseudomonas sp. (Frommel et al. 1991), but was later reclassified as
a B. phytofirmans sp. (Sessitsch et al. 2005). Endophytic colonization by PsJN in a
nonnative host was first reported in potato (Solanum tuberosum) (Frommel et al.
1991). By using light and electron microscopy Frommel et al. also reported that
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endophytic population of PsJN strain is present in the epidermal layers of root and
in the xylem tissues of the stem. They also found that inoculation significantly
promotes the growth of potato plantlets by increasing root dry weight, secondary
root branching, root number, haulm dry weight, stem length, leaf hair formation,
and total lignin content of the plant. They also laid out a preliminary hypothesis that
growth promotion by the strain PsJN is due to the production of phytohormones. In
a subsequent study (Frommel et al. 1993), the ability of this strain to colonize
internal root tissues and promote plant growth in field conditions was reported with
the same cultivar of potato as was used in Frommel et al. (1991). In-field, it
stimulated plant emergence, root development, and overall yields of the potato
plant. Another report about the endophytic colonization of a nonnative host by
strain PsJN was published in 1997, in which the effect of inoculum density, tem-
perature, and genotype on colonization and growth promotion of tomato
(Lycopersicon esculentum L.) seedlings was evaluated (Pillay and Nowak 1997). In
this study, the inoculum range that promoted shoot and root interior colonization
also best-promoted plant growth of tomato cultivars. Endophytic colonization
patterns of strain PsJN were reported for the first time by Compant et al. (2005)
inside grapevine (Vitis Vinifer L.). The strain PsJN was tagged with GFP or gusA
and visualized under the desired microscope to examine internal tissue colonization.
Colonization of grapevine plantlet started with the bacterial strain gaining entry
through the sites of the emergence of lateral root or through the root tips, then
accumulating near the cell wall of the rhizodermis cells followed by intercellular
colonization of cortical cells. PsJN bacterial cells moved up through the xylem
vessels colonizing the fifth internode and leaf internal tissues. It was also observed
that the strain PsJN secretes cell wall-degrading enzymes, endoglucanase, and
endopolygalacturonase thus supporting the findings of microscopy studies. In a
subsequent study with grapevine, GFP-tagged PsJN strain could also be visualized
as an endophyte inside young berries (Compant et al. 2008) and was able to thrive
inside and outside the plantlet even when grown under non-sterile conditions (with
the presence of other microorganisms). Analysis of the complete genome of a
microorganism can reveal a lot about its properties and behavior in diverse eco-
logical niches. Although, the complete genome of B. phytofirmans PsJN was
sequenced and reported earlier (Weilharter et al. 2011), the analysis of the genome
was carried out by Mitter et al. (2013). As reported by Mitter et al. PsJN strain in
many aspects is outstanding because it has a large genome which is well-equipped
with genes that can degrade complex organic compounds (plant cell walls). It also
possesses a high number of cell surface signaling and secretion systems and has a
3-OH-PAME quorum-sensing system that might be helping this bacterium to
switch from free-living to symbiotic lifestyle. In another interesting study, the
ability to fix N was successfully transferred from a known N-fixing bacterium, B.
phymatum STM 815, to B. phytofirmans PsJN through horizontal gene transfer
(Lowman et al. 2015). The new strain was named PsJN+, which outperformed the
wild-type strain PsJN in terms of promoting the growth of switchgrass plant even
under low N conditions. B. phytofirmans PsJN is a unique and completely out-
standing endophyte that has been shown wide spectrum of endophytic lifestyles in
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diverse host species ranging from monocots to dicots since its isolation from onion
roots (Frommel et al. 1991, 1993; Liu et al. 1995; Pillay and Nowak 1997; Sharma
and Nowak 1998; Nowak et al. 2004; Compant et al. 2005, 2008; Sun et al. 2009;
Poupin et al. 2013; Naveed et al. 2014a, b) and could be used as an effective
commercial biofertilizer in agriculture production.

2.4.4 Gluconacetobacter

The genus Gluconacetobacter was proposed by Yamada et al. (1997) in an attempt
to reclassify and include the bacterial species Acetobacter diazotrophicus into a
new genus. Although there are currently 24 species in this genus but the most
widely studied species is Gluconacetobacter diazotrophicus. G. diazotrophicus is a
renowned diazotrophic endophyte found frequently in tissues of sugarcane and
other grasses, known for its ability to provide significant amounts of N to the plant
directly from the atmosphere. Studies about this bacterial species, including earliest
isolation, endophytism, and N-fixing trait have already been discussed in
Sect. 2.3.1. The studies highlighting the association of this bacteria with diverse
host species are discussed here. A. diazotrophicus (now known as G. diazotroph-
icus) strain PA15 isolated from sugarcane roots (Gillis et al. 1989) was tagged with
three different reporter genes, uidA, GFP and cobA to evaluate the colonizing ability
of this bacterial strain in three different crops namely wheat, corn and rice (Sevilla
and Kennedy 2000). Strain PA15 heavily colonized corn kernels, primary root, and
root hairs in just two days after inoculation. Rice seeds were not as heavily colo-
nized as corn but lateral roots and root hairs of rice were colonized heavily.
Colonization pattern in wheat was similar to rice. Plant growth promotion by strain
PA15 was observed only in rice seedlings and was thought to be due to the
bacteria’s N-fixing ability since mutants of PA15 with nif gene removed were not
able to promote rice growth. In another study, diazotrophic isolates belonging to the
genus Gluconacetobacter were isolated from internal tissues of sugarcane growing
in ancient agricultural fields of the Nile Delta (Giza) (Youssef et al. 2004). It was
observed that these Gluconacetobacter spp. were able to form colonies in the stem
(xylem vessels) and roots (cortex and vascular cylinder) of 21-day-old wheat
seedlings when studied by using scanning electron microscopy. Apart from endo-
phytically colonizing a diverse host species (wheat) these isolates were able to
increase the stem and root dry weight significantly, thus increasing the overall plant
biomass of wheat. Another study, G. diazotrophicus strain PAL5 (Bertalan et al.
2009) isolated from sugarcane was shown to colonize rice shoot and root endo-
phytically with a population size of 104 cfu/gm fresh tissue. To visualize the
endophytic colonies in rice, this strain was tagged with GFP and observed by using
confocal laser microscopy. Microscopy experiment revealed that bacterial cells of
PAL5 initially gather near the sites of lateral root emergence and at junctions
between root cap and root axis in the vicinity of the apex and then enter the roots
through these different openings (Rouws et al. 2010). In a subsequent study,
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Alquéres et al. (2013) also indicated the endophytic colonization of rice roots by
strain PAL5 through GFP-tagging. Secretion of reactive oxygen species (ROS) is a
typical defense response activated by the plants in response to a pathogen attack.
This study also established that strain PAL5 secrets ROS-scavenging enzymes that
play a key role in the endophytic colonization of rice. Further, endophytic colo-
nization pattern of strain PAL5 in A. thaliana root was studied by tagging it with a
red-fluorescent protein (Rangel de Souza et al. 2016). Inoculation by this strain
significantly promoted shoot and root fresh weight, shoot and root dry weight, total
leaf area, the number of leaves. Whole canopy gas exchange was also evaluated in
this study by using a portable photosynthesis system and the results revealed that
inoculation by PAL5 significantly increases net photosynthetic rates, lowers tran-
spiration rate and increases water-use efficiency in A. thaliana. These studies clearly
establish the ability of G. diazotrophicus PAL5 to endophytically colonize a range
of plant hosts and promote plant growth through different mechanisms. Although,
G. diazotrophicus bacterium grows well in high sucrose environments like internal
tissues of sugarcane and has been associated most of the time with sugarcane either
as an endophyte or as a beneficial rhizospheric microbe, but this bacterium can also
endophytically colonize a variety of plant species and promote their growth mainly
through N-fixation.

2.4.5 Paenibacillus

The genus Bacillus was very heterogeneous containing phylogenetically diverse
bacterial species. To reclassify some facultative anaerobes into a new genus (par-
ticularly B. polymyxa and some of its close relatives; rRNA group 3 of Ash et al.
(1991, 1993) created the genus Paenibacillus (meaning: almost a Bacillus).
Bacterial species belonging to this genus are low (mol% G + C contants) in DNA,
Gram-positive, neutrophilic, peri-flagellated heterotrophic, endospore-forming
facultative anaerobes. There are currently more than 180 species in this genus,
most of them discovered within the last decade (http://www.bacterio.net/
paenibacillus.html). The type species of this genus, Paenibacillus polymyxa, is
well known for its ability to fix N (Guemouri-Athmani et al. 2000; Anand et al.
2013; Anand and Chanway 2013b; Bal and Chanway 2012a, b), promote plant
growth (Timmusk et al. 1999; Puri et al. 2015; Puri et al. 2016a, b; Padda et al.
2016a, b) and suppress plant pathogens (Dijksterhuis et al. 1999; Ryu et al. 2006;
Choi et al. 2007; Haggag and Timmusk 2008; Timmusk et al. 2009). P. polymyxa is
known to colonize diverse ecological niches like soil, rhizosphere, intercellular and
intracellular spaces of plant tissues, marine environments, fermented food products
(Lal and Tabacchioni 2009). Endophytic colonization of plant tissues by this
bacterial species has been reported time and again by various scientists (Bent and
Chanway 1998; Shishido et al. 1999; Chanway et al. 2000; Bal et al. 2012; Pu et al.
2015; Yang et al. 2016; Tang et al. 2017).
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An interesting study about the invasion of plant roots and endophytic colo-
nization by P. polymyxa suggests that it form biofilms on the surface of the roots to
gain entrance into the plant (Timmusk et al. 2009). Biofilms are communities of
bacterial cells covered in a self-produced extracellular matrix, that are
surface-attached and highly structured (Costerton 1995). GFP-tagging of
P. polymyxa and visualization under confocal laser microscope has revealed that
this bacterium can colonize both intercellular and intracellular spaces of stem and
root tissues, which was significant in establishing its endophytic nature (Timmusk
et al. 2009; Anand and Chanway 2013a). Zhao et al. (2015) isolated several
endophytic strains from a medicinal plant, Lonicera japonica, generally grown in
eastern china. Two of the isolated strains belonged to genus Paenibacillus
(P. polymyxa and P. ehimensis) and possessed many plant growth-promoting
characteristics including siderophore production, phosphate solubilization, IAA
production, aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and
cellulase and pectinase activity. Apart from that, these strains were able to suppress
the growth of common crop pathogens. These Paenibacillus strains endophytically
colonized a nonnative host, wheat, and promoted its growth by significantly
increasing shoot and root length, seedling fresh and dry weight, and chlorophyll
content. In another recent study, several endophytic strains were isolated from wild
maize (teosinte) believed to harbor beneficial endophytes that could provide
resistance to common crop pathogens (Mousa et al. 2015). After initial in vitro
screening against fungal pathogen, Fusarium graminearum, causative agent of
Gibberella Ear Rot (GER) in modern corn, three antifungal endophytes identified as
P. polymyxa were tested for their ability to suppress GER in modern corn seedlings.
GFP-tagged P. polymyxa endophytic strains colonized internal tissues of modern
corn plants and suppressed the growth of F. graminearum pathogen in vivo. It was
concluded that wild relatives of modern crops might have a reservoir of endophytes
that could be used as biocontrol against pathogens that lead to extensive crop loss.

Chris P Chanway and his group have been working with P. polymyxa since 1988
and have published significant reports about the role of this bacterium in promoting
plant growth and health in both agricultural and forest ecosystems. In 2012, the
group reported the existence of an endophytic diazotroph, P. polymyxa P2b-2R,
living in stem tissues of a gymnosperm, lodgepole pine (Pinus contorta), naturally
regenerating at a site located in Williams Lake, BC, Canada (Bal et al. 2012).
P2b-2R was able to grow on N-free media, combined carbon medium (CCM;
Rennie 1981), and consistently reduced significant amounts of acetylene in the
acetylene reduction assay (ARA) (Bal et al. 2012). By using a more accurate
method of determining the amount of N fixed (15N foliar dilution assay), Anand
et al. (2013) discovered this bacterial strain’s remarkable ability to derive up to 79%
of N from the atmospheric pool. In a subsequent report, it was observed that strain
possesses nif genes, required to fix atmospheric N (Anand and Chanway 2013c).
GFP-tagged P2b-2R strain was constructed to evaluate the endophytic colonization
sites in lodgepole pine and it was reported to colonize both intercellular and
intracellular spaces of lodgepole pine interior tissues (Anand and Chanway 2013a).
First reports about P2b-2R’s ability to colonize a nonnative host came out in 2012
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and 2013 when this bacterial strain was found to colonize internal tissues of stem
and root of another gymnosperm tree species, western red cedar (Thuja plicata)
(Bal and Chanway 2012b; Anand and Chanway 2013b). P2b-2R significantly
enhanced seedling length and biomass of western red cedar and also fixed con-
siderable amounts of N from the atmosphere (Anand and Chanway 2013b).
Subsequently, Puri et al. (2015) hypothesized that this bacterial strain could provide
similar benefits to angiosperms, especially the crop species, by colonizing them
endophytically. Their hypothesis was evidenced and P2b-2R colonized internal root
tissues of corn seedlings with a population size of 105 cfu/g fresh tissue weight in
just 10 days. P2b-2R also fixed up to 20% of N from the atmosphere, increased
seedling length by 35% and biomass by 30% in 30-day long trials (Puri et al. 2015).
P2b-2R’s ability to colonize diverse host species was ascertained, when it suc-
cessfully colonized interior tissues of an important oilseed crop species, canola
(Puri et al. 2016a) and vegetable crop species, tomato (Padda et al. 2016a). Similar
benefits were provided by P2b-2R to these crop species indicating that P2b-2R can
symbiotically associate with a broad range of hosts (see Table 2.3). Padda et al.
(2017) reported an astonishing discovery with the GFP-tagged P2b-2R (P2b-2Rgfp)
constructed by Anand and Chanway (2013a), where P2b-2Rgfp inoculation sig-
nificantly enhanced corn seedling growth (length and biomass) as compared to the
wild-type P2b-2R inoculation. This was the first report in literature where
GFP-tagging of a bacterial strain related to the Bacillus (and Paenibacillus) genus
enhanced its growth-promoting abilities. A similar discovery about the enhance-
ment of PGP abilities by GFP-tagging was reported in Azospirillum brasilense a

Table 2.3 Nitrogen fixation and plant growth promotion of important agricultural crops by
Paenibacillus polymyxa P2b-2R

Days after inoculation Corn Canola Tomato

%Ndfaa 20 6.52 8.08 10.0

30 10.9 12.9 12.3

40 15.7 16.2 18.1

90 30.2 27.1 –

% seedling length promotionb 20 28.4 17.8 40.6

30 24.1 20.5 36.5

40 24.7 28.4 24.9

90 51.9 70.7 –

% seedling biomass promotionc 20 17.2 57.0 56.1

30 34.1 53.7 69.0

40 28.4 37.1 93.0

90 52.7 100.9 –
aPercent nitrogen derived from the atmosphere (%Ndfa)
bPercent seedling length promoted by inoculation with P. polymyxa P2b-2R
cPercent seedling biomass promoted by inoculation with P. polymyxa P2b-2R. These parameters
were calculated using the formulas described in Puri et al. (2016b). [Data provided in the table has
been compiled from [Padda et al. (2016a, b, 2017); Puri et al. (2016b)]
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decade ago (Rodriguez et al. 2006). The ability of P2b-2Rgfp to perform better than
the wild-type strain was also confirmed in canola and tomato (Padda et al. 2016a).
Benefits of inoculating this PGP endophytic strain and its GFP-tagged counterpart
in a long-term trial were also evaluated and the results were even better than the
previous studies which were of shorter duration (Puri et al. 2016b; Padda et al.
2016b). Thus, it can be concluded that P. polymyxa strain P2b-2R is an ideal
endophytic strain that is able to colonize a variety of host species that are com-
pletely different physiologically and botanically.

2.4.6 Pseudomonas

Pseudomonas genus was first identified and described in the late nineteenth century
(Migula 1894). The history of this genus from the time when it was first discovered
till now has been described in great detail by Palleroni (2010). It is a diverse genus
containing more than 230 species (http://www.bacterio.net/pseudomonas.html).
Most of these species have a wide range of metabolic and catabolic capabilities.
Bacterial species can be found in diverse ecological niches and could be plant
growth and health-promoting bacteria, plant pathogens, or disease-causing human
and animal pathogens (Preston 2004; Miller et al. 2008). Pseudomonas spp. are
known to promote plant growth through a variety of mechanisms like biocontrol of
pathogens, stimulating induced systemic resistance, N-fixation, phosphorus solu-
bilization, and secreting phytohormones like auxins and cytokinins (Miller et al.
2008). Many studies have reported the ability of Pseudomonas spp. to associate
endophytically with a variety of plant hosts, such as Peanut (Gupta et al. 2006),
Sesame (Sesamum indicum L.) (Kumar et al. 2009), Mustard (Aeron et al. 2011),
potato (Andreote et al. 2009), olive (Olea europaea) (Prieto et al. 2009;
Maldonado-González et al. 2013), poplar (Populus deltoides) (Weyens et al. 2010,
2012), and wheat and cucumber (Pandey et al. 2012). Due to the diversity of
Pseudomonas spp., many scientists have reported about their ability to colonize a
range of nonindigenous plant hosts.

A diazotrophic endophyte, P. aeruginosa PM389, was isolated from an
important forage crop, pearl millet (Pennisetum glaucum), widely grown in the
Indian subcontinent, South America, USA and Australia (Gupta et al. 2013). It was
observed that PM 389 has the ability to fix N, solubilize mineral phosphate, produce
siderophores, inhibit the growth of bacterial and fungal pathogens. Looking at its
plant growth-promoting abilities, Gupta et al. (2013) inoculated this bacterial strain
into wheat and observed that it successfully colonizes the wheat seedlings and
significantly enhance root and shoot length, and vigor index. In another study,
another strain of P. aeruginosa originally isolated from wheat stem successfully
shielded cucumber seedlings from various biotic and abiotic stresses (Pandey et al.
2012). Biomass of P. aeruginosa PW09-inoculated cucumber seedlings increased
significantly as compared to the controls when grown under biotic stress (treated
with pathogenic fungus, Sclerotium rolfsii) and abiotic stress (NaCl treatment). In a
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subsequent study, another strain PaBP35, belonging to this bacterial species, iso-
lated from stem tissues of black pepper and tagged with GFP to visualize the
endophytic colonization sites in a nonnative host, tomato (Kumar et al. 2013).
GFP-tagged PaBP35 colonized interior tissues of the root, stem, and leaves of a
14-day-old tomato with high population densities, thus confirming its ability to
form endophytic colonies in a nonnative host. Effective root colonization is a
prerequisite attribute for the success of PGPR in plant growth and yield promotion.
Colonization by fluoresent Pseudomonas in sesame rhizosphere promotes growth
and proved effective as indigenous microflora over nonindigenous microflora
(Aeron et al. 2010). Recently, a phenanthrene-degrading endophytic Pseudomonas
strain was isolated from clover (Trifolium pratense L.) (Sun et al. 2014).
Phenanthrene is a polycyclic aromatic hydrocarbon, which is a toxic metabolite
found in some soils and can be taken up by the plants through roots. It can enter the
food chain and cause serious harm to human health. Sun et al. (2014) investigated
the ability of Pseudomonas strain Ph6 to colonize ryegrass (Lolium multiflorum
Lam.) and degrade phenanthrene. GFP-tagged Ph6 colonized root, stem, and leaf
tissues internally when visualized under fluorescence microscope. Heavy colo-
nization of root and shoot tissues by GFP-tagged Ph6 was observed with population
density ranging from 103 to 105 cfu/g fresh tissue weight. Inoculation of ryegrass
with Ph6 led to a significant decrease in the concentration of phenanthrene in shoot
and roots. Along with that the overall accumulation of phenanthrene in roots and
shoot was also significantly reduced with inoculation, possibly due to the degrading
mechanism of Ph6 strain (Sun et al. 2014).

P. fluorescens and P. putida are the most commonly studied PGPB known to
associate with many different plant host species and colonize them both internally
and externally. In a study conducted on phosphate solubilizing P. fluorescens
strains, L132 and L321, isolated from Miscanthus giganteus leaf tissues (Keogh
2009) were tested for their ability to promote pea (Pisum sativum L.) growth
(Oteino et al. 2015). It was observed that inoculation with these endophytic strains
significantly increased fresh weight as well as the dry weight of the pea seedlings
possibly due to the phosphate solubilizing abilities of these endophytes since mean
soluble phosphorous levels were also observed to be higher in inoculated plants as
compared to the controls. Another endophyte related to Pseudomonas genus was
isolated from internal root tissues of Artemisia sp. (Chung et al. 2008). The strain
was identified as P. brassicacearum YC5480 and was observed to demonstrate
antifungal activity against common pathogens like Colletotrichum gloeosporioides,
Fusarium oxysporum, and Phytophthora capsici. When colonized into a different
host, radish, treated with C. gloeosporioides, the bacterial strain YC5480 coun-
teracted the inhibitory effects of this pathogenic fungus. Therefore, it can be con-
cluded that Pseudomonas spp. have the ability to cross-infect plant species other
than their native host and have a broad application as a PGP agent in the agri-
cultural industry.
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2.5 Conclusion

Since their discovery, endophytic bacteria have been considered to play a crucial
role in survival and growth of plants. By living inside the plant they are better
protected from various biotic and abiotic stresses as compared to the rhizobacteria
and free-living bacteria in soil. They have been reported to occupy almost every
part of the plant, including intracellular and intercellular spaces. Due to the unique
metabolic diversity of selected endophytes, they have been reported to colonize
many nonindigenous plant host species and promote growth through direct or
indirect mechanisms. Special mentioning deserves the endophytic bacteria
belonging to the genus Burkholderia and Paenibacillus. Species belonging to these
two genera have been frequently reported to endophytically colonize a variety of
important agricultural crops, promote their growth in greenhouse and field condi-
tions, and inhibit the growth of common crop pathogens in vitro as well as in vivo.
These endophytic bacteria could potentially be the future commercial biofertilizers
and biocontrol agents that can be used with many different crops and in various
growing conditions, thus promoting sustainable agriculture.
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