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Abstract. This paper presents an integrated quantitative MR image analysis
framework to include all necessary steps such as MRI inhomogeneity correction,
feature extraction, multiclass feature selection and multimodality abnormal brain
tissue segmentation respectively. We first obtain mathematical algorithm to
compute a novel Generalized multifractional Brownian motion (GmBm) texture
feature. We then demonstrate efficacy of multiple multiresolution texture fea-
tures including regular fractal dimension (FD) texture, and stochastic texture
such as multifractional Brownian motion (mBm) and GmBm features for robust
tumor and other abnormal tissue segmentation in brain MRI. We evaluate these
texture and associated intensity features to effectively delineate multiple
abnormal tissues within and around the tumor core, and stroke lesions using
large scale public and private datasets.

1 Introduction

Accurate brain tumor segmentation is important for diagnosis, therapy, grading, and
survival prediction. Because the current clinical practice of manual segmentation of
tumors is time-consuming and tedious, automated or semi-automated method is
required. However, the task of tumor and abnormal tissue segmenting is very chal-
lenging because of tissue heterogeneity, difference in shapes, sizes, types, and varying
issue structures such as edema, necrosis, enhancing and non-enhancing abnormal tis-
sues [1].

Abnormal brain tissues are known to have texture and intensity variations in MRI
and, hence, the computer processing of these tissues needs features that are effective in
capturing these variations. For example, the Gray-Level Co-Occurrence Matrix
(GLCM) texture features have been used in [2, 3]. In [4] the authors use a combination
of initial tissue probability and spatially non-local features such as the intensity dif-
ference, and the intensity between different MR image modality for segmentation.
However, more effective features that target the complex and varying textures of brain
tissues is still required.

This work discusses the effectiveness of using the stochastic multiresolution texture
features along with random forest clustering in brain tumor segmentation and predic-
tion. Medical images are known to have a degree of randomness associated with its
spatial intensity distribution. This randomness allows the use of fractal texture mod-
eling in order to measure the surface roughness in MR images. In addition, the uneven
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growth and appearance of tumor in MRI further justifies the effectiveness of texture as
a feature for abnormal brain tissue segmentation.

The method illustrated in this work combines features extraction and classification
as illustrated in Fig. 1. We extract different spatially varying texture features such as
piecewise triangular prism surface area (PTPSA), multifractional Brownian motion
(mBm) and generalized multifractional Brownian motion (GmBm) along with other
intensity features and then use these features for random forest (RF) classification of
multiple abnormal tissues in brain MR imaging.
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Fig. 1. General flow diagram for multiclass abnormal brain tissue segmentation [5]

2 Background Review

This work utilizes both static and spatially varying stochastic multiresolution texture
features. The texture feature is estimated using Fractal Dimension (FD) using Eq. (1):

FD=E+1—H, (1)

where E is the Euclidean dimension and H is Holder exponent. The value of Holder
exponent gives an indication about the roughness of an object. For example, high
values indicate a less roughness object. A detailed illustration and mathematical
derivation can be found in [5]. Below we discuss different methods for FD-based
texture feature extraction.

2.1 Piecewise-Triangular-Prism-Surface-Area (PTPSA)

PTPSA method is defined as the exponent of the number of self-similar objects, N, with
magnification factor, 1/r, into which a figure can be broken. In this method, an image
first divided into n X n, and each sub image into boxes of size r x r. Then, the surface
areas of the four triangles (as illustrated in Fig. 2) are calculated that are formed by the
five intensity levels (pl, p2, p3, p4, and pc). Then the FD is estimated by taking the
slope of the log-log of the surface areas of the four triangles and the magnification
factor (1/r). A detailed explanation of PTPSA is found in [6].
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Fig. 2. Illustration of fractal PTPSA feature extraction for a sub-image [6]

2.2  Multi-fractal Brownian Motion (mBm)

Multi-fractal Brownian motion is a non-stationary Brownian motion with Holder
exponent A(¢) and was first introduced in [7] where Holder exponent varies with time.
The Brownian motion is a real random function with independent Gaussian increment
with zero mean. In [5] the authors estimate A(¢) for mBm process using the variance
method as follows,

20(0) = tog (3 03 Wt ) gt )

where W, (t,a) is the wavelet transform of the mBm process X(¢) and a is the scaling
factor.

3 Methodology

This section first obtains novel modeling of GmBm texture feature for abnormal brain
tissue analysis in MRI. We then discuss the methods for brain tumor and stroke lesion
analysis using texture and intensity features in MRIL

3.1 Generalized Multifractional Brownian Motion (GmBm)

In [8], the authors propose 1D generalized multifractional Brownian motion (GmBm)
process in order to resolve the irregularity in the Holder exponent that mBm process
may not resolve. This makes GmBm an excellent process to model a very complex data
path such as a textured image. Also, GmBm may be treated as an extension of mBm
process since CmBm is a locally asymptotically self-similar process with index (Holder
exponent), H(t).

To identify for the Holder exponent H(¢) for a GmBm model, a generalized
quadratic variation meod is proposed [9]. The Generalized Quadratic Variation Vy(7) of

a discretized path {X(p/N);p € {07 .o N— 2}d}, where N >2 of a GmBm process
{X(t);t € [0, l]d} is defined as,
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where d is the dimension of the process X(t), 6 and vy are tuned and chosen such that
0 —7y>1/2d and y > J, and the neighborhood Vy(¢) of the point ¢ is given as,

v (f) = Y)}V(tl) X ... X T}%(td). 4)
Here for all i = 1,...,d, we have,
v;’v(zi):{p,-eN;ogp,-gN—zz ti—% SN’V}. (5)

Therefore, the Holder Exponent is given as,

H(t) = zim% (d(l —y) - %) . (6)

N—oo

Figure 3 shows the proposed computational algorithm for computing the Holder
Exponent H(¢) in MR images.

Algorithm

/* Initialization™®/
Initialize 6 and y such that the two conditions & —y > 1/2d and y > § are satisfied
/*Assignment™/
For each block of image of size N X N
For every point t in every dimension d
1. Determine the neighborhood ¥y (t) and its parameters ViN(ti) of each point t as
indicated in “(4,5)”
2. Compute the variation Vy (t) of the neighborhood ¥y (¢) of point ¢ using * (3)”
3. Compute H(t) using “ (6)”
4. Compute FD =d +1—H(t)
End
End

Fig. 3. Proposed computational algorithm for H(z) in GmBm process

By choosing the right parameters, and applying the algorithm in Fig. 3 to a textured
image such as MR brain tumor images, we obtain a novel feature that is useful in
extracting tumors more precisely.
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3.2 Brain Tumor Segmentation

We develop method [10, 11] for multiclass (edema, necrosis, enhance tumor, and
non-enhance tumor) brain tumor segmentation in multimodality MRI (T1, T1C, T2,
and FLAIR). Preprocessing step is needed before feature extraction for MR image. The
preprocessing steps involve registration, resampling, re-slicing, skull stripping, his-
togram matching, and intensity inhomogeneity correction [12]. The intensity inho-
mogeneity correction method involves two main steps: 10 point histogram matching
and intensity normalization with the mean value of the cerebrospinal fluid (CSF).

The stochastic multiresolution texture (mBm, PTPSA, and GmBm), regular texture
(texton) [13] and intensity features are extracted from each preprocessed MRI modality.
The selection of texture features captures both global and local characteristics of dif-
ferent tissues. Intensity features that represents normalized intensity of the four MRI
modalities, and normalized intensity difference between the four MRI modalities are
also considered. We then fuse all features to obtain a 3D feature matrix and then use the
feature matrix for Random Forest (RF) Classification. The RF classifier is trained on a
set of training dataset with known tissue (class) label to build the RF training model.
RF is fast and efficient in handling multiclass classification problem [14]. Then we use
this model to predict the class for test dataset. Figure 1 shows the complete pipeline for
the brain tumor segmentation method.

3.3 Ischemic Stroke Lesion Segmentation

We also extend the brain tumor segmentation method discussed above into ischemic
stroke lesion segmentation [15]. The lesion segmentation involves addition of a new
feature; the structure tensor based local gradient. The method also includes addition of
feature ranking and selection steps to the brain tumor segmentation method.

The structure tensor based local gradient [16] uses the local gradient information of
an image in order to determine the structure tensor at each pixel of the image. These
tensor values may indicate a uniform region, a corner or an edge. Feature selection
using minimal-redundancy-maximal-relevance [17] criterion (mRMR) is applied in
order to search features that have the largest dependency on the target class and the
minimal redundancy.

4 Experimental Results

Figure 4 show an example of segmented tumor using the brain tumor segmentation
method as illustrated in Fig. 1. In this example, 2 textures features (PTPSA, and mBm)
are used along with other intensity features in the segmentation.

We evaluate our abnormal tissue segmentation method by performing a study using
BRATS-2013 [18] and BRATS-2014 [19] datasets. The first study uses 213 cases from
BRS-2014 and 20 cases from BRATS-2013, respectively. We train RF classifier using
BRATS-2013 cases and test using BRATS-2014 cases. The average scores varies from
63%—76% using Dice overlap metric for tumor core and complete tumor, respectively.
This result shows that our segmentation method is very promising, and offer
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Fig. 4. Segmented tissues with corresponding input and ground-truth images. Input: a T1, b
Tlcontrast, ¢ Flair d T2, e ground-truth, f Segmented image. Labels in the ground-truth:
1 - necrosis, 2 - edema, 3 - nonenhance tumor, 4 - enhancing tumor, O - everything else

comparable performance when compared with state-of-the are works proposed in
BRATS challenges [18].

In the second study, we perform tumor segmentation using three texture features
(PTPSA, mBm, and GmBm) along with other intensity features. In this study, we use
cases from NIH’s TCGA-GBM collection [20, 21] for training and testing. We use 10
patients for training and 33 patients for testing. The average classification scores varies
from 63%-59% using Dice overlap metric for tumor core and complete tumor,

a

Fig. 5. Segmented tissues with corresponding input and ground-truth images. Input: a T1, b
Tlcontrast, ¢ Flair d T2, e ground-truth, f Segmented image. Labels in the ground-truth: 1 -
necrosis, 2 - edema, 4 - enhancing tumor, O - everything else
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Table 1. Dice overlap of using different types of multiresolution texture features in Brain
Tumor Segmentation in Fig. 1

Method Testing dataset | Training Tumor | Complete
(# of cases) dataset (# of core tumor dice
cases) dice
Brain tumor segmentation (using | BRATS 2014 |BRATS 2013 | 63% 67%
mBm and PTPSA) (213) (20)
Brain tumor segmentation (using | TCGA-GBM | TCGA-GBM | 63% 59%
mBm, PTPSA, and GmBm) collection (33) | collection (10)

respectively. Note that the dice overlap metric is evaluated before doing any
post-processing in this study. Figure 5 shows examples of the results when using these
three types of texture features. Table 1 shows the dice overlap for both the first and the
second study.

In the third study, we evaluate ischemic stroke lesion segmentation method using
28 patients from ISLES-2015 SISS training dataset [22]. Across cross-validation shows
an average dice overlap of 59%. In addition, our performance using the ISLES-2015
SISS testing datasets is very promising when compared to others state-of-art works in
the ISLES 2015 challenge with a dice overlap of 43% [22]. Table 2 shows the average
dice overlap for training and testing in the ISLES 2015 challenge.

Table 2. Average dice overlap for ISLES 2015 challenge

Method Dataset (no. of cases) Average dice
Lesion segmentation | ISLES-2015 SISS training dataset (28) | 59%
Lesion segmentation | ISLES-2015 SISS training dataset (33) | 43%

5 Conclusion

We discuss a novel stochastic multiresolution texture feature model for robust brain
tumor and abnormal lesion segmentation. Different types of static and dynamic fractal
texture features and intensity features are extracted. These features are fused using a RF
classifier. In order to evaluate the effectiveness of our fractal features, we test our
method on multiple large-scale publicly available clinical dataset known as BRATS
and ISLES. We use both low grade glioma (LGG) and high grade glioma (HGG) pa-
tient data to show the efficacy of our method. The results show that our brain tumor
segmentation performance is comparable with state-of-the-art works. Using BRATS
2013 and 2014 for training and testing, we achieved an encouraging results of an
average dice overlap of 63% and 76% for tumor core and complete tumor, respectively.
Adding another fractal feature (GmBm) to the brain tumor segmentation, results in dice
overlap of 63% and 59% on the average for tumor core and complete tumor, respec-
tively. Extending the brain tumor segmentation method into ischemic stroke lesion
segmentation involves adding new feature and additional step for feature selection. The
result of our ischemic stroke lesion segmentation with an average of dice overlap of
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43% is reassuring, especially when compared to others state-of-art works. In future
work, we plan to explore more predictive and specific texture features that characterize
tumor microenvironment in the brain In addition, we would like to study inherently 3D
features that may characterize the variation of the whole 3D patient volumes.
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