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Abstract. Delay is omnipresent in modern control systems, which can
prompt oscillations and may cause deterioration of control performance,
invalidate both stability and safety properties. This implies that safety or
stability certificates obtained on idealized, delay-free models of systems
prone to delayed coupling may be erratic, and further the incorrect-
ness of the executable code generated from these models. However, auto-
mated methods for system verification and code generation that ought to
address models of system dynamics reflecting delays have not been paid
enough attention yet in the computer science community. In our previous
work, on one hand, we investigated the verification of delay dynamical
and hybrid systems; on the other hand, we also addressed how to syn-
thesize SystemC code from a verified hybrid system modelled by Hybrid
CSP (HCSP) without delay. In this paper, we give a first attempt to
synthesize SystemC code from a verified delay hybrid system modelled
by Delay HCSP (dHCSP), which is an extension of HCSP by replacing
ordinary differential equations (ODEs) with delay differential equations
(DDEs). We implement a tool to support the automatic translation from
dHCSP to SystemC.

Keywords: Delay dynamical systems · Approximate bisimulation ·
Code generation · Delay hybrid CSP · SystemC

1 Introduction

Model-Driven Design (MDD) is considered as an effective way of developing
reliable complex embedded systems (ESs), and has been successfully applied in
industry [17,20], therefore drawn increasing attentions recently. A challenging
problem in MDD is to transform a verified abstract model at high-level step
by step to more concrete models at lower levels, and to executable code at the
end. To make sure that the final code generated in MDD is correct and reliable,
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the transformation process must be guaranteed to preserve consistency between
observational behaviors of the models at different levels in a rigorous way. How-
ever, this is difficult, due to the inherent complexity of most ESs, especially for
hybrid systems, which contain complicated behaviour, like continuous and dis-
crete dynamics, and the complex interactions between them, time-delay, and so
on, while code only contains discrete actions. Obviously, the exact equivalence
between them can never be achieved, due to the unavoidable error of discretiza-
tion of continuous dynamics of hybrid systems.

As an effective way for analyzing hybrid systems and their discretization,
approximate bisimulation [14] can address the above problem. Instead of requir-
ing observational behaviors of two systems to be exactly identical, it allows errors
but requires the distance between two systems remains bounded by some preci-
sions. In our previous work [24], we used Hybrid CSP (HCSP), an extension of
CSP by introducing ordinary differential equations (ODEs) for modelling con-
tinuous evolutions and interrupts for modelling interaction between continuous
and discrete dynamics, as the modelling language for hybrid systems; and then,
we extended the notion of approximate bisimulation to general hybrid systems
modelled as HCSP processes; lastly, we presented an algorithm to discretize
an HCSP process (a control model) by a discrete HCSP process (an algorithm
model), and proved that they are approximately bisimilar if the original HCSP
process satisfies the globally asymptotical stability (GAS) condition. Here the
GAS condition requires the ODEs starting from any initial state can always infi-
nitely approach to its equilibrium point as time proceeds [8]. Recently, in [26],
we further considered how to discretize an HCSP process without GAS, and
refine the discretized HCSP process to SystemC code, which is approximately
bisimilar to the original HCSP process in a given bounded time.

On the other hand, in practice, delay is omnipresent in modern control sys-
tems. For instance, in a distributed real-time control system, control commands
may depend on communication with sensors and actuators over a communica-
tion network introducing latency. This implies that safety or stability certificates
obtained on idealized, delay-free models of systems prone to delayed coupling
may be erratic, and further the incorrectness of the code generated from these
models. However, automated methods for system verification and code genera-
tion that ought to address models of system dynamics reflecting delays have not
been paid enough attention yet in the computer science community.

Zou et al. proposed in [28] a safe enclosure method to automatic stability
analysis and verification of delay differential equations by using interval-based
Taylor over-approximation to enclose a set of functions by a parametric Tay-
lor series with parameters in interval form. Prajna et al. extended the barrier
certificate method for ODEs to the polynomial time-delay differential equations
setting, in which the safety verification problem is formulated as a problem of
solving sum-of-square programs [23]. Huang et al. presents a technique for simu-
lation based time-bounded invariant verification of nonlinear networked dynam-
ical systems with delayed interconnections by computing bounds on the sen-
sitivity of trajectories (or solutions) to changes in initial states and inputs of
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the system [18]. A similar simulation method integrating error analysis of the
numeric solving and the sensitivity-related state bloating algorithms was pro-
posed in [11] to obtain safe enclosures of time-bounded reach sets for systems
modelled by DDEs.

However, in the literature, there is few work on how to refine a verified ES
model with delay to executable code in MDD. In this paper, we address this
issue, and the main contributions can be summarized as follows:

– First of all, we extend HCSP by allowing delay, called Delay HCSP (dHCSP),
which is achieved by replacing ODEs with DDEs in HCSP. Obviously, HCSP
is a proper subset of dHCSP as all ODEs can be seen as specific DDEs
in which time delay is zero. Then, we propose the notion of approximately
bisimilar over dHCSP processes.

– In [11], the authors presented an approach to discretizing a DDE by a
sequence of states corresponding to discrete time-stamps and meanwhile the
error bound that defines the distance from the trajectory is computed auto-
matically on-the-fly. As a result, by adjusting step size of the discretization,
the given precision can be guaranteed. Inspired by their work, we consider
how to discretize a dHCSP process S such that the discretized dHCSP process
is approximately bisimilar to S. This is done by defining a set of rules and
proving that any dHCSP process S and its discretization are approximately
bisimilar within bounded time with respect to the given precision.

– Finally, we present a set of code generation rules from discrete dHCSP to
executable SystemC code and prove the equivalence between them.

We implement a prototypical tool to automatically transform a dHCSP
process to SystemC code and provide some case studies to illustrate the above
approach. Due to space limitation, the proofs of theorems in this paper are
available in [25].

1.1 Related Work

Generating reliable code from control models is a dream of embedded engineer-
ing but difficult. For some popular models such as Esterel [10], Statecharts [16],
and Lustre [15], code generation is supported. However, they do not take con-
tinuous behavior into consideration. Code generation is also supported in some
commercial tools such as Simulink [2], Rational Rose [1], and TargetLink [3], but
the correctness between the model and the code generated from it is not formally
guaranteed, as they mainly focus on the numerical errors. The same issue exists
in SHIFT [12], a modelling language for hybrid automata. Generating code from
a special hybrid model, CHARON [5], was studied in [6,7,19]. Particularly, in
order to ensure the correctness between a CHARON model and its generated
code, a formal criteria faithful implementation is proposed in [7], but it can only
guarantee the code model is under-approximate to the original hybrid model.
The main difference between the above works and ours lies in that the delayed
dynamics is considered for the code generation from hybrid models in our work.
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For the discretization of DDEs, we can refer to some existing works which
focus on the verification of systems containing delayed differential dynamics.
In [28], a method for analyzing the stability and safety of a special class of
DDEs was proposed, which cannot deal with the mixed ODE-DDE form. In
[22], the authors proposed a method for constructing a symbolic model from
an incrementally input-to-state stable (δ-ISS) nonlinear time-delay system, and
moreover proved the symbolic model and the original model are approximately
bisimilar. After that, they proved the same result for the incrementally input-
delay-to-state stable (δ-IDSS) nonlinear time-delay system with unknown and
time-varying delays in [21]. Unfortunately, the δ-ISS and δ-IDSS condition are
difficult to check in practice. A simulation-based method is proposed in [18] for
computing an over-approximate reachable set of a time-delayed nonlinear net-
worked dynamical system. Within this approach, a significant function (i.e., the
IS discrepancy function), used for bounding the distance between two trajecto-
ries, is difficult to find for general dynamical systems. In [11], a further extension
of [18] that can handle any kind of DDEs with constant time delays is introduced,
which can be appropriately used for the discretization of DDEs in dHCSP. But
no work is available on how to generate executable code from a verified model
with delay.

The rest of this paper is organized as: Some preliminary notions on DDEs
and SystemC are introduced in Sect. 2. Section 3 extends HCSP to dHCSP and
defines the approximate bisimulation on dHCSP. In Sect. 4, the discretization of
dHCSP processes is presented and the correctness of the discretization is proved.
The translation from discrete dHCSP to SystemC code is presented in Sect. 5. In
Sect. 6, a case study is provided to illustrate our approach. Section 7 concludes
the paper and discusses the future work.

2 Preliminaries

In this section, we introduce some preliminary knowledge that will be used later.

2.1 Delay Dynamical Systems

For a vector x ∈ Rn, ‖x‖ denotes its L2 norm, i.e., ‖x‖ =
√

x2
1 + x2

2 + ... + x2
n.

Given a vector x ∈ Rn and ε ∈ R+
0 , N(x, ε) is defined as the ε-neighbourhood

of x, i.e., N(x, ε) = {y ∈ Rn|‖x − y‖ ≤ ε}. Then, for a set S ⊆ Rn, N(S, ε) is
defined as N(S, ε) =

⋃
x∈S{y ∈ Rn|‖x − y‖ ≤ ε}, and conv(S) is denoted as

the convex hull of S. If S is compact, dia(S) = supx,x′∈S‖x − x′‖ denotes its
diameter.

In this paper, we consider delay dynamical systems governed by the form:
{
ẋ(t) = f(x(t),x(t − r1), ...,x(t − rk)), t ∈ [0,∞)
x(t) = g(t), t ∈ [−rk, 0] (1)

where x ∈ Rn is the state, ẋ(t) denotes the derivative of x with respect to t, and
x(t) = g(t) is the initial condition, where g is assumed to be C0[−rk, 0]. Without
loss of generality, we assume the delay terms are ordered as rk > ... > r1 > 0.
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A function X(·) : [−rk, ν) → Rn is said to be a trajectory (solution) of
(1) on [−rk, ν), if X(t) = g(t) for all t ∈ [−rk, 0] and Ẋ(t) = f(X(t),X(t −
r1), ...,X(t−rk)) for all t ∈ [0, ν). In order to ensure the existence and uniqueness
of the maximal trajectory from a continuous initial condition g(t), we assume
f is continuous for all arguments, and moreover f is continuously differentiable
in the first argument (i.e., x(t)). Then, we write X(t,g(t0)) with t0 ∈ [−rk, 0]
to denote the point reached at time t from the initial state g(t0), which should
be uniquely determined. Moreover, if f is Lipschitz, i.e., there exists a constant
L > 0 s.t. ‖f(x) − f(y)‖ ≤ L‖x − y‖ holds for all x,y, we can conclude X(·)
is unique over [−rk,∞). Please refer to [9] for the theories of delay differential
equations.

2.2 SystemC

SystemC is a system-level modelling language supporting both system architec-
ture and software development. It provides a uniform platform for the mod-
elling of complex embedded systems. Essentially it is a set of C++ classes
and macros. According to the naming convention of SystemC, most identifiers
are prefixed with SC or sc , such as SC THREAD, SC METHOD, sc inout,
sc signal, sc event, etc.

Modules, denoted by SC MODULE, are the basic blocks of a SystemC model.
A model usually contains several modules, within which sub-designs, construc-
tors, processes, ports, channels, events and other elements may be included.
Each module is defined as a class. The constructor of a module is denoted as
SC CTOR(), in which some initialization operations carry out. Processes are
member functions of the module, describing the actual functionality, and mul-
tiple processes execute concurrently in nature. A process has a list of sensitive
events, by whose notifications its execution is controlled. Two major types of
processes, SC METHOD and SC THREAD, are supported in SystemC. Gener-
ally, an SC METHOD can be invoked multiple times, whereas an SC THREAD
can only be invoked once.

Ports in SystemC are components using for communicating with each other
between modules. They are divided into three kinds by the data direction, i.e.,
sc in, sc out and sc inout ports. Only ports with the same data type can be con-
nected (via channels). Channels are used for connecting different sub-designs,
based on which the communication is realized (by calling corresponding meth-
ods in channels, i.e., read() and write()). Channels are declared by sc signal〈〉.
Another important element using for synchronization is event, which has no
value and no duration. Once an event occurs, the processes waiting for it will
be resumed. Generally, an event can be notified immediately, one delta-cycle
(defined in the execution phase below) later, or some constant time later.

The simulation of a SystemC model starts from the entrance of a method
named sc main(), in which three phases are generally involved: elaboration,
execution and post-processing. During the elaboration and the post-processing
phase, some initialization and result processing are carried out, respectively. We
mainly illustrate the execution phase in the next.
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The execution of SystemC models is event-based and it can be divided into
four steps: (1) Initialization, executing all concurrent processes in an unspecified
order until they are completed or suspended by a wait(); (2) Evaluation, running
all the processes that are ready in an unspecified order until there are no more
ready process; (3) Updating, copying the value of containers (e.g., channels) to
the current location, then after that, if any event occurs, go back to step 2. Here,
the cycle from evaluation to updating and then go back to evaluation is known
as the delta-cycle; (4) Time advancing, if no more processes get ready currently,
time advances to the nearest point where some processes will be ready. If no
such point exists or the time is greater than a given time bound, the execution
will terminate. Otherwise, go back to Step 2.

3 Delay Hybrid CSP (dHCSP)

In this section, we first extend HCSP with delay, and then discuss the notion of
approximate bisimulation over dHCSP processes by extending the corresponding
notion of HCSP defined in [24].

3.1 Syntax of dHCSP

dHCSP is an extension of HCSP by introducing DDEs to model continuous
evolution with delay behavior. The syntax of dHCSP is given below:

P :: = skip | x := e | wait d | ch?x | ch!e | P ; Q | B → P |
P � Q | P ∗ | �i∈I(ioi → Qi) | 〈F (ṡ(t), s(t), s(t − r1), ..., s(t − rk)) = 0&B〉 |
〈F (ṡ(t), s(t), s(t − r1), ..., s(t − rk)) = 0&B〉 � �i∈I(ioi → Qi)

S:: = P1‖P2‖ . . . ‖Pn for somen ≥ 1

where x, s stand for variables and vectors of variables, respectively, B and e are
Boolean and arithmetic expressions, d is a non-negative real constant, ch is a
channel name, ioi stands for a communication event (i.e., either chi?x or chi!e
for some x, e), k ≥ 0 is an index and for each ri, ri ∈ R+

0 , P,Q, Pi, Qi are
sequential process terms, and S stands for a dHCSP process term, that may be
parallel. The informal meaning of the individual constructors is as follows:

– skip, x := e, wait d, ch?x, ch!e, P ;Q, �i∈I(ioi → Qi), B → P , P � Q and P ∗

are defined the same as in HCSP.
– 〈F (ṡ(t), s(t), s(t − r1), ..., s(t − rk)) = 0&B〉 is the time-delay continuous evo-

lution statement. It forces the vector s of real variables to obey the DDE F
as long as B, which defines the domain of s, holds, and terminates when B
turns false. Without loss of generality, we assume that the set of B is open,
thus the escaping point will be at the boundary of B. The special case when
k = 0 corresponds to an ODE that models continuous evolution without delay.
The communication interrupt 〈F (ṡ(t), s(t), s(t − r1), ..., s(t − rk)) = 0&B〉 �
�i∈I(ioi → Qi) behaves like 〈F (ṡ(t), s(t), s(t − r1), ..., s(t − rk)) = 0&B〉,
except that the continuous evolution is preempted as soon as one of the com-
munications ioi takes place, which is followed by the respective Qi. These two
statements are the essential extensions of dHCSP from HCSP.
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– For n ≥ 1, P1‖P2‖ . . . ‖Pn builds a system in which n concurrent processes run
independently and communicate with each other along the common channels
connecting them.

To better understand dHCSP, we introduce delay behavior to the water tank
system considered in [4,24].

Example 1. The system is a parallel composition of two components Watertank
and Controller, modelled by WTS as follows:

WTS
def
= Watertank‖Controller

Watertank
def
= v := v0; d := d0; (v = 1 →

〈ḋ(t) = Qmax − πs2
√

g(d(t) + d(t − r))〉 � (wl!d → cv?v);

v = 0 → 〈ḋ(t) = −πs2
√

g(d(t) + d(t − r))〉 � (wl!d → cv?v)∗

Controller
def
= y := v0; x := d0; (wait p; wl?x;

x ≥ ub → y := 0; x ≤ lb → y := 1; cv!y)∗

where Qmax, π, s and g are system parameters, the control variable v can take
two values, 1 or 0, which indicate the watering valve on the top of the tank
is open or closed, respectively, d is the water level of the Watertank and its
dynamics depends on the value of v. For each case, the evolution of d follows
a DDE that is governed by both the current state and the past state r time
ago. The time delay r accounts for time involved in communication between the
watertank and the controller.

The system is initialized by an initial state, i.e., v0 and d0 for the con-
troller variable and water level, respectively. wl and cv are channels connecting
Watertank and Controller for transferring information (water level and control
variable respectively) between them. In the Controller, the control variable y is
updated with a period of p, and its value is decided by the water level read from
the Watertank (x in Controller). If x ≥ ub holds, where ub is an upper bound,
y is set to 0 (valve closed), else if x ≤ lb holds, where lb is a lower bound, y
is set to 1 (valve open), otherwise, y keeps unchanged. Basically, starting from
the initial state, Watertank and Controller run independently for p time, then
Watertank sends the current water level to Controller, according to which the
value of the control variable is updated and then sent back to Watertank, after
that, a new period repeats. The goal of the system is to maintain the water level
within a desired scope.

3.2 Semantics of dHCSP

In order to define an operational semantics of dHCSP, we use non-negative reals
R+ to model time, and introduce a global clock now to record the time in the
execution of a process. Different from ODE, the solution of a DDE at a given
time is not a single value, but a time function. Thus, to interpret a process S,
we first define a state ρ as the following mapping:

ρ : (Var(S) → (Intv → Rn)) ∪ ({now} → R+)



28 G. Yan et al.

where Var(S) represents the set of state variables of S, and Intv is a timed
interval. The semantics of each state variable with respect to a state is defined
as a mapping from a timed interval to the value set. We denote by D the set
of such states. In addition, we introduce a flow H as a mapping from a timed
interval to a state set, i.e. H : Intv → D called flow, to represent the continuous
flow of process S over the timed interval Intv.

A structural operational semantics of dHCSP is defined by a set of transition
rules. Each transition rule has the form of (P, ρ) α−→ (P ′, ρ′,H), where P and P ′

are dHCSP processes, α is an event, ρ, ρ′ are states, H is a flow. It expresses
that, starting from initial state ρ, by performing event α, P evolves into P ′,
ends in state ρ′, and produces the execution flow H. The label α represents
events, which can be a discrete non-communication event, e.g. skip, assignment,
or the evaluation of Boolean expressions, uniformly denoted by τ , or an external
communication event ch!c or ch?c, or an internal communication ch.c, or a time
delay d, where c ∈ R, d ∈ R+. When both ch!c and ch?c occur, a communication
ch.c occurs.

Before defining the semantics, we introduce an abbreviation for manipulating
states. Given a state ρ, d ∈ R+, and a set of variables V , ρ[V ⇓d] means the
clock takes progress for d time units, and the values of the variables in V at time
ρ(now)+d is defined as a constant function over timed interval [ρ(now), ρ(now)+
d]. Precisely, for any t in the domain,

ρ[V ⇓d](x)(t) def=
{

ρ(x)(t) if x /∈ V
ρ(x)(ρ(now)) otherwise

For space of limitation, we only present the transition rules for the time-
delayed continuous evolution statement here, the rules for other constructors
can be defined similarly to the ones in HCSP, see [27]. The first rule represents
that the DDE evolves for d time units, while B always preserves true throughout
the extended interval.

Assume X : [0, ∞) → ([−r, ∞) → Rd(s)) is the solution of 〈F (ṡ(t), ..., s(t − rk))=0&B〉
with initial value s(t) = H(t)(s)(t) for t ∈ [ρ(now) − r, ρ(now)] and

∀d > 0.∀t ∈ [0, d), [B]ρ[now�→now+t,s �→Xt]
L = True

(〈F (ṡ(t), ..., s(t − rk))=0&B〉, ρ)
d−→
( 〈F (ṡ(t), ..., s(t − rk))=0&B〉,

ρ[V \{s} ⇓d][now 
→ now + d, s 
→ Xd], Hρ,s,X
d

)

where H is the initial history before executing the DDE (recording the past
state of s); and for any t, Xt is defined as a function over timed interval
[ρ(now), ρ(now)+t] such that Xt(a) = X(t)(a−ρ(now)) for each a in the domain;
and the produced flow Hρ,s,X

d is defined as: ∀t ∈ [ρ(now), ρ(now)+d].Hρ,s,X
d (t) =

ρ[now �→ t, s �→ Xt−ρ(now)].
The second rule represents that, when the negation ¬B is true at the initial

state, the DDE terminates.

[¬B]ρL = True

(〈F (ṡ(t), ..., s(t − rk))=0&B〉, ρ)
τ−→ (ε, ρ)
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3.3 Approximate Bisimulation on dHCSP

First of all, as a convention, we use
α� to denote the τ transition closure of

transition α, i.e., there is a sequence of τ actions before and/or after α. Given
a state ρ defined over interval [t1, t2], for each t ∈ [t1, t2], we define ρ �t of type
Var(S) ∪ {now} → Val to restrict the value of each variable to the result of the
corresponding function at time t:

ρ �t (x) =
{

ρ(x)(t) for all x ∈ Var(S)
ρ(x) forx = now

With this function, we can reduce the operations manipulating a state with
function values to the ones manipulating states with point values. Meanwhile,

we assume (S, ρ)
0� (S, ρ) always holds for any process S and state ρ.

Definition 1 (Approximate bisimulation). Suppose B is a symmetric
binary relation on dHCSP processes such that S1 and S2 share the same set
of state variables for (S1, S2) ∈ B, and d is the metric of L2 norm, and h ∈ R+

and ε ∈ R+ are the given time and value precision, respectively. Then, we say
B is an approximately bisimulation w.r.t. h and ε, denoted by Bh,ε, if for any
(S1, S2) ∈ Bh,ε, and (ρ1, ρ2) with d(ρ1 �ρ1(now), ρ2 �ρ2(now)) ≤ ε, the following
conditions are satisfied:

1. if (S1, ρ1)
α� (S′

1, ρ
′
1) and α /∈ R+, then there exists (S′

2, ρ
′
2) such that

(S2, ρ2)
α� (S′

2, ρ
′
2), (S′

1, S
′
2) ∈ Bh,ε and d(ρ′

1 �ρ′
1(now), ρ

′
2 �ρ′

2(now)) ≤ ε, or

there exist (S∗
2 , ρ∗

2), (S′
2, ρ

′
2) and 0 < t ≤ h such that (S2, ρ2)

t� (S∗
2 , ρ∗

2,H
∗
2 ),

(S∗
2 , ρ∗

2)
α� (S′

2, ρ
′
2), (S1, S

∗
2 ) ∈ Bh,ε, d(ρ1 �ρ1(now), ρ

∗
2 �ρ∗

2(now)≤ ε; (S′
1, S

′
2) ∈

Bh,ε and d(ρ′
1 �ρ′

1(now), ρ
′
2 �ρ′

2(now)) ≤ ε.

2. if (S1, ρ1)
t� (S′

1, ρ
′
1,H1) for some t > 0, then there exist (S′

2, ρ
′
2) and t′ ≥ 0

such that |t − t′| ≤ h, (S2, ρ2)
t′
� (S′

2, ρ
′
2,H2), (S′

1, S
′
2) ∈ Bh,ε, and for any

o ∈ [ρ1(now), ρ1(now) + min(t, t′)], d(ρ′
1 �o, ρ

′
2 �o) ≤ ε, and d(ρ′

1 �ρ′
1(now),

ρ′
2 �ρ′

2(now)) ≤ ε.

Definition 2. Two dHCSP processes S1 and S2 are approximately bisimilar
with respect to precision h and ε, denoted by S1

∼=h,ε S2, if there exists an (h, ε)-
approximate bisimulation relation Bh,ε s.t. (S1, S2) ∈ Bh,ε.

Theorem 1. Given two dHCSP processes, it is decidable whether they are
approximately bisimilar on [0, T ] for a given T ∈ R+.

4 Discretization of dHCSP

The process on generating code from dHCSP is similar to that from HCSP [24],
consisting of two phases: (1) discretization of the dHCSP model; (2) code gen-
eration from the discretized dHCSP model to SystemC.
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Benefiting from its compositionality, dHCSP can be discretized by defining
rules for all the constructors, in which the discretization of delay continuous
dynamics (i.e., DDE) is the most critical. Let S be a dHCSP process, T ∈ R+ be
a time bound, h and ε be the given precisions for time and value, respectively.
Our goal is to construct a discrete dHCSP process Dh,ε(S) from S, s.t. S is
(h, ε)-approximately bisimilar to Dh,ε(S) on [0, T ], i.e., S ∼=h,ε Dh,ε(S) on [0, T ].
To achieve this, we firstly introduce a simulation-based method (inspired by
[11]) for discretizing a single DDE and then extend it for multiple DDEs to
be executed in sequence; afterwards, we present the discretization of dHCSP in
bounded time.

4.1 Discretization of DDE (DDEs) in Bounded Time

To solve DDEs is much more difficult than to solve ODEs, as DDEs are history
dependent, therefore, non-Markovian, in contrast, ODEs are history independent
and Markovian. So, in most cases, explicit solutions to DDEs are impossible,
therefore, DDEs are normally solved by using approximation based techniques
[9]. In [11], the authors propose a novel method for safety verification of delayed
differential dynamics, in which a validated simulator for a DDE is presented. The
simulator produces a sequence of discrete states for approximating the trajectory
of a DDE and meanwhile calculates the corresponding local error bounds. Based
on this work, we can obtain a validated discretization of a DDE w.r.t. the given
precisions h and ε. Furthermore, we can easily extend the simulator to deal with
systems containing multiple DDEs in sequence.

Next we first consider the discretization of a DDE within bounded time
Td ∈ R+, for some Td ≤ T . The purpose is to find a discrete step size h s.t.
the DDE and its discretization are (h, ξ)-approximately bisimilar within [0, Td],
for a given precision ξ that is less than the global error ε. For simplifying the
notations, we consider a special case of DDE in which only one delay term, r > 0,
exists, as in {

ẋ(t) = f(x(t),x(t − r)), t ∈ [0,∞)
x(t) = g(t), t ∈ [−r, 0] (2)

where we use f(x,xr) to denote the dynamics, x for current state and xr for the
past state at t−r. In fact, the method for this special case can be easily extended
to the general case as in (1), by recording the past states between t − rk and t,
the detailed discussion can be found in [11].

For a DDE f(x,xr) with initial condition g(t) which is continuous on [−r, 0],
delay term r, step size h, and time bound Td, the validated simulator in [11]
can produce three lists (denoted as [·]) with the same length, namely, (1)
t = [t−m, ..., t0, t1, ..., tn], storing a sequence of time stamps on which the
approximations are computed (t−m, ..., t0 for the time before 0, i.e., [−r, 0], with
m = r/h), satisfying t−m, ..., t−1 < 0 = t0 < t1 < ... < tn = Td and ti − ti−1 = h
for all i ∈ [−m + 1, n], (2) y = [x−m, ...,x0,x1, ...,xn], recording a sequence of
approximate states of x starting from x−m, corresponding to time stamps in t,
(3) d = [d−m, ..., d0, d1, ..., dn], recording the corresponding sequence of local
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error bounds. The implementation of the simulator is based on the well-known
forward Euler method, i.e., x := x + hf(x,xr). In addition, we usually require
the delay term r be an integral multiple of the step size h, i.e., m ∈ N+, in order
to ensure the past state xr could be found in y.

A remarkable property of the simulator

X(t,g(0)) ∈ conv(N(xi, di) ∪ N(xi+1, di+1))

holds for each t ∈ [ti, ti+1] with i = 0, 1, ..., n − 1, where X(·) is the trajectory
of ẋ = f(x,xr), and N(xi, di) is the di-neighbourhood of xi (xi and di are
elements of y and d, respectively). Based on this fact, we can use xi+1 as the
approximation of X(t,g(0)) for all t ∈ [ti, ti+1] for any i ∈ [0, n − 1], s.t. the
DDE (2) and the sequence [x0,x1, ...,xn] are (h, ξ)-approximately bisimilar on
[0, Td], if the diameter of every conv(N(xi, di) ∪ N(xi+1, di+1)) is less than the
precision ξ, i.e., dia(conv(N(xi, di) ∪ N(xi+1, di+1))) < ξ for all i ∈ [0, n − 1].

Theorem 2 (Approximation of a DDE). Let Γ be a DDE as in (2), and f in
(2) is continuously differentiable on [0, Td], and x0 ∈ Rn with ‖x0 − g(0)‖ ≤ d0.
Then for any precision ξ > 0 and 0 < d0 < ξ, there exists a step size h > 0 such
that Γ and

x := x0; (wait h;x := x + hf(x,xr))
Td
h ;

are (h, ξ)-approximately bisimilar on [0, Td].

Based on the simulation algorithm given in [11], we design a method for
automatically computing a step size h s.t. the DDE as in (2) and its discretization
are (h, ξ)-approximately bisimilar on [0, Td], as presented in Algorithms 1 and 2.

Algorithm 1. ComStepsize oneDDE: computing the step size h for the one
DDE
Input: The dynamics f(x,xr), initial state x0, delay term r, precision ξ, and time

bound Td;
1: h = r; v = true; t = [−h, 0]; y = [x0,x0]; d = [0, 0];
2: while true do
3: CheckStepsize(f(x,xr), r, h, ξ, [0, Td], t,y,d, v);
4: if v = false then
5: h = h/2; v = true;
6: t = [−h, 0];
7: else
8: break;
9: end if

10: end while
11: return h;

Algorithm 1 is designed for computing a valid step size h for a given DDE. It
first initializes the value of h to r and Boolean variable v, which indicates whether
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the current h is a valid step size, to true, and the lists for simulating the DDE, i.e.,
t,y, andd (line 1). Here, we assume the initial condition is a constant function, i.e.,
xt = x0, on [−r, 0], therefore, states before time 0 are represented as one state at
−h. Then, it iteratively checks whether the current value of h can make Theorem 2
hold, by calling the function CheckStepsize that is defined in Algorithm 2 (lines
2–10). If current h is not valid (v is set to false for this case), h is set to a smaller
value, i.e., h/2, and v is reset to true, and t is reinitialized according to the new h
(lines 4–6). Otherwise, a valid h is found, then the while loop exits (lines 7–9). The
termination of the algorithm can be guaranteed by Theorem 2, thus a valid h can
always be found and returned (line 11).

Algorithm 2. CheckStepsize: checking whether the step size h is valid for pre-
cision ξ

Input: The dynamics f(x,xr), delay term r, step size h, precision ξ, time span
[T1, T2], boolean variable v, and simulation history 〈t,y,d〉 before T1;

1: n = length(t); m = r/h;
2: while t(n) < T2 do
3: t(n + 1) = t(n) + h;
4: y(n + 1) = y(n) + f(y(n),y(n − m)) ∗ h;
5: e(n) = Find minimum e s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖f(x + t ∗ f ,xr + t ∗ g) − f(y(n),y(n − m))‖ ≤ e − σ, for

∀t ∈ [0, h]

∀x ∈ N(y(n),d(n))

∀xr ∈ N(y(n − m),d(n − m))

∀f ∈ N(f(y(n),y(n − m)), e)

∀g ∈ N(f(y(n − m),y(n − 2m)), e(n − m));

6: d(n + 1) = d(n) + h ∗ e(n);
7: if max(y(n)+d(n),y(n+1)+d(n+1))−min(y(n)−d(n),y(n+1)−d(n+1)) > ξ

then
8: v = false;
9: break;

10: else
11: t = [t, t(n + 1)]; y = [y,y(n + 1)]; d = [d,d(n + 1)];
12: n = n + 1;
13: end if
14: end while
15: return 〈v, t,y,d〉;

Algorithm 2 implements function CheckStepsize, which is slightly different
from the simulation algorithm given in [11]. The history of 〈t,y,d〉 is added
to the inputs, for simulating multiple DDEs in sequence. At the beginning, the
variable n that stores the last recent simulation step is initialized as the length
of current t, and an offset m is set to r/h thus y(n − m), i.e., the (n − m)th
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element of list y, locates the delayed approximation at time t(n) − r (line 1).
When current time (i.e., t(n)) is less than the end of the time span (i.e., T2),
the lists t, y and d are iteratively updated by adding new elements, until T2 is
reached (lines 2–14). In each iteration, firstly, the time stamp is added by the
step size h and the approximate state at this time is computed by the forward
Euler method (line 4), and then the local error bound d(n+1) is derived based on
the local error slope e(n) (line 6), which is reduced to a constrained optimization
problem (line 5) that can be solved by some solvers in Matlab or by some SMT
solvers like iSAT [13] which can return a validated result, please refer to [11]
for the details. After these values are computed, whether the diameter of the
convex hull of the two adjacent approximate points at the time stamps t(n) and
t(n+1) by taking their local error bounds into account is greater than the given
error ξ is checked (lines 7–13). If the diameter is greater than ξ, the while loop
is broken and v is set to false (lines 8–9), which means h will be reset to h/2 in
Algorithm 1. Otherwise, h is valid for this simulation step and the new values
of t, y and d are added into the corresponding lists (lines 10–12), then a new
iteration restarts until T2 is reached. At last, the new values of v, t, y and d are
returned (line 15).

A dHCSP may contain multiple DDEs, especially for those to be executed
in sequence in which the initial states of following DDEs may depend on the
flows of previous DDEs. In order to handle such cases, we present Algorithm 3
for computing the global step size that meets the required precision ξ within
bounded time Td. Suppose a sequence of DDEs f1(x,xr), f2(x,xr), · · · , fk(x,xr)
is to be executed in sequence. For simplicity, assume all DDEs share the same
delay term r, and the execution sequence of the DDEs is decided by a scheduler
(Schedule in line 6). At the beginning, h and v are initialized as the delay term r
and true respectively (line 1). Then, before the current time (i.e., t(end)) reaches
the end of the time span (i.e., Td), a while loop is executed to check whether h
satisfies the precision ξ, in which ComStepsize oneDDE and CheckStepsize are
called (lines 2–13). In each iteration, the three lists t, y and d are initialised as
before (line 3), then the valid h for the first DDE f1(x,xr) is computed by calling
ComStepsize oneDDE (line 4), where t1 denotes the length of the execution time
of f1(x,xr). Afterwards, for the following DDEs, an inner while loop to check
whether the calculated h is within the error bound ξ is executed (lines 5–12).
Thereof, which DDE should be executed is determined by Schedule (one DDE
may be executed for multiple times), and the corresponding span of execution
time is represented as [ti−1, ti] for the i-th DDE (lines 6–7). If h is not valid for
some DDE, i.e., v = false (line 8), depending on the return value of CheckStepsize
function, a new smaller h (i.e., h/2) is chosen and v is reset to true, then the
inner while loop is broken (lines 8–11) and a new iteration restarts from time
0 with the new h (line 3); Otherwise, a valid h is found (line 13). Since we can
always find small enough step size to make all DDEs meet the precision within
[0, Td] by Theorem 2, Algorithm 3 is ensured to terminate (line 14).
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Algorithm 3. ComStepsize multiDDEs: computing the step size h for multiple
DDEs
Input: A sequence of dynamics f1(x,xr), f2(x,xr), ..., fk(x,xr), initial state x0,

delay term r, precision ξ, and time bound Td (assume running from f1(x,xr));
1: h = r; v = true;
2: while t(end) < Td do
3: t = [−h, 0]; y = [x0,x0]; d = [0, 0];
4: h = ComStepsize oneDDE(f1(x,xr),x0, r, ξ, t1);
5: while t(end) < Td do
6: i = Schedule(f1(x,xr), f2(x,xr), ..., fk(x,xr));
7: CheckStepsize(fi(x,xr), r, h, ξ, [ti−1, ti], t,y,d, v);
8: if v = false then
9: h = h/2; v = true;

10: break;
11: end if
12: end while
13: end while
14: return h;

4.2 Discretization of dHCSP in Bounded Time

Now we can define the set of rules to discretize a given dHCSP process S and
obtain a discrete dHCSP process Dh,ε(S) such that they are (h, ε)-approximately
bisimilar on [0, T ], for given h, ε and T . The rule for the discretization of DDE
is given below, and other rules are the same as the ones for HCSP presented
in [24].

〈ẋ = f(x,xr)&B〉
(N(B, ε) ∧ N ′(B, ε) → (wait h;x := x + hf(x,xr)))

T
h ;

N(B, ε) ∧ N ′(B, ε) → stop

For a Boolean expression B, N(B, ε) is defined as its ε-neighbourhood. For
instance, N(B, ε) = {x|x > 2−ε} for B = {x|x > 2}. Then, 〈ẋ = f(x,xr)&B〉 is
discretized as follows: first, execute a sequence of assignments (T/h times) to x
according to Euler method, i.e., x := x+hf(x,xr), whenever N(B, ε)∧N ′(B, ε)
holds, where N ′(B, ε) = N(B, ε)[x �→ x + hf(x,xr)], i.e., the value of N(B, ε)
at the next discretized step; then, if both N(B, ε) and N ′(B, ε) still hold, but
the time has already reached the upper bound T , the process behaves like stop,
which indicates that the behavior after T will not be concerned.

4.3 Correctness of the Discretization

In order to ensure Dh,ε(S) defined in Sect. 4.2 is approximately bisimilar to S, we
need to put some extra conditions on S, i.e., requiring it to be robustly safe. The
condition is similar to that in [24]. We define the (−ε)-neighbourhood like the
ε-neighbourhood, i.e., for a set φ ⊆ Rn and ε ≥ 0, N(φ,−ε) = {x|x ∈ φ ∧ ∀y ∈
¬φ.‖x − y‖ > ε}. Intuitively, x ∈ N(φ,−ε) means x is inside φ and moreover
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the distance between it and the boundary of φ is greater than ε. To distinguish
the states of process S from those of dynamical systems, we use ρ (ρ0 for initial
state) to denote the states of S here. Below, the notion of a robustly safe system
is given.

Definition 3 ((δ, ε)-robustly safe). Let δ > 0 and ε > 0 be the given time
and value precisions, respectively. A dHCSP process S is (δ, ε)-robustly safe with
respect to a given initial state ρ0, if the following two conditions hold:

– for every continuous evolution 〈ẋ = f(x,xr)&B〉 occurring in S, when S
executes up to 〈ẋ = f(x,xr)&B〉 at time t with state ρ, if ρ(B) = false, and
there exists t̂ > t with t̂ − t < δ and d(ρ, ρ0[x �→ X(t̂, ρ0(x)])) < ε, then
ρ ∈ N(¬B,−ε);

– for every alternative process B → P occurring in S, if B depends on con-
tinuous variables of S, then when S executes up to B → P at state ρ,
ρ ∈ N(B,−ε) or ρ ∈ N(¬B,−ε).

Intuitively, the (δ, ε)-robustly safe condition ensures the difference, between the
violation time of the same Boolean condition B in S and Dh,ε(S), is bounded.
As a result, we can choose appropriate values for δ, ε, h and ε s.t. S and Dh,ε(S)
can be guaranteed to have the same control flows, and furthermore the distance
between their “jump” time (the moment when Boolean condition associated with
them becomes false) can be bounded by h. Finally the “approximation” between
the behavior of S and Dh,ε(S) can be guaranteed. The range of both δ and ε can
be estimated by simulation.

Based on the above facts, we have the main theorem as below.

Theorem 3 (Correctness). Let S be a dHCSP process and ρ0 the initial state
at time 0. Assume S is (δ, ε)-robustly safe with respect to ρ0. Let 0 < ε < ε be a
precision and T ∈ R+ a time bound. If for any DDE ẋ = f(x,xr) occurring in S,
f is continuously differentiable on [0, T ], and there exists h satisfying h < δ < 2h
if δ > 0 such that Theorem 2 holds for all f in S, then S ∼=h,ε Dh,ε(S) on [0, T ].

Notice that for a given precision ε, there may not exist an h satisfying the
conditions in Theorem 3. It happens when the DDE fails to leave far enough
away from the boundary of its domain B in a limited time. However, for the
special case that δ = 0, we can always find a sufficiently small h such that
S ∼=h,ε Dh,ε(S) on [0, T ].

5 From Discretized dHCSP to SystemC

For a dHCSP process S, its discretization Dh,ε(S) is a model without contin-
uous dynamics and therefore can be implemented with an algorithm model. In
this section, we illustrate the procedure for automatically generating a piece
of SystemC code, denoted as SC(Dh,ε(S)), from a discretized dHCSP process
Dh,ε(S), and moreover ensure they are “equivalent”, i.e., bisimilar. As a result,
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Table 1. Part of rules for code generation of dHCSP

x := e → x = e; wait(SC ZERO TIME);

wait d → wait(d,SC TU);

Dh,ε(P );Dh,ε(Q) → SC(Dh,ε(P )); SC(Dh,ε(Q));

B → Dh,ε(P ) → if(B){SC(Dh,ε(P )); }
Dh,ε(P ) � Dh,ε(Q) → if(rand()%2){SC(Dh,ε(P )); } else{SC(Dh,ε(Q)); }
(Dh,ε(P ))∗ → while(i <= num(P ∗)){ SC(Dh,ε(P )); i + +; }

for a given precision ε and time bound T , if there exists h such that Theorem 3
holds, i.e., S ∼=h,ε Dh,ε(S) on [0, T ], we can conclude that the generated SystemC
code SC(Dh,ε(S)) and the original dHCSP process S are (h, ε)-approximately
bisimilar on [0, T ].

Based on its semantics, a dHCSP model that contains multiple par-
allel processes is mapped into an SC MODULE in SystemC, and each
parallel component is implemented as a thread, e.g., Dh,ε(P1)‖Dh,ε(P2)
is mapped into two concurrent threads, SC THREAD(SC(Dh,ε(P1))) and
SC THREAD(SC(Dh,ε(P2))), respectively. For each sequential process, i.e.,
Dh,ε(Pi), we define the corresponding rule for transforming it into a piece of
SystemC code, according to the type of Dh,ε(Pi).

In Table 1, parts of generation rules are shown for different types of the
sequential process Dh,ε(Pi). For x := e, it is mapped into an equivalent assign-
ment statement (i.e., x = e), followed by a statement wait(SC ZERO TIME)
for making the update valid. For wait d, it is straightforward mapped into a
statement wait(d,SC TU), where SC TU is the time unit of d, such as SC SEC
(second), SC MS (millisecond), SC US (microsecond), etc. The sequential com-
position and alternative statements are defined inductively. Nondeterminism is
implemented as an if-else statement, in which rand()%2 returns 0 or 1 randomly.
A while statement is used for implementing the repetition constructor, where
num(P ∗) returns the upper bound of the repeat times for P .

In order to represent the communication statement, additional channels in
SystemC (i.e., sc signal) and events (i.e., sc event) are introduced to ensure
the synchronization between the input side and output side. Consider the dis-
cretized input statement, i.e., ch? := 1; ch?x; ch? := 0, Boolean variable ch? is
represented as an sc signal (i.e., ch r) with Boolean type, and moreover addi-
tional sc event (i.e., ch r done) is imported to represent the completion of the
action that reads values from channel ch. As a result, the SystemC code gen-
erated from it is defined as: first, Boolean signal ch r is initialized as 1, which
means channel ch is ready for reading (lines 2–3); then, the reading process
waits for the writing of the same channel from another process until it has done
(lines 4–6); after that, it gets the latest value from the channel and assigns it to
variable x (lines 7–8); at last, it informs the termination of its reading to other
processes and resets ch r to 0 (lines 9–11). Here, there are two sub-phases within
the second phase (lines 4–6): first, deciding whether the corresponding writing
side is ready (line 4), if not (i.e., ch w = 0), the reading side keep waiting until
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the writing side gets ready, i.e., ch w = 1 (line 5); afterwards, the reading side
will wait for another event which indicates that the writing side has written a
new value into the channel ch (line 6), for ensuring the synchronization.

1 // code f o r input statement
2 ch r =1;
3 wait (SC ZERO TIME) ;
4 i f ( ! ch w )
5 wait ( ch w . posedge event ( ) ) ;
6 wait ( ch w done ) ;
7 x=ch . read ( ) ;
8 wait (SC ZERO TIME) ;
9 ch r done . n o t i f y ( ) ;

10 ch r =0;
11 wait (SC ZERO TIME) ;

The discretized continuous statement is mapped into two sequential parts
in SystemC. For the first part, i.e., (N(B, ε) ∧ N ′(B, ε) → (wait h;x :=
x+hf(x,xr)))

T
h , a for loop block is generated (lines 2–8), in which a sequence of

if statements, corresponding to Boolean condition (N(B, ε) ∧ N ′(B, ε), are exe-
cuted (lines 3–7). Within every conditional statement, a wait statement and an
assignment statement (based on Euler method) are sequentially performed (lines
4–6). Here, N(B, e), N p(B, e) and f(x, x r) are helper functions (implemented
by individual functions) that are generated from N(B, ε), N ′(B, ε) (e = ε here)
and f(x,xr), respectively. For the second part, i.e., N(B, ε) ∧ N ′(B, ε) → stop,
it is mapped into a return statement guarded by a condition that is identical
with that in line 3 (lines 9–10).

1 // code f o r de layed cont inuous statement
2 f o r ( i n t i =0; i<T/h ; i++){
3 i f (N(B, e)&&N p(B, e ) ){
4 wait (h , SC TU) ;
5 x=x+h∗ f (x , x r ) ;
6 wait (SC ZERO TIME) ;
7 }
8 }
9 i f (N(B, e)&&N p(B, e ) ){

10 re turn ;
11 }

For space limitation, the rest of the code generation rules can be found in
[25]. Thus now, for a given discretized dHCSP process Dh,ε(S), we can gener-
ate its corresponding SystemC implementation SC(Dh,ε(S)). Furthermore, their
“equivalence” can be guaranteed by the following theorem.

Theorem 4. For a dHCSP process S, Dh,ε(S) and SC(Dh,ε(S)) are bisimilar.
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6 Case Study

In this section, we illustrate how to generate SystemC code from dHCSP through
the example of water tank in Exmaple 1. As discussed above, for a given dHCSP
process, the procedure of code generation is divided into two steps: (1) compute
the value of step size h that can ensure the original dHCSP process and its
discretization are approximately bisimilar with respect to the given precisions;
(2) generate SystemC code from the discretized dHCSP process. We have imple-
mented a tool that can generate code from both HCSP and dHCSP processes1.

Continue to consider Exmaple 1. For given h, ε and T , by using the discretized
rules, a discretization system WTSh,ε is obtained as follows:

WTSh,ε
def
= Watertankh,ε‖Controllerh,ε

Watertankh,ε
def
= v := v0; d := d0; (v = 1 → (wl! := 1; (wl! ∧ ¬wl? →

(wait h; d(t + h) = d(t) + h(Qmax − πs2
√

g(d(t) + d(t − r))))
T
h ;

wl! ∧ wl? → (wl!d; wl! := 0; cv? := 1; cv?v;

cv? := 0); wl! ∧ ¬wl? → stop);

v = 0 → (wl! := 1; (wl! ∧ ¬wl? → (wait h;

d(t + h) = d(t) + h(−πs2
√

g(d(t) + d(t − r)))))
T
h ;

wl! ∧ wl? → (wl!d; wl! := 0; cv? := 1; cv?v;

cv? := 0); wl! ∧ ¬wl? → stop))∗

Controllerh,ε
def
= y := v0; x := d0; (wait p; wl? := 1; wl?x;

wl? := 0; x ≥ ub → y := 0; x ≤ lb → y := 1;

cv! := 1; cv!y; cv! := 0)∗

Given Qmax = 2.0, π = 3.14, s = 0.18, g = 9.8, p = 1, r = 0.1, lb =
4.1, ub=5.9, v0 = 1 and d0 = 4.5, we first build an instance of WTS (the
Watertank delay.hcsp file). Then, according to the simulation result, we can
estimate that the valid scope of δ and ε for WTS is δ = 0 and ε ≤ 0.217,
respectively. By Theorem 3, we can infer that a discretized time step h must
exist s.t. WTS and WTSh,ε are (h, ε)-approximately bisimilar, with ε ≤ ε. For
given values of ε and time bound T , e.g., ε = 0.2 and T = 10, we obtain h = 0.025
(by Algorithm 3 in Sect. 4.1) s.t. Theorem 3 holds, i.e., WTS ∼=h,ε Dh,ε(WTS)
on [0, 10]. After that, we can automatically generate SystemC code equivalent
to Dh,ε(WTS) (by calling HCSP2SystemC.jar).

The comparison of the results, i.e., the curves of the water level (d in the
figure), which are acquired from the simulation of the original dHCSP model
and the generated SystemC code respectively is shown in Fig. 1. The result on
the whole time interval [0, 10] is illustrated in Fig. 1(a), and the specific details
around two vital points, i.e., 5 and 8, are shown in Fig. 1 (b) and (c), respectively.

1 The tool and all examples for HCSP and dHCSP can be found at https://github.
com/HCSP-CodeGeneration/HCSP2SystemC.

https://github.com/HCSP-CodeGeneration/HCSP2SystemC
https://github.com/HCSP-CodeGeneration/HCSP2SystemC
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Fig. 1. The dHCSP model vs. the SystemC code of WTS (Color figure online).(a) The
result on [0,10]; (b) Zoom in on the result around 5; (c) Zoom in on the result around 8.

In the figures, the simulation result (by calling the DDE solver dde23 in Matlab)
is represented by green solid (i.e., d-dHCSP), and the result obtained by run-
ning the generated SystemC code is represented by blue dashed (i.e., d-SC ). The
upper bound (lower bound) of the SystemC result, by adding (subtracting) the
local error bounds computed in Algorithm 3, is represented by red solid (dark
red solid), i.e., d-SC+e (d-SC-e). As Fig. 1 shows, the results of simulation and
SystemC code both always fall into the interval determined by the upper and
lower error bounds, which indicates the correctness of the discretization. More-
over, the distance between the state of the simulation and the state of SystemC
code is less than the required precision (i.e., ε = 0.2), in every interval of h
length.
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7 Conclusion

In this paper, we present an automatic translation from abstract dHCSP models
to executable SystemC code, while preserving approximate equivalence between
them within given precisions. As a modelling language for hybrid systems,
dHCSP includes continuous dynamics in the form of DDEs and ODEs, discrete
dynamics, and interactions between them based on communication, parallel com-
position and so on. In the discretization of dHCSP within bounded time, on one
hand, based on our previous work, we discretize a DDE by a sequence of approx-
imate discrete states and control the distance from the trajectory within a given
precision, by choosing a proper discretized time step to make the error bound
less than the precision; and on the other hand, by requiring the original dHCSP
models to be robustly safe, we guarantee the consistency between the execu-
tion flows of the source model and its discretization in the sense of approximate
bisimulation with respect to the given error tolerance.

As a future work, we will continue to transform from SystemC code into other
practical programming languages, such as C, C++, java, etc. In addition, we also
consider to apply our approach to more complicated real-world case studies.
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